Steroid Receptors in Health and Disease

  • Virinder K. Moudgil
Part of the Serono Symposia, USA book series (SERONOSYMP)


The influence of steroid hormones on various complex physiological and developmental processes is well known. Their role in the fetal brain development, attainment of puberty, sexual differentiation, regulation of reproductive function, normal and tumor cell proliferation, and maintenance of mineral balance has long been recognized. During the past twenty years, progress in research on the effects and mode of action of steroid hormones has resulted in the development of new approaches to contraception as well as diagnosis and treatment of endocrine disorders and cancers. It is now known that proliferation of almost one-third of reported breast and uterine cancers is influenced by circulating hormones: a high percentage of these cancers respond favorably to endocrine manipulations.


Estrogen Receptor Androgen Receptor Progesterone Receptor Glucocorticoid Receptor Steroid Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Moudgil VK, ed. Recent advances in steroid hormone action. Berlin: Walter de Gruyter, 1987.Google Scholar
  2. 2.
    Toft D, Gorski J. A receptor molecule for estrogens: isolation from the rat uterus and preliminary characterization. Proc Natl Acad Sci USA 1966; 55: 1574–81.PubMedCrossRefGoogle Scholar
  3. 3.
    Jensen EV, Suzuki T, Kawashima T, Stumpf WE, Jungblut PW, DeSombre ER. A two-step mechanism for the interaction of estradiol with rat uterus. Proc Natl Acad Sci USA 1968; 59: 632–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Gorski J, Toft DO, Shyamala G, Smith D, Notides A. Hormone receptors: studies on the interaction of estrogen with the uterus. Recent Prog Horm Res 1968; 24: 45–80.PubMedGoogle Scholar
  5. 5.
    Sheridan PJ, Buchanan JM, Anselmo VC, Martin PM. Equilibrium: the intracellular distribution of steroid receptors. Nature 1979; 282: 579–82.PubMedCrossRefGoogle Scholar
  6. 6.
    Welshons WV, Lieberman ME, Gorski J. Nuclear localization of unoccupied oestrogen receptors. Nature 1984; 307: 747–9.PubMedCrossRefGoogle Scholar
  7. 7.
    King WJ, Greene GL. Monoclonal antibodies localize oestrogen receptor in the nuclei of target cells. Nature 1984; 307: 745–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Welshons WV, Krummel BM, Gorski J. Nuclear localization of unoccupied receptors for glucocorticoids, estrogens, and progesterone in GH cells. Endocrinology 1985; 117: 2140–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Shull JD, Welshons WA, Lieberman ME, Gorski J. The rat pituitary estrogen receptor: role of the nuclear receptor in the regulation of transcription of the prolactin gene and the nuclear localization of the unoccupied receptor. In Moudgil VK, ed. Molecular mechanism of steroid hormone action: recent advances. Berlin: Walter de Gruyter, 1985:539–62.Google Scholar
  10. 10.
    Perrot-Applanat M, Logeat F, Groyer-Picard MT, Milgrom E. Immunocytochemical study of mammalian progesterone receptor using monoclonal antibodies. Endocrinology 1985; 116: 1473–84.PubMedCrossRefGoogle Scholar
  11. 11.
    Callard GV, Mak P. Exclusive nuclear location of estrogen receptors in Squilus testis. Proc Natl Acad Sci USA 1985; 82: 1336–40.PubMedCrossRefGoogle Scholar
  12. 12.
    Walters SN, Reinhardt TA, Domonick MA, Horst RL, Littledike ET. Intracellular location of unoccupied 1, 25-dihydroxyvitamin D receptors: a nuclear-cytoplasmic equilibrium. Arch Biochem Biophys 1985; 262: 366–73.Google Scholar
  13. 13.
    Gasc JM, Renoir JM, Radanyi C, Joab I, Tuohimaa P, Baulíeu EE. Progesterone receptor in the chick oviduct: an immunohistochemical study with antibodies to distinct receptor components. J Cell Biol 1984; 99: 1193–201.PubMedCrossRefGoogle Scholar
  14. 14.
    Szego CM, Pietras RJ. Subcellular distribution of oestrogen receptors. Nature 1985; 317: 88–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Jensen EV. Intracellular localization of estrogen receptors: Implications for interaction mechanism. Lab Invest 1984; 51: 487–8.PubMedGoogle Scholar
  16. 16.
    Schrader WT. New model for steroid hormone receptors? Nature 1984; 308: 17–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Gorski J, Welshons W, Sakai D. Review: remodeling the estrogen receptor model. Mol Cell Endocrinol 1984; 36: 11–5.PubMedCrossRefGoogle Scholar
  18. 18.
