Radioactive Monoclonal Antibodies Against Cell Surface Antigens for Labeling Leukocyte Subpopulations

  • John G. McAfee
  • George Gagne
  • Gopal Subramanian
Conference paper
Part of the NATO ASI Series book series (NSSA, volume 152)


The ability to follow the kinetics and migration of various leukocyte populations, particularly with the oxine and tropolone lipophilic chelates of In-111, has contributed greatly to our expanding knowledge of cellular immunology in recent years (1, 2, 3, 4). In the cellular immune system, lymph nodes collect and process antigen from extracellular fluid — the peripheral nodes for superficial tissues and the spleen for blood-borne antigens. The gastrointestinal tract has its own lymphoid organs for processing ingested antigens — Peyer’s patches, appendix, tonsils and adenoids (5). Labeled T cells migrate preferentially to peripheral lymph nodes and B cells to the spleen and Peyer’s patches (6). This organ-specific homing is controlled by interaction between recirculating lymphocytes and endothelial cells of post-capillary high endothelial venules (HEV) through specific surface receptors, thereby directing the cells into the lymphoid organs. A greater localization of cytotoxic T cells than helper T cells has been observed in Peyer’s patches, but their localization is equal in peripheral nodes (7).


Label Yield Mononuclear Leukocyte Large Granular Lymphocyte High Endothelial Venule Selective Label 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. deSousa, in: “Lymphocyte Circulation: Experimental and clinical aspects,” John Wiley & Sons, New York (1981), pp. 129–162.Google Scholar
  2. 2.
    M. E. Smith, and W. L. Ford, The recirculating lymphocyte pool of the rat: a systematic description of the migratory behavior of recirculating lymphocytes, Immunol. 49:83–94 (1983).Google Scholar
  3. 3.
    R. B. Herberman, J. Y. Djeu, H. D. Kay, et al., Natural killer cells: Characteristics and regulation of activity, Immunol. Rev. 44:43–70 (1979).PubMedCrossRefGoogle Scholar
  4. 4.
    J. G. McAfee, G. Subramanian, and G. Gagne, Technique of leukocyte harvesting and labeling: Problems and perspectives, Semin. Nucl. Med. 14:83–106 (1984).PubMedCrossRefGoogle Scholar
  5. 5.
    M. Gallatin, T. P. St. John, M. Siegelman et al., Lymphocyte homing receptors, Cell 44:673–680 (1986).PubMedCrossRefGoogle Scholar
  6. 6.
    S. K. Stevens, I. L. Weissman, and E. C. Butcher, Differences in the migration of B and T lymphocytes: organ-selective localization in vivo and the role of lymphocyte-endothelial cell recognition, J. Immunol. 128:844–850 (1982).PubMedGoogle Scholar
  7. 7.
    G. Kraal, I. L. Weissman, and E. C. Butcher, Differences in in vivo distribution and homing of T cell subsets to mucosal vs. non-mucosal lymphoid organs, J. Immunol. 130:1097–1102 (1983).PubMedGoogle Scholar
  8. 8.
    C. W. Reynolds, A. C. Denn, III, T. Barlozzari, et al., Natural killer activity in the rat. IV. Distribution of large granular lymphocytes (LGL) following intravenous and intraperitoneal transfer, Cellular Immunology 86:371–380 (1984).PubMedCrossRefGoogle Scholar
  9. 9.
    B. Rolstadt, R. B. Herberman, and C. W. Reynolds, Natural killer cell activity in the rat. V. The circulation patterns and tissue localization of peripheral blood large granular lymphocytes (LGL), J. Immunol. 136:2800–2808 (1986).Google Scholar
  10. 10.
    S. A. Rosenberg, M. T. Lotze, S. Muul, et al., Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer, New Eng. J. Med. 313:1485–1492 (1985).PubMedCrossRefGoogle Scholar
  11. 11.
