Advertisement

Use of an Animal Model System for Evaluating Labeled Monoclonal Antibodies

  • Fyllis L. Otsuka
  • Michael J. Welch
Conference paper
Part of the NATO ASI Series book series (NSSA, volume 152)

Abstract

Radiolabeled antibodies have received much attention as to their possible use in tumor imaging and in tumor therapy.1–4 The early studies by Pressman and co-workers suggested that these reagents could localize in tumors and, therefore, could be used for tumor imaging.5,6 Since that time, there have been numerous other reports describing their use for this purpose.7–9 Because these studies used polyclonal antibodies, there was much concern over the large amount of nonspecific binding that was observed. To eliminate this problem, background subtraction techniques10 were developed to make the specific uptake in the target tissue more distinct.

Keywords

Saturation Effect Label Antibody Liver Uptake Lung Uptake Intact Antibody 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. S. Fairweather, A. R. Bradwell and P.W. Dykes, Nuclear imaging techniques with radiolabeled antibodies, Pathology 141:363 (1983).CrossRefGoogle Scholar
  2. 2.
    S. M. Larson, J. A. Carrasquillo and J. C. Reynolds, Radioimmunodetection and radioimmunotherapy, Cancer Invest 2: 363 (1984).PubMedCrossRefGoogle Scholar
  3. 3.
    F. H. DeLand and D. M. Goldenberg, Diagnosis and treatment of neoplasms with radionuclide-labeled antibodies, Seminars in Nucl Med 15:2 (1985).CrossRefGoogle Scholar
  4. 4.
    S. M. Larson, Radiolabeled monoclonal anti-tumor antibodies in diagnosis and therapy, J Nucl Med 26: 538 (1985).PubMedGoogle Scholar
  5. 5.
    D. Pressman and G. Keighley, The zone of activity of antibodies as determined by the use of radioactive tracers; the zone of activity of nephritoxic antikidney serum, J Immunol 59:141 (1948).PubMedGoogle Scholar
  6. 6.
    L. Korngold and D. Pressman, The localization of antilymphosarcoma antibodies in the Murphy lymphosarcoma of the rat, Cancer Res 14:96 (1954).PubMedGoogle Scholar
  7. 7.
    D. M. Goldenberg, D. F. Preston, F. J. Primus and H. J. Hansen, Photoscan localization of GW-39 tumors in hamsters using radiolabeled anti-carcinoembryonic antigen immunoglobulin G. Cancer Res 34:1 (1974).Google Scholar
  8. 8.
    J. P. Mach, S. Carrell, N. Forni, J. Ritschard, A. Donath and P. Alberto, Tumor localization of radiolabeled antibodies against carcinoembryonic antigen in patients with carcinoma, N Engl J Med 303:5 (1980).PubMedCrossRefGoogle Scholar
  9. 9.
    T. Wilbanks, J. A. Peterson, S. Miller, L. Kaufman, D. Ortendahl and R. L. Ceriani, Localization of mammary tumors in vivo with (I-131)-labeled Fab fragments of antibodies against mouse mammary epithelial (MME) antigens, Cancer 48:1768 (1981).PubMedCrossRefGoogle Scholar
  10. 10.
    D. M. Goldenberg, F. DeLand, E. Kim, S. Bennett, F. J. Primus, J. R. Van Nagell, Jr., N. Estes, P. DeSimone and P. Rayburn, Use of radiolabeled antibodies to carcinoembryonic antigen for the detection and localization of diverse cancers by external photoscanning, N Engl J Med 298:1384 (1978).PubMedCrossRefGoogle Scholar
  11. 11.
    G. Kohler and C. Milstein, Continuous cultures of fused cells secreting antibody of predefined specificity, Nature 256:495 (1975).PubMedCrossRefGoogle Scholar
  12. 12.