    Skafar DF, Notides AC. Modulation of the estrogen receptor’s affinity for DNA by estradiol. J Biol Chem 1985; 22: 12208–13.Google Scholar
  19. 19.
    Hansen JC. Characterization of the conformational transitions of the estrogen receptor monomer by partition in aqueous two-phase systems [Dissertation]. University of Wisconsin-Madison, 1986.Google Scholar
  20. 20.
    Moudgil VK, Hurd C. Transformation of calf uterine progesterone receptor: analysis of the process when receptor is bound to progesterone and RU 38486. Biochemistry 1987; 26: 4993–5001.PubMedCrossRefGoogle Scholar
  21. 21.
    Hurd C, Moudgil VK. Impaired transformation of mammalian progesterone receptor bound to progesterone antagonist RU486 [Abstract]. Proc Endo Soc, Anaheim, 1986; 1008.Google Scholar
  22. 22.
    Moudgil VK, Eessalu TE, Paulose CS, Taylor MG, Hansen JC. Activation of progesterone receptor by ATP. Eur J Biochem 1981; 118: 547–55.PubMedCrossRefGoogle Scholar
  23. 23.
    Moudgil VK, Eessalu TE, Buchou T, Renoir JM, Mester J, Baulieu EE. Transformation of chick oviduct progesterone receptor in vitro: effects of hormone, salt, heat and adenosine triphosphate. Endocrinology 1985; 116: 1267–74.PubMedCrossRefGoogle Scholar
  24. 24.
    Moudgil VK, Lombardo G, Eessalu T, Elíezer N. Hormone dependency of transformation of rat liver glucocorticoid receptor in vitro: effects of heat, salt and nucleotides. J Biochem 1986; 99: 1005–16.PubMedGoogle Scholar
  25. 25.
    Hansen JC, Gorski J. Conformational and electrostatic properties of unoccupied and liganded estrogen receptors determined by aqueous two-phase partitioning. Biochemistry 1985; 24: 6078–85.PubMedCrossRefGoogle Scholar
  26. 26.
    Andreesen PA, Junker K. Specific effects of monovalent cations and of adenine nucleotides on glucocorticoid receptor activation, as studied by aqueous two-phase partitioning. In: Moudgil VK, ed. Molecular mechanism of steroid hormone action: recent advances. Berlin: Walter de Gruyter, 1985; 199–224.Google Scholar
  27. 27.
    Moudgil VK, Vandenheede L, Hurd C, Eliezer N, Lombardo G. In vitro modulation of rat liver glucocorticoid receptor by urea. J Biol Chem 1987; 262: 5180–7.PubMedGoogle Scholar
  28. 28.
    Hansen JC, Gorski J. Conformational transitions of the estrogen receptor monomer. Effects of estrogens, antiestrogen, and tem- perature. J Biol Chem 1986; 261: 13990–6.Google Scholar
  29. 29.
    Jensen EV, DeSombre ER. Estrogen-receptor interaction. Science 1973; 182; 126–34.PubMedCrossRefGoogle Scholar
  30. 30.
    Moudgil VK. Progesterone receptor. In: Agarwal MK, ed. Principles of recepterology. Berlin: Walter de Gruyter, 1983: 273–381.Google Scholar
  31. 31.
    Moudgil VK. Interaction of nucleotides with steroid receptors. In: Moudgil VK, ed. Molecular mechanism of steroid hormone action: recent advances. Berlin: Walter de Gruyter, 1985: 351–76.CrossRefGoogle Scholar
  32. 32.
    Milgrom E, Atger M, Baulieu EE. Acidophilic activation of steroid. hormone receptors. Biochemistry 1973; 12: 5198–205.PubMedCrossRefGoogle Scholar
  33. 33.
    John JK, Moudgil VK. Activation of glucocorticoid receptor by ATP. Biochem Biophys Res Commun 1979; 90: 1242–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Moudgil VK, John JK. Interaction of rat liver glucocorticoid receptor with adenosine 5’-triphosphate. Characterization of interaction by use of ATP-Sepharose affinity chromatography. Biochem J 1980; 190: 809–18.PubMedGoogle Scholar
  35. 35.
    Munck A, Foley R. Activation of steroid hormone-receptor complexes in intact cells in physiological conditions. Nature 1979; 278: 752–4.PubMedCrossRefGoogle Scholar
  36. 36.
    Liao S, Liang T, Tymoczko JL. Ribonucleoprotein binding of steroid receptor complexes. Nature New Biol 1973; 241: 211–3.PubMedCrossRefGoogle Scholar
  37. 37.