    M. T. Lotze, B. R. Line, D. J. Mathisen, et al., The in vivo distribution of autologous human and murine lymphoid cells grown in T cell growth factor (TCGF): Implications for the adoptive immunotherapy of tumors, J. Immunol. 125:1487–1493 (1980).PubMedGoogle Scholar
  12. 12.
    M. O. Dailey, C. G. Fathman, E. C. Butcher, et al., Abnormal migration of T lymphocyte clones, J. Immunol. 128:2134–2136 (1982)PubMedGoogle Scholar
  13. 13.
    J. G. McAfee, and M. L. Thakur, Survey of radioactive agents for in vitro labeling of phagocytic leukocytes. I. Soluble agents, J. Nucl. Med. 17:480–487 (1976).PubMedGoogle Scholar
  14. 14.
    J. G. McAfee, G. M. Gagne, G. Subramanian, Z. D. Grossman, F. D. Thomas, M. L. Roskopf, P. Fernandes, and B. J. Lyons, Distribution of leukocytes labeled with In-111 oxine in dogs with acute inflammatory lesions, J. Nucl. Med. 21:1059–1068 (1980).PubMedGoogle Scholar
  15. 15.
    D. A. Bassano, and J. G. McAfee, Cellular radiation doses of labeled neutrophils and platelets, J. Nucl. Med. 20:255–259 (1979).Google Scholar
  16. 16.
    D. J. Silvester, Consequences of Indium-111 decay in vivo: Calculated absorbed radiation dose to cells labeled by indium-111 oxine, J. Label Comp Radiopharmaceuticals 16:193 (1979).Google Scholar
  17. 17.
    R. J. M. ten Berge, A. T. Natarajan, M. R. Hardeman, et al., Labeling with indium-111 has detrimental effects on human lymphocytes: concise communication, J. Nucl. Med. 24:615–620 (1983).PubMedGoogle Scholar
  18. 18.
    M. L. Thakur, and J. G. McAfee, The significance of chromosomal aberrations in indium-111-labeled lymphocytes, J. Nucl. Med. 25:922–927 (1984).PubMedGoogle Scholar
  19. 19.
    S. M. Sparshott, H. Sharma, J. D. Kelley, et al., Factors influencing the fate of indium-111-labeled lymphocytes after transfer to syngeneic rats, J. Immunol. Methods 41:303–320 (1981).PubMedCrossRefGoogle Scholar
  20. 20.
    A. Signore, P. Beales, M. Sensi, et al., Labeling of lymphocytes with indium-111 oxine: effect on cell surface phenotype and antibody-dependent cellular cytotoxicity, Immunol. Letters 6:151–154 (1983).CrossRefGoogle Scholar
  21. 21.
    J. Wagstaff, C. Gibson, N. Thatcher, et al., Human lymphocyte traffic assessed by indium-111 oxine labeling: Clinical observations, Clin. Exp. Immunol. 43:443–449 (1981).PubMedGoogle Scholar
  22. 22.
    W. C. Eckelman, S. M. Karesh, and R. C. Reba, New compounds: Fatty acid and long chain hydrocarbon derivatives containing a strong chelating agent, J. Pharmacol. Sci. 64:704–704 (1975).CrossRefGoogle Scholar
  23. 23.
    D. J. Hnatowich, W. W. Layne, R. L. Childs, et al., Radioactive labeling of antibody: A simple and efficient method, Science 220:613–615 (1983).PubMedCrossRefGoogle Scholar
  24. 24.
    M. Kamoun, P. J. Martin, J. A. Hansen, et al., Identification of a human T lymphocyte surface protein associated with the E-rosette receptor, J. Exp. Med. 153:207–212 (1981).PubMedCrossRefGoogle Scholar
  25. 25.
    I. Royston, J. A. Majda, S. M. Baird, et al., Human T cell antigens defined by monoclonal antibodies: The 65,000-Dalton antigen of T cells (T65) is also found on chronic lymphocytic leukemic cells bearing surface immunoglobulin, J. Immunol. 125:725–731 (1980).PubMedGoogle Scholar
  26. 26.