    R. M. Rainsbury, J. H. Westwood, R. C. Coombes, A.M. Neville, R. J. Ott, T. S. Kalirai, V. R. McCready and J-C. Gazet, Location of metastatic breast carcinoma by a monoclonal antibody chelate labelled with Indium-111, Lancet ii 8365:934 (1983).CrossRefGoogle Scholar
  13. 13.
    B. A. Khaw, H. W. Strauss, S. L. Cahill, H. R. Soule, T. Edgington and J. Cooney, Sequential imaging of Indium-111-labeled monoclonal antibody in human mammary tumors hosted in nude mice, J Nucl Med 25:592 (1984).PubMedGoogle Scholar
  14. 14.
    D. Colcher, M. Zalutsky, W. Kaplan, D. Kufe, F. Austin and J. Schlom, Radiolocalization of human mammary tumors in athymic mice by a monoclonal antibody, Cancer Res 43:736 (1983).PubMedGoogle Scholar
  15. 15.
    N. Pateisky, K. Philipp, W. D. Skodler, K. Czerwenka, G. Hamilton and J. Burchell, Radioimmunodetection in patients with suspected ovarian cancer, J Nucl Med 26:1369 (1985).PubMedGoogle Scholar
  16. 16.
    J. O. Davies, E. R. Davies, K. Howe, P. C. Jackson, E. M. Pitcher, C. S. Sadowski, G. M. Stirrat and C. A. Sunderland, Radionuclide imaging of ovarian tumors with I-123-labelled monoclonal antibody (NDOG2) directed against placental alkaline phosphatase, Br J Obstet Gynaecol 92:277 (1985).PubMedCrossRefGoogle Scholar
  17. 17.
    M. A. Bourdon, R. E. Coleman, R. G. Blasberg, D. R. Groothius and D. D. Bigner, Monoclonal antibody localization in subcutaneous and intracranial human glioma xenografts: paired-label and imaging analysis, Anticancer Res 4:133 (1984).PubMedGoogle Scholar
  18. 18.
    D. E. Bullard and D. D. Bigner, Applications of monoclonal antibodies in the diagnosis and treatment of primary brain tumros, J Neurosurg 63:2 (1985).PubMedCrossRefGoogle Scholar
  19. 19.
    S. M. Larson, J. P. Brown, P. W. Wright, J. A. Carrasquillo, I. Hellstrom and K. E. Hellstrom, Imaging of melanoma with 1-131-labeled monoclonal antibodies, J Nucl Med 24:123 (1983).PubMedGoogle Scholar
  20. 20.
    R. A. Fawwaz, T. S. T. Wang, A. Estabrook, J. M. Rosen, M. A. Hardy, P.O. Alderson, S. C. Srivastava, P. Richards and S. Ferrone, Immunoreactivity and biodistribution of Indium-111-labeled monoclonal antibody to a human high molecular weightmelanoma associated antigen, J Nucl Med 26:488 (1985).PubMedGoogle Scholar
  21. 21.
    F. Buchegger, C. M. Haskell, M. Schreyer, B. R. Scazziga, S. Randin, S. Carrel and J. P. Mach, Radiolabeled fragments of monoclonal antibodies against carcinoembryonic antigen for localization of human colon carcinoma grafted into nude mice, J Exp Med 158:413 (1983).PubMedCrossRefGoogle Scholar
  22. 22.
    P. J. Moldofsky, J. Powe, C. B. Mulhern, Jr., N. Hammond, H. F. Sears, R. A. Gatenby, Z. Steplewski and H. Koprowski, Metastatic colon carcinoma detected with radiolabeled F(ab′)2 monoclonal antibody fragments, Radiology 149:549 (1983).PubMedGoogle Scholar
  23. 23.
    A. M. Keenan, D. Colcher, S. M. Larson and J. Schlom, Radioimmunoscintigraphy of human colon cancer xenografts in mice with radioiodinated monoclonal antibody B72.3, J Nucl Med 25:1197 (1984).PubMedGoogle Scholar
  24. 24.