    Liao S, Smythe S, Tymoczko JL, et al. RNA-dependent release of androgen-and other steroid-receptor complexes from DNA. J Biol Chem 1980; 255: 5545–51.Google Scholar
  38. 38.
    Rossini GP. Molybdate inhibits glucocorticoid receptor complex binding to DNA. Mol Cell Endocrinol 1987; 49: 129–35.PubMedCrossRefGoogle Scholar
  39. 39.
    Schmidt TJ, Diehl EE, Davidson CJ, et al. Effects of bovine pancreatic ribonuclease A, S protein, and S peptide on activation of purified rat hepatic glucocorticoid receptor complexes. Biochemistry 1986; 25: 5955–61.PubMedCrossRefGoogle Scholar
  40. 40.
    Rossini GP. RNA containing nuclear sites for glucocorticoid receptor complexes. Biochem Biophys Res Commun 1984; 123: 78–83.PubMedCrossRefGoogle Scholar
  41. 41.
    Tymoczko JL, Phillips MM. The effects of ribonuclease on rat liver dexamethasone receptor: increased affinity for deoxyribonucleic acid and altered sedimentation profile. Endocrinology 1983; 112: 142–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Tymoczko JL, Phillips MM, Vernon SS. Binding of the rat liver 7–8 S dexamethasone receptor to deoxyribonucleic ac id. Arch Biochem Biophys 1984; 230: 345–54.PubMedCrossRefGoogle Scholar
  43. 43.
    Economidis IV, Rousseau GG. Association of the glucocorticoid hormone receptor with ribonucleic acid. FEBS Lett 1985; 181: 47–52.PubMedCrossRefGoogle Scholar
  44. 44.
    Liang T, Liao S. Association of the uterine 176-estradiol receptor complex with ribonucleic-protein in vitro and in vivo. J Biol Chem 1974; 249: 4671–78.PubMedGoogle Scholar
  45. 45.
    Thomas T, Kiang DT. Ribonuclease-induced transformation of progesterone receptor from rabbit uterus. J Steroid Biochem 1986; 24: 50511.CrossRefGoogle Scholar
  46. 46.
    Tymoczko JL, Anderson EE, Lee JH, Unger AL. Studies with chymotrypsin and RNAs showing a hetero-oligomeric structure of the glucocorticoid receptor complex from rat liver which is stabilized by a low molecular weight factor. Biochem Biophys Acta 1986; 888: 296–305.PubMedCrossRefGoogle Scholar
  47. 47.
    Webb ML, Schmidt TJ, Robertson NM, Litwack G. Evidence for an association of a ribonucleic acid with purified, unactivated glucocorticoid receptor. Biochem Biophys Res Commun 1986; 140: 204–11.PubMedCrossRefGoogle Scholar
  48. 48.
    Rowley DR, Premont RT, Johnson MP, Young CYF, Tindall DJ. Properties of an intermediate-sized androgen receptor: association with RNA. Biochemistry 1986; 25: 6988–95.PubMedCrossRefGoogle Scholar
  49. 49.
    Lamb DJ, Kima PE, Bullock DW. Occurrence of a 6S intermediate form of the progesterone receptor that is sensitive to ribonuclease. Mol Cell Biochem 1987; 73: 77–84.PubMedCrossRefGoogle Scholar
  50. 50.
    Kovacic-Milivojevic BK, LaPointe MC, Reker CE, Vedeckis WV. Ribonucleic acid is a component of the oligomeric, transformed mouse AtT-20 cell glucocorticoid receptor. Biochemistry 1985; 24: 7357–66.PubMedCrossRefGoogle Scholar
  51. 51.
    Ali M, Vedeckis WV. The glucocorticoíd receptor protein binds to transfer RNA. Science 1987; 235: 467–70.PubMedCrossRefGoogle Scholar
  52. 52.
    Ali M, Vedeckis WV. Interaction of RNA with transformed glucocorticoid receptor. J Biol Chem 1987; 262: 2671–7.Google Scholar
  53. 53.
    Reker CE, Kovacic-Milivojevic B, Eastman-Rekers SB, Vedeckis WV. Transformed mouse glucocorticoid receptor: generation and intercon-version of the 3.8S monomeric, and 5.2S oligomeric species. Biochemistry 1985; 24: 196–204.PubMedCrossRefGoogle Scholar
  54. 54.
    Anderson EE, Tymoczko JL. Stabilization of glucocorticoid receptor association with RNA by a low molecular weight factor from rat liver cytosol. J Steroid Biochem 1985; 23: 299–306.PubMedCrossRefGoogle Scholar
  55. 55.