    G. M. Kammer, J. A. Smith, and R. Mitchell, Capping of human T cell specific determinants: Kinetics of capping and receptor re-expression and regulation by the cytoskeleton, J. Immunol. 130:38–44 (1983).PubMedGoogle Scholar
  27. 27.
    H. J. Deeg, J. C. Wulff, S. DeRose, et al., Unusual distribution of Ia-like antigens on canine lymphocytes, Immunogenetics 16:445–457 (1982).PubMedCrossRefGoogle Scholar
  28. 28.
    M. Jonker, B. Malissen, W. van Vreeswijk, et al., In vivo application of monoclonal antibodies specific for human T cell subsets permits the modification of immune responsiveness in Rhesus monkeys, Transplant. Proc. 15:635–638 (1983).Google Scholar
  29. 29.
    M. Jonker, and F. J. M. Nooij, The phylogeny of T cell antigens, 2nd International Workshop on Human Leukocyte Differentiation Antigens, Sept. 17–20, 1987, Boston (Abstr.).Google Scholar
  30. 30.
    B. F. Haynes, B. L. Dowell, L. L. Hansley, et al., Human T cell antigen expression by primate T cells, Science 215:298–300 (1982).PubMedCrossRefGoogle Scholar
  31. 31.
    N. L. Letvin, N. W. King, E. Reinherz, et al., T lymphocyte surface antigens in primates, Eur. J. Immunol. 13:345–347 (1983).PubMedCrossRefGoogle Scholar
  32. 32.
    N. L. Letvin, Conserved T lymphocyte-specific antigens in primates, 2nd International Workshop on Human Leukocyte Differentiation Antigens, Sept. 17–20, 1984, Boston (Abstr.).Google Scholar
  33. 33.
    F. M. Brodsky, The intracellular traffic of immunologically active molecules, Immunol. Today 5:350–357 (1984).CrossRefGoogle Scholar
  34. 34.
    B. Pernis, Internalization of lymphocyte membrane components, Immunol. Today 6:45–49 (1985).CrossRefGoogle Scholar
  35. 35.
    M. S. Brown, R. G. W. Anderson, and J. L. Goldstein, Recycling receptors: The round-trip itinerary of migrant membrane proteins, Cell 32:663–667 (1983).PubMedCrossRefGoogle Scholar
  36. 36.
    D. W. Mason, and A. F. Williams, The kinetics of antibody binding to membrane antigens in solution and at the cell surface, Biochem. J. 187:1–20 (1980).PubMedGoogle Scholar
  37. 37.
    J. D. Rodwell, V. L. Alvarez, C. Lee et al., Site-specific covalent modification of monoclonal antibodies: In vitro and in vivo evaluations, Proc. Nat. Acad. Sci. 83:2632–2636 (1986).PubMedCrossRefGoogle Scholar
  38. 38.
    K. J. Widder, A. E. Senyei, H. Ovadia et al., Magnetic protein A microspheres: a rapid method for cell separation, Clin. Immunol. and Immunopath. 14:395–400 (1979).CrossRefGoogle Scholar
  39. 39.
    K. J. Widder, A. E. Senyei, H. Ovadia et al., Specific cell binding using Staphylococcal protein A magnetic microspheres, J. Pharmaceut. Sci. 70:387–389 (1981).CrossRefGoogle Scholar
  40. 40.
    A. A. Nash, Separation of lymphocyte sub-populations using antibodies attached to Staphylococcal protein A-coated surfaces, J. Immunol. Meth. 12:149–161 (1976).CrossRefGoogle Scholar
  41. 41.
    J. B. Denny, and G. Blobel, I-125-labeled crosslinking reagent that is hydrophilic, photoactivatable and cleavable through an azo linkage, Proc. Nat. Acad. Sci. 81:5286–5290 (1984).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • John G. McAfee
    • 1
  • George Gagne
    • 1
  • Gopal Subramanian
    • 1
  1. 1.Divisions of Nuclear Medicine and Radiological Sciences Department of RadiologyS.U.N.Y. Health Science CenterSyracuseUSA

Personalised recommendations