Advertisement

State-of-the-Art and Performance Testing of Instrumentation for the Scintigraphic Detection of Tumors with Labeled Monoclonal Antibodies

  • Peter Paras
Conference paper
Part of the NATO ASI Series book series (NSSA, volume 152)

Abstract

The imaging instrumentation and techniques used with labeled monoclonal antibodies are in general not different from the state-of-the-art imaging instrumentation and techniques used in nuclear medicine. The Anger-type scintillation camera and recently the rotating camera Single Photon Emission Computed Tomography (SPECT) are routinely used. For the management of cancer, of special interest are the optimal localization and quantification of the labeled antibodies. It should be noted here that tumor localization, necrotic regions within large tumors, and tumor-to-normal tissue ratios of radiolabeled antibodies are more easily and more reliably evaluated from SPECT slices than from planar views. Emission Computed Tomography (ECT) techniques have been developed for volume determination of lesions, permitting more accurate dosimetry in the use of anti-tumor antibodies for therapy and subsequent measurements to determine the effectiveness of different therapeutic regimens (1–28).

Keywords

Single Photon Emission Compute Tomography Line Source Single Photon Emission Compute Tomography Imaging Positron Emission Tomographic National Electrical Manufacturer Association 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Leichner, P.K., Klein, J.L., Garrison, J.B., Jenkins, R.E., Nicholoff, E.L., Ettinger, D.S., and Order, S.E., Dosimetry of 1–131 labeled antiferritin in hepatoma: a model for radioimmunoglobulin dosimetry. Int. J. Radiation Oncology Biol. Phys. 7:323–333, 1981.CrossRefGoogle Scholar
  2. 2.
    Larson, S.M., Carrasquillo, J.A., Krohn, K.A., Brown, J.P., McGuffin, R.W., Ferens, J.M., Graham, M.M., Hill, L.D., Beaumier, P.L. and Hellstrom, K.E., Localization of 1–131 labeled p-97 specific Fab fragments in human melanoma as a basis for radiotherapy. J. Clin. Invest. 72:2101–2114, 1983.PubMedCrossRefGoogle Scholar
  3. 3.
    Chatal, J.F., et al., Is immunoscintigraphy using Radioiodinated monoclonal antibodies useful to cancer diagnosis (abstract). J. Nucl. Med. 24No. 5:P14, 1983.Google Scholar
  4. 4.
    Granowska, M., et al., Ovarian cancer: diagnosis using 1–123 monoclonal antibody in comparison with surgical findings (abstract). J. Nucl. Med. 24No. 5:P15, 1983.Google Scholar
  5. 5.
    Halpern, S.E., et al., The clinical evaluation of 111-indium labeled monoclonal anti-melanoma antibodies (111-In-anti me1) for tumor scanning (abstract). J. Nucl. Med. 24No. 5:P15, 1983.Google Scholar
  6. 6.
    Perkins, A.C., Hardy, J.G. and Hardcastle, J.D., The optimization of dual isotope imaging techniques in immunoscintigraphy (abstract). J. Nucl. Med. 24No. 5:P15, 1983.Google Scholar
  7. 7.
    DeLand, F.H., and Shih, W.J., The status of SPECT in tumor diagnosis. J. Nucl. Med. 25:1375–1379, 1984.PubMedGoogle Scholar
  8. 8.
    Carrasquillo, J.A.; Krohn, K.A.; Beaumier, P.L.; McGuffin, R.W.; Brown, J.P.; Hellstrom, K.E.; Hellstrom, I.; and Larson, M., Diagnosis of the therapy for solid tumors with radiolabeled antibodies and immune fragments. Cancer Treat. Rep. 68:317–328, 1984.PubMedGoogle Scholar
  9. 9.
    Epenetos, A.A., Helnan, K.A., Hooker, G., Hughes, J.M.B., Krausz, T., Lavender, J.P., MacGregor, W.G., et al., Antibody-guided irradiation of malignant lesions: three cases illustrating a new method of treatment. Lancet No. 8392:1441–1443, 1984.Google Scholar
  10. 10.