    Kovacic-Milivojevic B, Vedeckis WV. Absence of detectable ribonucleic acid in the purified untransformed mouse glucocorticoid receptor. Biochemistry 1986; 25: 8266–73.PubMedCrossRefGoogle Scholar
  56. 56.
    Nishigori H, Toft DO. Inhibition of progesterone receptor activation by sodium molybdate. Biochemistry 1980; 19: 77–83.PubMedCrossRefGoogle Scholar
  57. 57.
    Toft DO, Nishigori H. Stabilization of the avian progesterone receptor by inhibitors. J Steroid Biochem 1979; 11: 413–16.PubMedCrossRefGoogle Scholar
  58. 58.
    Puri RK, Grandics P, Dougherty JJ, Toft DO. Purification of non-transformed avian progesterone receptor and preliminary characterization. J Biol Chem 1982; 257: 10831–7.PubMedGoogle Scholar
  59. 59.
    Renoir JM, Yang CR, Formstecher P, et al. Progesterone receptor from chick oviduct: purification of molybdate-stabilized form and preliminary characterization. Eur J Biochem 1982; 127: 71–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Dougherty JJ, Puri RK, Toft DO. Phosphorylation in vivo of chicken oviduct progesterone receptor. J Biol Chem 1982; 257: 14226–30.PubMedGoogle Scholar
  61. 61.
    Birnbaumer M, Bell RC, Schrader WT, O’Malley BW. The putative molybdate-stabilized progesterone receptor subunit is not a steroid-binding protein. J Biol Chem 1984; 259: 1091–8.PubMedGoogle Scholar
  62. 62.
    Dougherty JJ, Toft DO. Characterization of two 8S forms of chick oviduct progesterone receptor. J Biol Chem 1982; 257: 3113–9.PubMedGoogle Scholar
  63. 63.
    Joab I, Radanyi C, Renoir JM, et al. Common non-hormone binding component in nontransformed chick oviduct receptors of four steroid hormones. Nature 1984; 308: 850–3.PubMedCrossRefGoogle Scholar
  64. 64.
    Riehl RM, Sullivan WP, Vroman BT, Bauer VT, Pearson GR, Toft DO. Immunological evidence that the non-hormone binding component of avian steroid receptors exists in a wide range of tissues and species. Biochemistry 1985; 24: 6586–91.PubMedCrossRefGoogle Scholar
  65. 65.
    Renoir JM, Buchou T, Baulieu EE. Involvement of a non-hormone binding 90-kilodalton protein in the nontransformed 8S form of the rabbit uterus progesterone receptor. Biochemistry 1986; 25: 6405–13.PubMedCrossRefGoogle Scholar
  66. 66.
    Housley PR, Sanchez ER, Westphal HH, Beato M, Pratt WB. The molybdate-stabilized L-cell glucocorticoid receptor isolated by affinity chromatography or with a monoclonal antibody is associated with a 90–92K nonsteroid binding phosphoprotein. J Biol Chem 1985; 260: 13810–7.PubMedGoogle Scholar
  67. 67.
    Singh VB, Eliezer N, Moudgil VK. Transformation and phosphorylation of purified molybdate stabilized chicken oviduct progesterone receptor. Biochim Biophys Acta 1986; 888: 237–48.PubMedCrossRefGoogle Scholar
  68. 68.
    Mendel DB, Bodwell JE, Gametchu B, Harrison RW, Munck A. Molybdatestabilized nonactivated glucocorticoid-receptor complexes contain a 9OK-Da steroid binding phosphoprotein that is lost on activation. J Biol Chem 1986; 261; 3758–63.PubMedGoogle Scholar
  69. 69.
    Schlesinger MJ, Ashburner M, Tissieres A, eds. Heat shock: from bacteria to man. New York: Cold Spring Harbor Laboratory, Cold Spring Harbor, 1982.Google Scholar
  70. 70.
    Schuh SS, Yonemoto W, Brugge J, Bauer VJ, Riehl RM, Sullivan WP, Toft DO. A 90,000-dalton binding protein common to both steroid receptors and the Rouse Sarcoma Virus transforming protein pp6Ov-src. J Biol Chem 1985; 26: 14292–6.Google Scholar
  71. 71.
    Sanchez ER, Toft DO, Schlesinger MJ, Pratt WB. Evidence that the 90-kDa phosphoprotein associated with the untransformed L-cell glucocorticoid receptor is a murine heat shock protein. J Biol Chem 1985; 260: 12398–401.PubMedGoogle Scholar
  72. 72.
    Catelli MG, Binart N, Feramisco JR, Helfman DM. Cloning of the chick hsp 90 cDNA in expression vector. Nucleic Acids Res 1985; 13: 603–547.Google Scholar
  73. 73.