    P. L. Hagan, S. E. Halpern, A. Chen, L. Krishnan, J. Frincke, R. M. Bartholomew, G. S. David and D. Carlo, In vivo kinetics of radiolabeled monoclonal anti-CEA antibodies in animal models, J Nucl Med 26:1418 (1985).PubMedGoogle Scholar
  25. 25.
    J. G. Jakowatz, B. G. Beatty, W. G. Vlahos, D. Porudominsky, V. J. Philben, L. E. Williams, R. J. Paxton, J. E. Shively and J. D. Beatty, High-Specific-activity In-111-labeled anticarcinoem-bryonic antigen monoclonal antibody: biodistribution and imaging in nude mice bearing human colon cancer xenografts, Cancer Res 45:5700 (1985).PubMedGoogle Scholar
  26. 26.
    W. C. Eckelman, S. M. Karesh and R. C. Reba, New Compounds: fatty acid and long chain hydrocarbon derivatives containing a strong chelating agent, Pharm Sci 64:704 (1975).CrossRefGoogle Scholar
  27. 27.
    C. S. H. Leung, C. F. Meares and D. A. Goodwin, The attachment of metal-chelating groups to proteins: tagging of albumin by diazonium coupling and use of the products as radiopharmaceuticals, Int J Appl Radiat Isot 29:687 (1978).PubMedCrossRefGoogle Scholar
  28. 28.
    L. H. DeRiemer, C. F. Meares, D. A. Goodwin and C. I. Diamanti, BLEDTA II: synthesis of a new tumor-visualizing derivative of Co(III)Bleomycin, J Labelled Compd Radiopharm 18:1517 (1981).CrossRefGoogle Scholar
  29. 29.
    C. F. Meares, M. J. McCall, D. T. Reardan, D. A. Goodwin, C. I. Diamanti and M. McTigue, Conjugation of antibodies with bifunctional chelating agents: isothiocyanate and bromoacetamide reagents, methods of analysis, and subsequent addition of metal ions, Anal Biochem 142:68 (1984).PubMedCrossRefGoogle Scholar
  30. 30.
    G. E. Krejcarek and K. L. Tucker, Covalent attachment of chelating groups to macromolecules, Biochem Biophys Res Comm 77:581 (1977).PubMedCrossRefGoogle Scholar
  31. 31.
    D. J. Hnatowich, W. W. Layne and R. L. Childs, The preparation and labeling of DTPA-coupled albumin, Int J Appl Radiat Isot 33:327 (1982).PubMedCrossRefGoogle Scholar
  32. 32.
    R. G. Buckley and F. Searle, An efficient method for labelling antibodies with In-111, Fed Eur Biochem Soc 166:202 (1984).CrossRefGoogle Scholar
  33. 33.
    A. Najafi, R. L. Childs and D. J. Hnatowich, Coupling antibody with DTPA-an alternative to the cyclic anhydride, Int J Appl Radiat Isot 35:554 (1984).PubMedCrossRefGoogle Scholar
  34. 34.
    A. Yokoyama, Y. Ohmomo, K. Horiuchi, H. Saji, H. Tanaka, K. Yamamoto, Y. Ishii and K. Torizuka, Deferoxamine, a promising bifunctional chelating agent for labeling proteins with Gallium: Ga-67 DF-HSA: concise communication, J Nucl Med 23: 909 (1982).PubMedGoogle Scholar
  35. 35.
    G. A. Janoki, J. F. Harwig, W. Chanachai and W. Wolf, (Ga-67) Desferrioxamine-HSA: synthesis of chelon protein conjugates using carbodiimide as a coupling agent, Int J Appl Radiat Isot 34:871 (1983).PubMedCrossRefGoogle Scholar
  36. 36.
    C. Motta-Hennessy, S. A. Eccles, C. Dean and G. Coghlan, Preparation of Ga-67-labelled human IgG and its Fab fragments using desferoxamine as chelating agent, Eur J Nucl Med 11:240 (1985).PubMedCrossRefGoogle Scholar
  37. 37.