    Leichner, P.K., Klein, J.L., Siegelman, S.S., Ettinger, D.S., and Order, S.E. , Dosimetry of 1–131 labeled antiferritin in hepatoma: specific activities in the tumor and liver. Cancer Treat. Rep. 67:647–658, 1983.PubMedGoogle Scholar
  11. 11.
    Leichner, P.K., Klein, J.L. , Fisherman, E.K., Siegelman, S.S., Ettinger, D.S., and Order, S.E., Comparative tumor dose from 1–131 labeled antiferritin, anti-AFP, and anti-CEA in primary liver cancers. Cancer Drug Del. 1:321–328, 1984.CrossRefGoogle Scholar
  12. 12.
    Bimmer, A.M., Radioimmunoimaging of human lymphomas with 1–131 tumor-specific monoclonal antibody (abstract 181). J. Nucl. Med. 25No. 5:P17, 1984.Google Scholar
  13. 13.
    Goodwin, D.A. , et al., In-111 chelate conjugates of human transferrin (HTr) and mouse monoclonal antihuman transferrin receptor antibody for tumor imaging (abstract). J. Nucl. Med. 25No. 5:P17, 1984.Google Scholar
  14. 14.
    DeLand, F.H., et al., In-vivo detection of prostatic cancinoma with antibodies against prostatic acid phosphatase (abstract). J. Nucl. Med. 25No. 5:P17, 1984.Google Scholar
  15. 15.
    Chatal, J.F., et al., Comparison of SPECT imaging using monoclonal antibodies with computed tomography (CT) and ultrasonography (US) for detection of recurrences of colorectal carcinoma: A Prospective Study (abstract 50). J. Nucl. Med. 26No. 5:P15, 1985.Google Scholar
  16. 16.
    Granowska, M., et al., A prospective study of radioimmunoscintigraphy in ovarian cancer (abstract 53). J. Nucl. Med. 26No. 5:P16, 1985.Google Scholar
  17. 17.
    Murray, J.L., et al., Imaging findings and pharmacokinetics of In-111 ZME-018 Monoclonal antibody in malignant melonoma (abstract 55). J. Nucl. Med. 26No. 5:P16, 1985.Google Scholar
  18. 18.
    Carrasquillo, J.A., et al., Imaging of cutaneous T cell lymphoma with In-111 T101 monoclonal antibody (abstract 54). J. Nucl. Med. 26No. 5:P16, 1985.Google Scholar
  19. 19.
    Order, S.E., Stillwagon, G.B., Klein, J.L., Leichner, P.K., Siegelman, S.S., Fishman, E.K., Ettinger, D.S., Haulk, T., Kopher, K., Finney, K., Sturdyke, M., Self, S., Leibel, S.A. Iodine 131 Antiferritin, a new treatment modality in hepatoma: a radiation therapy oncology group study. J. Clin. Oncol. 3:1573–1582, 1985.PubMedGoogle Scholar
  20. 20.
    Delaloye, B., et al., Clinical use and limitation of 1–123 labeled monoclonal Anti-CEA fragments for the ECT detection of colorectal carcinoma. (abstract 19) J. Nucl. Med. 27No. 6:P880, 1986.Google Scholar
  21. 21.
    Granowska, M., et al., Radioimmunoscintigraphy, RIS: Practice and tumor uptake in colorectal and ovarian cancer (abstract 20). J. Nucl. Med. 27No. 6:P881, 1986.Google Scholar
  22. 22.
    Riva, P., et al., Radioimmunodetection of lung cancer by means of an anti-CEA monoclonal antibody (abstract 21). J. Nucl. Med. 27No. 6:P881, 1986.Google Scholar
  23. 23.