    Dougherty JJ, Rabideau DA, Iannotti AM, Sullivan WP, Toft DO. Identification of the 90-kDa substrate of rat liver type II casein kinase with the heat shock protein which binds steroid receptors. Biochim Biophys Acta 1987; 927: 74–80.PubMedCrossRefGoogle Scholar
  74. 74.
    Renoir JM, Radanyi C, Devin J, Baulieu EE. Cytosol rabbit progesterone receptor-RU486 complex is not readily activated because the antagonist does not promote dissociation of hsp90 from the steroid binding protein [Abstract]. Proceedings of the Meadow Brook Conference on Steroid Receptors in Health and Disease. Rochester, Michigan, 1987: 23.Google Scholar
  75. 75.
    Lefebvre P, Formstecher P, Dautrevaux M. Correlation between anti-glucocorticoid activity and ability to stabilize the interaction between the glucocorticoíd receptor and the 90k non steroid binding protein [Abstract]. Proceedings of the Meadow Brook Conference on Steroid Receptors in Health and Dise ase. Rochester, Michigan, 1987: 7.Google Scholar
  76. 76.
    Moudgil VK, Nishigori H, Eessalu TE, Toft DO. Analysis of the avian progesterone receptor with inhibitors. In: Roy A, Clark JH, eds. Gene regulation by steroid hormones. New York: Springer-Verlag, 1980: 103–19.Google Scholar
  77. 77.
    Barnett CA, Schmidt TJ, Litwack G. Effects of calf intestinal alkaline phosphatase, phosphatase inhibitors and phosphorylated compounds on the rate of activation of glucocorticoid-receptor complexes. Biochemistry 1980; 19: 5446–55.PubMedCrossRefGoogle Scholar
  78. 78.
    Leach KL, Dahmer MK, Hammond ND, Sando JJ, Pratt WB. Molybdate inhibition of glucocorticoid receptor inactivation and transformation. J Biol Chem 1979; 254: 11884–90.PubMedGoogle Scholar
  79. 79.
    Singh VB, Moudgil VK. Phosphorylation of rat liver glucocorticoid receptor. J Biol Chem 1985; 260: 3684–90.PubMedGoogle Scholar
  80. 80.
    Murakami N, Moudgil VK. Inactivation of rat liver glucocorticoid receptor by molybdate. Biochem J 1981; 198: 447–55.PubMedGoogle Scholar
  81. 81.
    Murakami N, Moudgil VK. Interaction of rat liver glucocorticoid receptor with sodium tungstate. Biochem J 1982; 204: 777–86.PubMedGoogle Scholar
  82. 82.
    Housley PR, Dahmer MK, Pratt WB. Inactivation of glucocorticoidbinding capacity by protein phosphatases in the presence of molybdate and complete reactivation by dithiothreitol. J Biol Chem 1982; 257: 8615–8.PubMedGoogle Scholar
  83. 83.
    Green S, Chambon P. A superfamily of potentially oncogenic hormone receptors. Nature 1986; 324: 615–7.PubMedCrossRefGoogle Scholar
  84. 84.
    Green S, Walter P, Kumar V, Krust A, Bornet JM, Argos P, Chambon P. Human oestrogen receptor cDNA: sequence expression and homology to v-erb-A. Nature 1986; 320: 134–9.PubMedCrossRefGoogle Scholar
  85. 85.
    Kumar V, Green S, Staub A, Chambon P. Localization of the oestradiol-binding and putative DNA-binding domains of the human oestrogen receptor. EMBO J 1986; 5: 2231–6.PubMedGoogle Scholar
  86. 86.
    Green S, Kumar V, Krust A, Chambon P. The oestrogen receptor: structure and function. In: Moudgil VK, ed. Recent advances in steroid hormone action. Berlin: Walter de Gruyter, 1987: 161–83.Google Scholar
  87. 87.
    Willmann T, Beato M. Steroid-free glucocorticoid receptor binds specifically to mouse mammary tumor virus DNA. Nature 1986; 324: 688–91.PubMedCrossRefGoogle Scholar
  88. 88.
    Bailly A, Le Page C, Rauch M, Milgrom E. Sequence-specific DNA binding of the progesterone receptor to the uteroglobin gene: effects of hormone, antihormone and receptor phosphorylation. EMBO J 1986; 5: 3235–41.PubMedGoogle Scholar
  89. 89.
    Giguere S, Hollenberg SM, Rosenfeld MG, Evans RM. Functional domains of the human glucocorticoid receptor. Cell 1986; 46: 645–52.PubMedCrossRefGoogle Scholar
  90. 90.