    B. A. Rhodes, D. A. Torvestad, K. Breslow, S. W. Burchiel, K. A. Reed and R. K. Austin, Tc-99m-labeling and acceptance testing of radiolabeled antibodies and antibody fragments, in, “Tumor Imaging”, S. W. Burchiel and B. A. Rhodes, eds., Masson Publishing, New York (1982).Google Scholar
  38. 38.
    B. A. Khaw, H. W. Strauss, A. Carvalho, E. Locke, H. K. Gold and E. Haber, Technetium-99m labeling of antibodies to cardiac myosin Fab and to human fibrinogen, J Nucl Med 23:1011 (1982).PubMedGoogle Scholar
  39. 39.
    C. H. Paik, L. N. B. Phan. J. J. Hong, M. S. Sahami, S. C. Heald, R. C. Reba, J. Steigman and W. C. Eckelman, The labeling of high affinity sites of antibodies with Tc-99m, Int J Nucl Med Biol 12:3 (1985).PubMedCrossRefGoogle Scholar
  40. 40.
    R. L. Childs and D. J. Hnatowich, Optimum conditions for labeling of DTPA-coupled antibodies with Technetium-99m, J Nucl Med 26:293 (1985).PubMedGoogle Scholar
  41. 41.
    W. Cole, S. DeNardo, C. Meares, G. DeNardo and H. O’Brien, Development of Copper-67 chelate conjugated monoclonal antibodies for radioimmunotherapy, J Nucl Med 24:P30 (abstr) (1983).Google Scholar
  42. 42.
    D. J. Buchsbaum, D. E. Hanna, B. C. Randall, F. Buchegger and J. P. Mach, Radiolabeling of monoclonal antibody against carcinoembryonic antigen with Y-88 and biodistribution studies, Int J Nucl Med Biol 12:79 (1985).PubMedCrossRefGoogle Scholar
  43. 43.
    D. J. Hnatowich, F. Virzi and P. W. Doherty, DTPA-coupled antibodies labeled with Yttrium-90, J Nucl Med 26:503 (1985).PubMedGoogle Scholar
  44. 44.
    S. E. Order, J. L. Klein, P. K. Leichner, J. Frincke, C. Lollo and D. J. Carlo, Yttrium-90 antiferritin- a new therapeutic radiolabeled antibody, Int J Radiat Oncol Biol Phys 12:277 (1986).PubMedCrossRefGoogle Scholar
  45. 45.
    R. A. Fawwaz, T. S. T. Wang, S. C. Srivastava, J. M. Rosen, S. Ferrone, M. A. Hardy and P. O. Alderson, Potential of Palladium-109-labeled antimelanoma monoclonal antibody for tumor therapy, J Nucl Med 25:796 (1984).PubMedGoogle Scholar
  46. 46.
    W. J. Bateman, A. T. M. Vaughan and G. Brown, Tumor localization of At-211-labelled monoclonal antibody to a sub-cutaneous human heterograft in the nude mouse II, Int J Nucl Med Biol 10:241 (1983).PubMedCrossRefGoogle Scholar
  47. 47.
    R. W. Kozak, R. W. Atcher, O. A. Gansow, A. M. Friedman, J. J. Hines and T. A. Waldmann, Bismuth-212-labeled anti-Tac monoclonal antibody: α-particle-emitting radionuclides as modalities for radioimmunotherapy, Proc Natl Acad Sci 83:474 (1986).PubMedCrossRefGoogle Scholar
  48. 48.
    B. Ballou, G. Levine, T. R. Hakala and D. Solter, Tumor location detected with radioactively labeled monoclonal antibody and external scintigraphy, Science 206:844 (1979).PubMedCrossRefGoogle Scholar
  49. 49.