    Spies, S.M., et al., Initial experience with Radioimmunodetection and radioimmunotherapy of cutaneous T-cell lymphoma using murine monoclonal antibodies (abstract 111). J. Nucl. Med. 27 No. 6:P903, 1986.Google Scholar
  24. 24.
    Halpern, S.E., et al., Comparison of two In-111 labeled monoclonal antitumor antibodies in the detection of melanoma (abstract 588). J. Nucl. Med. 27No. 6:P1020, 1986.Google Scholar
  25. 25.
    Larson, S.M., et al., Consideration for radiotherapy of pseudomyxoma peritonei with IP 1–131 B72.3, a monoclonal antibody (abstract 594). J. Nucl. Med. 27No. 6:P1021, 1986.Google Scholar
  26. 26.
    Reynolds, J.A., et al., Human anti-murine antibodies following immunoscintigraphy or therapy with radiolabeled monoclonal antibodies (abstract 599). J. Nucl. Med. 27No. 6:P1022, 1986Google Scholar
  27. 27.
    Lumbroso, J., Double isotope emission tomography for detecting human hepatocellular carcinoma by immunoscintigraphy (abstract 595). J. Nucl. Med. 27:No. 6:P1022, 1986.Google Scholar
  28. 28.
    Order, S.E., Klein, J.L., Leichner, P.K., Frincke, J., Lollo, C. and Carlo, D.J., Y-90 antiferritin — a new therapeutic radiolabeled antibody. Int. J. Radiation Oncology Biol. Phys. 12:277–281, 1986.CrossRefGoogle Scholar
  29. 29.
    Malmin, R.E. A study of SPECT imaging with fan-beam collimators (abstract 219). J. Nucl. Med. 27No. 6:P930, 1986.Google Scholar
  30. 30.
    Kim, I.K., Lim, B.C. Contrast-detail lesion detectability comparison between parellel beam and fan-beam SPECT (abstract 220). J. Nucl. Med. 27No. 6:P930, 1986.Google Scholar
  31. 31.
    Jaszczak, R.J., Floyd, C.E., et al., Cone-beam SPECT: Experimental validation using a conventionally-designed converging collimator (abstract 221). J. Nucl. Med. 27No. 6:P930, 1986.Google Scholar
  32. 32.
    Hawman, E.G., Hsiel, J. An astigmatic collimator for high sensitivity SPECT of the Brain (abstract 218). J. Nucl. Med. 27No 6:P930, 1986.Google Scholar
  33. 33.
    Hsieh, J., Hawman, E.G. Convolution reconstruction algorithm for astigmatic collimator imaging (abstract 82). J. Nucl. Med. 27No. 6:P896, 1986.Google Scholar
  34. 34.
    General Electric, personal communication (1984).Google Scholar
  35. 35.
    National Electrical Manufacturer’s Association (NEMA), Performance Measurements of Scintillation Cameras. Standards Publication No. NU 1-1980, Washington, DC, NEMA, 1986 (revised).Google Scholar
  36. 36.
    International Electrotechnical Commission. Characteristics and test conditions of radionuclide imaging devices, Geneva, 1980, Draft report-IEC document 62C, Central Office.Google Scholar
  37. 37.
    American Association of Physicists in Medicine. Scintillation camera acceptance testing and performance evaluation. AAPM, Chicago (1980).Google Scholar
  38. 38.
    Paras, P., Hine, G.J., Adams, R. BRH Test Pattern for the evaluation of gamma-camera performance. J. Nucl. Med. 22:468–470, 1981.PubMedGoogle Scholar
  39. 39.
    Bureau of Radiological Health. Workshop manual for quality control of scintillation cameras in nuclear medicine. Washington, DC, United States Department of Health, Education and Welfare, 1976 (DHEW Publication, FDA-76-8039).Google Scholar
  40. 40.
    Bureau of Radiological Health. Quality control for scintillation counters. Washington, DC, United States Department of Health, Educationa nd Welfare, 1976 (DHEW Publication, FDA-76-8046).Google Scholar
  41. 41.