    Becker PB, Gloss B, Schmid W, Strahle U, Schutz G. In vivo protein-DNA interactions in a glucocorticoid response element require the presence of the hormone. Nature 1986; 326: 686–8.CrossRefGoogle Scholar
  91. 91.
    Godowski PJ, Rusconi S, Miesfeld R, Yamamoto KR. Glucocorticoid receptor mutants that are constitutive activators of transcriptional enhancement. Nature 1987; 325: 365–8.PubMedCrossRefGoogle Scholar
  92. 92.
    Hollenberg SM, Giguere V, Sequi P, Evans RM. Colocalization of DNA binding and transcriptional activation functions in the human glucocorticoid receptor. Cell 1987; 49: 39–46.PubMedCrossRefGoogle Scholar
  93. 93.
    Spelsberg TC, Horton M, Fink K, et al. A new model for steroid regulation of gene transcription using acceptor sites and regulatory genes and their products. In: Moudgil VK, ed. Recent advances in steroid hormone action. Berlin: Walter de Gruyter, 1987: 59–83.CrossRefGoogle Scholar
  94. 94.
    Ruh MF, Ruh TS. Antiestrogen action: properties of the estrogen receptor and chromatin acceptor sites. In: Moudgil VK, ed. Recent advances in steroid hormone action. Berlin: Walter de Gruyter, 1987: 109–31.Google Scholar
  95. 95.
    Barrack ER. Specific association of androgen receptors and estrogen receptors with the nuclear matrix: summary and perspectives. In: Moudgil VK, ed. Recent advances in steroid hormone action. Berlin: Walter de Gruyter, 1987: 85–107.Google Scholar
  96. 96.
    Yamamoto KR. Steroid receptor regulated transcription of specific genes and gene networks. Annu Rev Genet 1985; 19: 209–52.PubMedCrossRefGoogle Scholar
  97. 97.
    Payvar F, Wrange O, Carlstedt-Duke J, Okret S, Gustafsson JA, Yamamoto KR. Purified glucocorticoid receptors bind selectively in vitro to a cloned DNA fragment whose transcription is regulated by glucocorticoids in vivo. Proc Natl Acad Sci USA 1981; 78: 6628–32.PubMedCrossRefGoogle Scholar
  98. 98.
    Pfahl M. Specific binding of the glucocorticoid-receptor complex to the mouse mammary tumor proviral promotor region. Cell 1982; 31: 475–82.PubMedCrossRefGoogle Scholar
  99. 99.
    Govindan MV, Spiess E, Majors J. Purified glucocorticoid receptor-hormone complex from rat liver cytosol binds specifically to cloned mouse mammary tumor virus long terminal repeats in vitro. Proc Natl Acad Sci USA 1982; 79: 5157–61.PubMedCrossRefGoogle Scholar
  100. 100.
    Moore DD, Marks AR, Buckley DI, Kapler G, Payvar F, Goodman HM. The first intron of the human growth hormone gene contains a binding site for glucocorticoid receptor. Proc Natl Acad Sci USA 1985; 82: 699–702.PubMedCrossRefGoogle Scholar
  101. 101.
    Bechet D. Control of gene expression by steroid hormones. Reprod Nutr Develop 1986; 26: 1025–55.CrossRefGoogle Scholar
  102. 102.
    Mulvihill ER, Le Pennee JP, Chambon P. Chicken oviduct progesterone receptor: location of specific regions of high affinity binding in cloned DNA fragments of hormone-responsive genes. Cell 1982; 24: 621–32.CrossRefGoogle Scholar
  103. 103.
    Compton JG, Schrader WT, O’Malley BW. DNA sequence preference of the progesterone receptor. Proc Natl Acad Sci USA 1983; 80: 16–20.PubMedCrossRefGoogle Scholar
  104. 104.
    Karin M, Haslinger A, Holtgreve H, Richards RI, Krauter P, Westphal HM, Beato M. Characterization of DNA sequences through which cadmium and glucocorticoid hormones induce human metaollthionine in-11A gene. Nature 1984; 308: 513–9.PubMedCrossRefGoogle Scholar
  105. 105.
    Groner B, Kennedy N, Skroch P, Hynes NE, Ponta H. DNA sequences involved in the regulation of gene expression by glucocorticoid hormones. Biochim Biophys Acta 1984; 781: 1–6.PubMedCrossRefGoogle Scholar
  106. 106.
    Scheidereit C, Beato M. Contacts between hormone receptor and DNA double helix within a glucocorticoid regulating element of mouse mammary tumor virus. Proc Natl Acad Sci USA 1984; 81: 3029–33.PubMedCrossRefGoogle Scholar
  107. 107.