    B. A. Khaw, J. T. Fallon, H. W. Strauss and E. Haber, Myocardial infarct imaging of antibodies to canine cardiac myosin with Indium-111-diethylenetriamine pentaacetic acid, Science 209:295 (1980).PubMedCrossRefGoogle Scholar
  50. 50.
    D. A. Scheinberg, M. Strand and O. A. Gansow, Tumor imaging with radioactive metal chelates conjugated to monoclonal antibodies, Science 215:1511 (1982).PubMedCrossRefGoogle Scholar
  51. 51.
    J. N. Weinstein, R. J. Parker, A. M. Keenan, S. K. Dower, H. C. Morse III and S. M. Sieber, Monoclonal antibodies in the lymphatics: toward the diagnosis and therapy of tumor metastases, Science 218:1334 (1982).PubMedCrossRefGoogle Scholar
  52. 52.
    F. L. Otsuka, M. J. Welch, K. D. McElvany, R. A. Nicolotti and J. B. Fleischman, Development of a model system to evaluate methods for radiolabeling monoclonal antibodies, J Nucl Med 25:1343 (1984).PubMedGoogle Scholar
  53. 53.
    M. G. Scott and J. B. Fleischman, Preferential idiotype-isotype associations in antibodies to dinitrophenyl antigens, J Immunol 128:2622 (1982).PubMedGoogle Scholar
  54. 54.
    P. J. Fraker and J. C. Speck, Jr., Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a, 6a-diphenylglycoluril, Biochem Biophys Res Comm 80:849 (1978).PubMedCrossRefGoogle Scholar
  55. 55.
    P. Parham, M. J. Androlewicz, F. M. Brodsky, N. J. Holmes and J. P. Ways, Monoclonal antibodies: purification, fragmentation and application to structural and functional studies of Class 1 MHC antigens, J Immunol Methods 53:133 (1982).PubMedCrossRefGoogle Scholar
  56. 56.
    F. L. Otsuka, J. B. Fleischman and M. J. Welch, Comparative studies using I-125- and In-111-labeled monoclonal antibodies, Int J Nucl Med Biol 13:325 (1986).Google Scholar
  57. 57.
    V. Moshakis, R. A. J. McIlhinney, D. Raghavan and A. M. Neville, Localization of human tumor xenografts after i.v. administration of radiolabelled monoclonal antibodies, Br J Cancer 44:91 (1981).PubMedCrossRefGoogle Scholar
  58. 58.
    M. I. Bernhard, K. M. Hwang, K. A. Foon, A. M. Keenan, R. M. Kessler, J. M. Frincke, D. J. Tallam, M. G. Hanna, Jr., L. Peters and R. K. Oldham, Localization of In-111- and I-125-labeled monoclonal antibody in guinea pigs bearing Line 10 hepatocarcinoma tumors, Cancer Res 43:4429 (1983).PubMedGoogle Scholar
  59. 59.
    S. E. Halpern, P. L. Hagan, P. R. Garver, J. A. Koziol, A. W. N. Chen, J. M. Frincke, R. M. Bartholomew, G. S. David and T. H. Adams, Stability, characterization, and kinetics of In-111-labeled monoclonal antitumor antibodies in normal animals and nude mouse-human tumor models, Cancer Res 43:5347 (1983).PubMedGoogle Scholar
  60. 60.
    B. A. Brown, R. D. Comeau, P. L. Jones, F. A. Liberatore, W. P. Neacy, H. Sands and B. M. Gallagher, Comparison of the pharmacokinetics of I-125 and In-111 labeled intact and proteolytic fragments of a monoclonal antibody, J Nucl Med 26:P45 (abstr) (1985).Google Scholar
  61. 61.
    B. A. Khaw, J. Cooney, T. Edgington and H. W. Strauss, Differences in experimental tumor localization of dual-labeled monoclonal antibody, J Nucl Med 27:1293 (1986).PubMedGoogle Scholar
  62. 62.
