Advertisement

Potential of Radiolabeled Antiplatelet Antibodies in the Detection of Vascular Thrombi

  • Mathew L. Thakur
Part of the NATO ASI Series book series (NSSA, volume 152)

Abstract

Platelets play a major role in the pathogenesis of hemostasis and thrombosis. During normal hemostasis, platelets adhere to the injured vascular endothelium. The accretion is promoted by various factors such as collagen, released from the underlying tissues, adenosinediphosphate (ADP), thrombin derived from activation of coagulation and probably other unidentified amines. The net result is formation of a thrombus. Although the process may be prevented by some physiologic mechanism that is far from clear at the present time, the thrombus thus formed can be life threatening. This is due to the fact that the thrombus may prevent blood flow to the adjoining tissue and lead to infarction. Detection of thrombus is therefore an important need for a vigorous anticoagulant therapy in the management of these patients.

Keywords

Human Platelet Mixed Anhydride Antiplatelet Antibody Bifunctional Chelate Vascular Thrombus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. L. Thakur, M. J. Welch, H. J. Joist, et al., Indium-111 labeled platelets: Studies on preparation and evaluation of in vitro and in vivo function, Thrombosis Research 9:345–357 (1976).PubMedCrossRefGoogle Scholar
  2. 2.
    M. L. Thakur, Radioisotope labeling of platelets: A historic perspective, Seminars in Thrombosis and Hemostasis 9:79 (1983).PubMedCrossRefGoogle Scholar
  3. 3.
    M. L. Thakur, L. Wash, H. L. Malech, et al., Indium-111 labeled human platelets: Improved method, efficacy and evaluation, J. Nucl. Med. 22:381–385 (1982).Google Scholar
  4. 4.
    M. K. Dewanjee, S. A. Rao, J. A. Rosemark, et al., Indium-111-tropolone, a new tracer for platelet labeling, Radiology 145:149–153 (1982).PubMedGoogle Scholar
  5. 5.
    M. L. Thakur, S. L. McKenney, and C. H. Park, Simplified and efficient labeling of human platelets in plasma using In-111-2-mercaptopyridine-N-oxide (Merc): Preparation and evaluation, J. Nucl. Med. 26:510–517 (1985).PubMedGoogle Scholar
  6. 6.
    M. L. Thakur and S. L. McKenney, Indium-111-mercaptopyridine N-oxide-labeled human leukocytes and platelets: Mechanism of labeling and intracellular location of In-111 and mercaptopyridine N-oxide, J. Nucl. Med. 107:141–147 (1986).Google Scholar
  7. 7.
    G. Kohler and C. Milstein, Continuous cultures of fused cells secreting antibody of predefined specificity, Nature 256:495–497 (1975).PubMedCrossRefGoogle Scholar
  8. 8.
    B. Perussia, E. T. Dayton, V. Fanning et al., Immune interferon and leukocytes conditioned medium induced normal and leukemic myeloid cells to differentiate along the monocytic pathway, J. Exp. Med. 158:2058–2080 (1983).PubMedCrossRefGoogle Scholar
  9. 9.
    P. Thiagarajan, B. Perussia, L. D. Marco et al., Membrane proteins on human megakaryocytes and platelets identified by monoclonal antibodies, Am. J. Hematol. 14:225–269 (1983).CrossRefGoogle Scholar
  10. 10.
    P. Thiagarajan, S. S. Shapiro, E. Levine et al., A monoclonal antibody to human platelet glycoprotein III.a detects a related protein in cultured human endothelial cells, J. Clin. Invest. 75:896–901 (1983).CrossRefGoogle Scholar
  11. 11.
    D. J. Hnatowich, W. W. Layne, R. L. Childs et al., Radioactive labeling of antibody: A simple and efficient method, Science 220:613–615 (1983).PubMedCrossRefGoogle Scholar
  12. 12.
    G. E. Krejcarek and K. L. Tucker, Covalent attachment of chelating groups to macromolecules, Biochem. Biophys. Res. Comm. 77:581–585 (1977).PubMedCrossRefGoogle Scholar
  13. 13.
    L. H. DeRiemer and C. F. Meares, Synthesis of new tumor-visualizing derivatives of Co (III) bleomycin, J. Labeled Comp. and Radiopharm, XVIII, 1517–1534 (1981).CrossRefGoogle Scholar
  14. 14.
    M. L. Thakur, P. Thiagarajan, F. White III, et al., Monoclonal antibodies for specific cell labeling: considerations, preparations and preliminary evaluation, Nucl. Med. and Biol. 14:51–58 (1987).Google Scholar
  15. 15.
    L. Sheldon, F. White III and M. L. Thakur, Evaluation of pretreatment agents that may minimize protein loss on Centricon Device membrane (in preparation).Google Scholar
  16. 16.
    C. H. Paik, R. R. Murphy, W. C. Eckelman et al., Optimization of DTPA mixed anhydride reaction with antibodies at low concentration, J. Nucl. Med. 23:932–936 (1983).Google Scholar
  17. 17.
    D. J. Hnatowich, R. L. Childs, D. Lanteigne et al., The preparation of DTPA-coupled antibodies radiolabeled with metallic radionuclides: An improved method, Int. J. Appl. Radiat. Isotopes 35:554–557 (1984).CrossRefGoogle Scholar
  18. 18.
    H. A. Feldman, Mathematical theory of complex ligand-binding systems at equilibrium: some methods for parameter finding, Anal. Biochem. 48:317–338 (1972).PubMedCrossRefGoogle Scholar
  19. 19.
    B. S. Coller and L. E. Scudder, Inhibition of dog platelet function by in vivo infusion of F(ab′)2 fragments of monoclonal antibody to the platelet glycoprotein IIb/IIIa receptor, Blood 66:1456–1459 (1985).PubMedGoogle Scholar
  20. 20.
    B. S. Coller, J. D. Foils, L. E. Scudder et al., Antithrombotic effect of monoclonal antibody to the platelet glycoprotein IIb/IIIa receptors in experimental animal model, Blood 783–786 (1986).Google Scholar
  21. 21.
    G. Scatchard, The attractions of proteins for small molecules and ions, Annals of N.Y. Academy of Sciences 51:660–672 (1949).CrossRefGoogle Scholar
  22. 22.
    Z. H. Oster, S. C. Srivastava, P. Som et al., Thrombus radioimmunoscintigraphy: An approach using monoclonal antiplatelet antibody, Proc. Natl. Acad. Sci. USA 82:3465–3468 (1985).PubMedCrossRefGoogle Scholar
  23. 23.
    J. P. Lavender and M. Peters, Private communication.Google Scholar
  24. 24.
    P. Som, Z. H. Oster, P. O. Zamora et al., Radioimmunoimaging of Experimental Thrombi in Dogs Using Technetium-99m-Labeled Monoclonal Antibody Fragments Reactive with Human Platelets, J. Nucl. Med. 27:1315–1320 (1986).PubMedGoogle Scholar
  25. 25.
    B. A. Rhodes, P. O. Zamora, K. D. Newell et al., Technetium-99m Labeling of Murine Monoclonal Antibody Fragments, J. Nucl. Med. 27:685–693 (1986).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Mathew L. Thakur
    • 1
  1. 1.Department of Nuclear MedicineThomas Jefferson University HospitalPhiladelphiaUSA

Personalised recommendations