    Jost JP, Seldran M, Geiser M. Preferential binding of estrogen-receptor complex to a region containing the estrogen-dependent hypomethylation site preceding the chicken vitellogenin II gene. Proc Natl Acad Sci USA 1984; 81: 429–33.PubMedCrossRefGoogle Scholar
  108. 108.
    Lee F, Mulligan R, Berg P, Ringold G. Glucocorticoids regulate expression of dehydrofolate reductase cDNA in mouse mammary tumor virus chimeric plasmids. Nature 1981; 294: 228–32.PubMedCrossRefGoogle Scholar
  109. 109.
    Renkawitz R, Beng H, Graf T, Matthias P, Grez M, Schutz G. Expression of a chicken lysozome recombinant gene is regulated by proges-terone and dexamethasone after microinjection into oviduct cells. Cell 1982; 31: 168–76.CrossRefGoogle Scholar
  110. 110.
    Dean DC, Knoll BJ, Riser ME, O’Malley BW. A 5’-flanking sequence essential for progesterone regulation of an ovalbumin fusion gene. Nature 1983; 305: 551–4.PubMedCrossRefGoogle Scholar
  111. 111.
    Miesfeld R, Okret S, Wikstrom A, et al. Characterization of a steroid hormone receptor gene and mRNA in wild type and mutant cells. Nature 1984; 312: 779–81.PubMedCrossRefGoogle Scholar
  112. 112.
    Hollenberg SM, Weinberger C, Ong ES, et al. Primary structure and expression of a functional human glucocorticoid receptor cDNA. Nature 1985; 318: 635–41.PubMedCrossRefGoogle Scholar
  113. 113.
    Krust A, Green S, Argos P, et al. The chicken estrogen receptor sequence: homology with v-erb A and the human oestrogen and glucocorticoid receptors. EMBO J 1986; 5: 891–7.PubMedGoogle Scholar
  114. 114.
    Jeltsch JM, Krozowski Z, Quirin-Stricker C, et al. Cloning of the chicken progesterone receptor. Proc Natl Acad Sci USA 1986; 83: 5424–8.PubMedCrossRefGoogle Scholar
  115. 115.
    Conneely DM, Sullivan WP, Toft DO, et al. Molecular cloning of the chicken progesterone receptor. Science 1986; 233: 767–70.PubMedCrossRefGoogle Scholar
  116. 115a.
    Janne OA. Androgen regulation of gene expression [Abstract]. Program of the Meadow Brook Conference on Steroid Receptors in Health and Disease, Rochester, Michigan, 1987.Google Scholar
  117. 116.
    Weigel NL, Tash JS, Means AR, Schrader WT, O’Malley BW. Phosphorylation of hen progesterone receptor by cAMP dependent protein kinase. Biochem Biophys Res Commun 1981; 102: 513–9.PubMedCrossRefGoogle Scholar
  118. 117.
    Schrader WT, Birnbaumer ME, Hughes MR, Weigel NL, Grody WW, O’Malley RW. Studies on the structure and function of the chicken progesterone receptor. Recent Prog Horm Res 1981; 37; 583–633.PubMedGoogle Scholar
  119. 118.
    Weigel NL. Isolation of protein kinase from chicken oviduct which phosphorylate the progesterone receptor in vitro [Abstract]. In: Excerpta Medica, Abstracts of the 7th International Cong Endocrinol. New York: Elsevier Science Publishers, 1984: 2710.Google Scholar
  120. 119.
    Denner LA, Bingman WE, Weigel NL. Phosphorylation of the chicken progesterone receptor [Abstract]. Proc VII Internati Cong Horm Steroids, Madrid, 1986.Google Scholar
  121. 120.
    Logeat F, LeCunff M, Pamphile R, Milgrom E. The nuclear-bound form of the progesterone receptor is generated through a hormone-dependent phosphorylation. Biochem Biophys Res Commun 1985; 131: 421–7.PubMedCrossRefGoogle Scholar
  122. 121.
    Puri RK, Toft DO. Peptide mapping analysis of the avian progesterone receptor. J Biol Chem 1986; 260: 5651–7.Google Scholar
  123. 122.
    Dougherty JJ. Phosphorylation of progesterone receptor. In: Moudgil VK, ed. Molecular mechanism of steroid hormone action: recent advances. Berlin: Walter de Gruyter, 1985: 299–308.Google Scholar
  124. 123.
    Ghosh-Dastidar P, Coty WA, Griest RE, Woo DDL, Fox CF. Progesterone receptor subunits are high-affinity substrates for phosphorylation by epidermal growth factor receptor. Proc Natl Acad Sci USA 1984; 81: 1654–8.PubMedCrossRefGoogle Scholar
  125. 124.