    Hospital Physicists’ Association, The theory, specification and testing of Anger type gamma cameras. London, 1978 (Topic Group Report, No. 27).Google Scholar
  42. 42.
    International Atomic Energy Agency. Quality control schedules for nuclear medicine instruments. (Recommendations of an advisory group on the quality control of in-vivo radionuclide procedures). International Atomic Energy Agency, Vienna, 1984.Google Scholar
  43. 43.
    World Health Organization. Quality assurance in nuclear medicine. (A guide prepared following a Workshop held in Heidelberg, F.R.G., November 1980). WHO, 1982.Google Scholar
  44. 44.
    Paras, P. Quality assurance in nuclear medicine. In: Proceedings of an International Symposium on Medical Radionuclide Imaging, Los Angeles, October 1976. Volume 1. Vienna, International Atomic Energy Agency, 1977 (AEA-SM-210/301).Google Scholar
  45. 45.
    Paras, P. Performance and quality control of nuclear medicine instrumentation. In: Proceedings of an International Symposium on Medical Radionuclide Imaging, Heidelberg, September, 1980. Vienna, International Atomic Energy Agency, 1981 (IAEA-SM-247/208).Google Scholar
  46. 46.
    Paras, P., Hine, G.J., et al., Progress in Gamma-Camera Quality Control. Proceedings, Third World Congress of Nuclear Medicine and Biology, Paris, France, August 29, — September 2, 1982, Vol. IV, pages 2895–2901, Pergamon Press, France, 1982.Google Scholar
  47. 47.
    Paras, P., Hine, G.J., et al, Latest Developments in Gamma-Camera Performance Testing: Resolution Measurements. Proceedings, Third World Congress of Nuclear Medicine and Biology, Paris, France, August 29 — September 2, 1982, Vol. IV, pages 2890–2894, Pergamon Press, France, 1982.Google Scholar
  48. 48.
    Hine, G.J., Paras, P., Warr, C. Measurements of the performance parameters of gamma-cameras, Part I. Washington, DC, United States Department of Health, Education and Welfare, 1978 (DHEW Publication, FDA-78-8049).Google Scholar
  49. 49.
    Hine, G.J., Paras, P., Warr, C. Measurements of the performance parameters of gamma-cameras, Part 2. Washington, DC, United States Department of Health, Education and Welfare, 1979 (DHEW Publication, FDA-79-8049).Google Scholar
  50. 50.
    Jaszczak R.J., Coleman, R.E. Selected processing techniques for scintillation camera based SPECT systems. In: Single Photon Emission Computed Tomography and Other Selected Computer Topics. New York: The Society of Nuclear Medicine, 1980:45–59.Google Scholar
  51. 51.
    Jaszczak, R.J., Greer, K., Coleman, R.E. SPECT system misalignment: Comparison of phantom and patient images. In: Esser PD, ed., Emission Computed Tomography: Current Trends. New York: The Society of Nuclear Medicine, 1983:57–70.Google Scholar
  52. 52.
    Greer, K.L., Coleman, R.E., Jaszczak, R.J. SPECT: A practical guide for users. J. Nucl. Med. Technol., 1983;11:61–65.Google Scholar
  53. 53.
    Greer, K., Jaszczak R., Harris, C., et al., Quality control in SPECT. J. Nucl. Med. Technol., 1985;13:76–85.Google Scholar
  54. 54.
    Todd-Pokropek, A. Quality control and assurance of single photon emission computerized tomographic (SPECT) systems. Ann. Radiol., 1983;1:23–30.Google Scholar
  55. 55.
    English, R.J., Brown, S.E. SPECT: A primer, Quality control requirements. The Society of Nuclear Medicine, 1986:25–44.Google Scholar
  56. 56.
    Jaszczak, R.J., Greer, K.L., Coleman, R.E. and Tsui, B.M.N. SPECT instrumentation: Evaluation of System Performance Proceedings of S.E. Chapter of the Society of Nuclear Medicine, October 1984.Google Scholar
  57. 57.