    G. L. DeNardo, S. J. DeNardo, J. S. Peng, L. F. O’Grady, S. L. Mills, A. L. Epstein and R. D. Cardiff, Evidence of a saturable hepatic receptor for mouse monoclonal antibodies, J Nucl Med 26:P67 (abstr) (1985).Google Scholar
  63. 63.
    K. Koizumi, G. L. DeNardo, S. J. DeNardo, M. T. Hays, H. H. Hines, P.O. Scheibe, J. S. Peng, D. J. Macey, N. Tonami and K. Hisada, Multicompartmental analysis of the kinetics of radioiodinated monoclonal antibody in patients with cancer, J Nucl Med 27:1243 (1986).PubMedGoogle Scholar
  64. 64.
    M. G. Rosenblum, J. L. Murray, T. P. Haynie, H. J. Glenn, M. F. Jahns, R. S. Benjamin, J. M. Frincke, D. J. Carlo and E. M. Hersh, Pharmacokinetics of In-111-labeled anti-p97 monoclonal antibody in patients with metastatic malignant melanoma, Cancer Res 45:2382 (1985).PubMedGoogle Scholar
  65. 65.
    J. A. Carrasquillo, P. G. Abrams, R. W. Schroff, A. M. Keenan, A. C. Morgan, K. A. Foon, J. C. Reynolds, P. Perentesis, M. Horowitz and S. M. Larson, Improved imaging of metastatic melanoma with high dose 9.2.27 In-111 monoclonal antibody, J Nucl Med 26:P67 (abstr) (1985).Google Scholar
  66. 66.
    S. E. Halpern, R. O. Dillman, K. F. Witztum, J. F. Shega, P. L. Hagan, W. M. Burrows, J. B. Dillman, M. L. Clutter, R. E. Sobol, J. M. Frincke, R. M. Bartholomew, G. S. David and D. J. Carlo, Radioimmunodetection of melanoma utilizing In-111 96.5 monoclonal antibody: a preliminary report, Radiology 155: 493 (1985).PubMedGoogle Scholar
  67. 67.
    F. L. Otsuka and M. J. Welch, Evidence for a saturable clearance mechanism for In-111-labeled monoclonal antibodies, Int J Nucl Med Biol 12:331 (1985).PubMedCrossRefGoogle Scholar
  68. 68.
    D. R. Vera, K. A. Krohn, R. C. Stadalnik and P. O. Scheibe, Tc-99m-galactosyl-neoglycoalbumin: in vivo characterization of receptor-mediated binding to hepatocytes, Radiology 151:191 (1984).PubMedGoogle Scholar
  69. 69.
    D. R. Vera, K. A. Krohn, R. C. Stadalnik and P. O. Scheibe, Tc-99m galactosyl-neoglycoalbumin: in vivo characterization of receptor-mediated binding, J Nucl Med 25:779 (1984).PubMedGoogle Scholar
  70. 70.
    U. Hopf, K.-H.M. zum Buschenfelde and M. P. Dierich, Demonstration of binding sites for IgG Fc and the third complement component (C3) on isolated hepatocytes, J Immunol 117:639 (1976).PubMedGoogle Scholar
  71. 71.
    J. D. Rodwell, V. L. Alvarez, C. Lee, A. D. Lopes, J. W. F. Goers, H. D. King, H. J. Powsner and T. J. McKearn, Site specific covalent modification of monoclonal antibodies: in vitro and in vivo evaluations, Proc Natl Acad Sci 83:2632 (1986).PubMedCrossRefGoogle Scholar
  72. 72.
    B. A. Brown, C. B. Dearborn, W. P. Neacy, H. Sands and B. M. Gallagher, Comparison of carbohydrate directed versus amine directed attachment of DTPA to murine monoclonal antibodies, in Sixth Intl Symp on Radiopharm Chem, Boston, June 29–July 3, 1986. p. 263.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Fyllis L. Otsuka
    • 1
  • Michael J. Welch
    • 1
  1. 1.Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisUSA

Personalised recommendations