    Woo DDL, Fay SP, Griest R, Coty W, Goldfine I, Fox CF. Differential phosphorylation of the progesterone receptor by insulin epidermal growth factor, and platelet-derived growth factor receptor tyrosine protein kinases. J Biol Chem 1986; 261: 460–7.PubMedGoogle Scholar
  126. 125.
    Auricchio F, Migliacchio A, Rotondi A, Castoria G. Phosphorylation of tyrosine of the 17-beta estradiol. In: Moudgil VK, ed. Molecular mechanism of steroid hormone action: recent advances. Berlin: Walter de Gruyter, 1985: 279–98.Google Scholar
  127. 126.
    Sanchez ER, Pratt WB. Phosphorylation of L-cell glucocorticoid receptors in immune complexes: evidence that the receptor is not a protein kinase. Biochemistry 1986; 25: 1378–82.PubMedCrossRefGoogle Scholar
  128. 127.
    Hapgood JP, Sabbatini GP, Holt CV. Rat liver glucocorticoid recgtor isolated by affinity chromatography is not a Mg +- or Ca–dependent protein kinase. Biochemistry 1986; 25: 7529–34.PubMedCrossRefGoogle Scholar
  129. 128.
    Garcia T, Buchou T, Renoir JM, Mester J, Baulieu EE. A protein kinase copurified with chick oviduct. Biochemistry 1986; 25: 793742Google Scholar
  130. 129.
    Gruol DJ, Campbell NF, Bourgeois S. Cyclic AMP-dependent protein kinase promotes glucocorticoíd receptor function. J Biol Chem 1986; 261: 4909–14.PubMedGoogle Scholar
  131. 130.
    Carter-Su C, Pratt WB. Receptor phosphorylation. In: Conn PM, ed. The receptors; vol I. New York: Academic Press, 1984: 541–85.Google Scholar
  132. 131.
    Garcia T, Tuohimaa P, Mester J, Buchou T, Renoir JM, Baulieu EE. Protein kinase activity of purified components of the chicken oviduct progesterone receptor. Biochem Biophys Res Commun 1983; 113: 960–6.PubMedCrossRefGoogle Scholar
  133. 132.
    Kurl RN, Jacob ST. Phosphorylation of purified glucocorticoid receptor from rat liver by an endogenous protein kinase. Biochem Biophys Res Commun 1984; 119: 700–5.PubMedCrossRefGoogle Scholar
  134. 133.
    Singh VB, Moudgil VK. Protein kinase activity of purified rat liver glucocorticoid receptor. Biochem Biophys Res Commun 1984; 125: 1067–73.PubMedCrossRefGoogle Scholar
  135. 134.
    Miller-Diener A, Schmidt TJ, Litwack G. Protein kinase activity associated with the purified rat hepatic glucocorticoid receptor. Proc Natl Acad Sci USA 1985; 82; 4003–7.PubMedCrossRefGoogle Scholar
  136. 135.
    Moudgil VK, Toft DO. Binding of ATP to progesterone receptors. Proc Natl Acad Sci USA 1975; 72: 901–5.PubMedCrossRefGoogle Scholar
  137. 136.
    Moudgil VK, Toft, DO. Binding of progesterone receptors to immobilized adenosine triphosphate. Biochim Biophys Acta 1977; 490: 477–88.PubMedCrossRefGoogle Scholar
  138. 137.
    Moudgil VK, John JK. ATP-dependent activation of glucocorticoid receptor from rat liver cytosol. Biochem J 1980; 190: 799–808.PubMedGoogle Scholar
  139. 138.
    Moudgil VK, Eessalu TE. Activation of estradiol receptor complex by ATP in vitro. FEBS Lett 1980; 122: 189–92.PubMedCrossRefGoogle Scholar
  140. 139.
    Miller JB, Toft DO. Requirement for activation in the binding of progesterone receptor to ATP-Sepharose. Biochemistry 1978; 17: 17377Google Scholar
  141. 140.
    Moudgil VK. Interaction of nucleotides with steroid hormone receptors. In: Moudgil VK, ed. Molecular mechanism of steroid hormone action: recent advances. Berlin: Walter de Gruyter, 1985: 351–76.CrossRefGoogle Scholar
  142. 141.
    McBlain WA, Toft DO. Interaction of chick oviduct progesterone receptor with the 2’,3’-dialdehyde derivative of adenosine 5’-triphosphate. Biochemistry 1983; 22: 2262–70.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Virinder K. Moudgil
    • 1
  1. 1.Department of Biological SciencesOakland UniversityRochesterUSA

Personalised recommendations