    Paras, P. Quality Assurance of Nuclear Medicine, LaRicerca, ix: 357–377, Milano, Italy, December 1981.Google Scholar

General Suggested Readings

  1. 1.
    Croft, B.Y. Single Photon Emission Computed Tomography, Yearbook Medical Publishers, Inc., Chicago (1986).Google Scholar
  2. 2.
    R.J. English, S.E. Brown. SPECT Single Photon Emission Computed Tomography: A primer, the Society of Nuclear Medicine, Inc., New York (1986).Google Scholar
  3. 3.
    Emission Computed Tomography: Current Trends, Peter D. Esser (Ed.), the Society of Nuclear Medicine, Inc., New York (1983).Google Scholar
  4. 4.
    Physics of Nuclear Medicine, D.V. Rao, R. Chandra, M.C. Graham (Eds.), American Association of Physicists in Medicine, Medical Physics Monograph No. 10, New York (1984).Google Scholar
  5. 5.
    Single Photon Emission Computed Tomography and Other Selected Computer Topics, the Society of Nuclear Medicine, Inc., New York (1980).Google Scholar
  6. 6.
    Emission Computed Tomography: The Single Photon Approach, P. Paras, E.A. Eikman (Eds.), HHS Publication (FDA) 81–8177, Bureau of Radiological Health, Rockville (1981).Google Scholar
  7. 7.
    Quality Assurance in Nuclear Medicine, D. Hamilton, P. Paras, N.E. Herrera, F.D. Rollo and W.J. Mclntyre (Eds.), HHS Publication (FDA) 84–8224 (1984).Google Scholar
  8. 8.
    Quality Control of Nuclear Medicine Instruments, International Atomic Energy Agency, Advisory Group, IAEA, Vienna (1984).Google Scholar
  9. 9.
    Quality Assurance in Nuclear Medicine: A guide. World Health Organization (WHO), Geneva (1982).Google Scholar
  10. 10.
    Workshop Manual for Computer-Interfaced Scintillation Camera Quality Assurance, HHS Publication (FDA) 86–8268, Rockville (1986).Google Scholar
  11. 11.
    Larsson, S.A., Gamma Camera Emission Tomography, Acta Radiological, Supplementum 363, Stockholm (1980).Google Scholar
  12. 12.
    Nuclear Medicine Physics, Instrumentation and Agents, F. David Rollo (Ed.), the C.V. Mosby Co., St. Louis (1977).Google Scholar
  13. 13.
    Quality Control in Nuclear Medicine: Radiopharmaceuticaals, Instrumentation and In-Vitro Assays, Buck A. Rhodes (Ed.), the C.V. Mosby Co., St. Louis (1977).Google Scholar
  14. 14.
    Keys, J.W., Perspectives on Tomography. J. Nucl. Med. 23:633–640, 1982.Google Scholar
  15. 15.
    Raff, U., Spitzer, V.M. and Hendee, W.R., Practicality of NEMA Performance Specification Measurements for User-based Acceptance Testing and Routine Quality Assurance. J. Nucl. Med. 25:679–687, 1984.PubMedGoogle Scholar
  16. 16.
    Tauxe, W.N., Soussaline, F., Todd-Pokropek, A. et al., Determination of Organ volume by Single Photon Emission Tomography. J. Nucl. Med. 23:984–987, 1982.PubMedGoogle Scholar
  17. 17.
    Chang, L.T., A Method for Attenuation Correction in Radionuclide Computed Tomography. IEEE Trans. Nucl. Sci. NS:25:638–643, 1978.CrossRefGoogle Scholar
  18. 18.
    Piez, C.W., Holman, B.L., Single Photon Emission Computed Tomography. Comp. Radiol. 9:201–211, 1985.CrossRefGoogle Scholar
  19. 19.
    Budinger, T.F., Gullberg, G.T., Husesman, R.H., Emission Computed Tomography. In: Image Reconstruction from Projections: Implementation and Applications, G.T. Herman, ed.,New York: Springer-Verlag, 1979, pp. 147–246.CrossRefGoogle Scholar
  20. 20.
    Gottschalk, S. et al., SPECT Resolution and Uniformity Improvements by noncircular Orbit. J. Nucl. Med. 24:822–282, 1983.PubMedGoogle Scholar
  21. 21.
    Jaszczak, R.J., Chang, L.T., Murphy, P.H., Single Photon Emission Computed Tomography Using Multi-slice Fan-beam collimators. IEEE Trans. Nucl. Sci. 26:610–618, 1979.CrossRefGoogle Scholar
  22. 22.
    Jaszczak, R.J., Coleman, R.E., Whitehead, F.R., Physical Factors Affecting Quantitative Measurements Using Camera-based Single Photon Emission Computed Tomography (SPECT) IEEE Trans. Nucl. Sci. 28:69–80, 1981.CrossRefGoogle Scholar
  23. 23.
    Kuhl, D.E. et al., Design and Application of Mark IV Scanning System for Radionuclide Computed Tomography of the Brain. In: Medical Radionuclide Imaging, Vol. I. Vienna: International Atomic Eneergy Agency, 1977a, pp. 309–320.Google Scholar
  24. 24.
    Larsson, S.A., et al., A Special Cut-off Gamma Camera for High-resolution SPECT of the head. J. Nucl. Med. 25:1023–1030, 1984.PubMedGoogle Scholar
  25. 25.
    Lim, C. et al., Triangular SPECT System for Brain and Body Organ 3-D Imaging: Design concept and Preliminary Imaging Result (abstract). J. Nucl. Med. 25:P6, 1984.Google Scholar
  26. 26.
    Lim, C. et al., Triangular SPECT System for 3-D Organ Volume Imaging: Clinical Prototype and Dynamic Imaging Potential. J. Nucl. Med. 26:P11, 1985.Google Scholar
  27. 27.
    Gilardi, M.C. et al., Evaluation of Scatter Correction Methods in SPECT (abstract 32). J. Nucl. Med. 27No. 6:884, 1986.Google Scholar
  28. 28.
    Manglos, S.H., Floyd, C.E., Jaszczak, R.J. et al., Experimentally-measured Scatter Fractions as a Quantitative Test of Monte Carlo Simulations (abstract 339). J. Nucl. Med. 27No. 6:460, 1986.Google Scholar
  29. 29.
    Koral, K.F., Wang, X., Rogers, W.L.et al., SPECT Comptonscattering Correction by Analysis of Spatially-dependent Energy Spectra (abstract 340). J. Nucl. Med. 27No. 6:960, 1986.Google Scholar
  30. 30.
    Cradduck, T.D., Teresinska, A., Head Tilt and Its Effect on Resolution Orthogonal to Transverse Slices in SPECT (abstract 342). J. Nucl. Med. 27No. 6:960, 1986.Google Scholar
  31. 31.
    Busemann-Sokole, E. Measurement of Collimator Hole Angulation and Camera Head Tilt for Slant- and Parrellel-hole Collimators Used in Rotating Camera SPECT (abstract 343). J. Nucl. Med. 27No. 6:P961, 1986.Google Scholar
  32. 32.
    Jaszczak, R.J. et al., Improved SPECT Quantification Using Compensation for Scattered Photon. J. Nucl. Med. 25:893–900, 1984.PubMedGoogle Scholar
  33. 33.
    Larson, S.M., Carrasquillo, J.A., Nuclear Oncology, 1984. Seminars in Nucl. Med. 268–276, October 1984.Google Scholar
  34. 34.
    DeLand, F.H., Goldenberg, D.M. Diagnosis and Treatment of Neoplasms With Radionuclide-labeled Antibodies Seminars in Nucl. Med. 2–11, January 1985.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Peter Paras
    • 1
  1. 1.Food and Drug AdministrationSilver SpringUSA

Personalised recommendations