Important Chemical Variables for Labeling Antibodies with Indium-111 and Technetium-99m

  • Chang H. Paik
  • William C. Eckelman
  • Richard C. Reba
Conference paper
Part of the NATO ASI Series book series (NSSA, volume 152)


The use of radiolabeled antibodies for radioimmunodetection of malignant tumors involves research in several disciplines such as chemistry, immunology and pharmacokinetics. Each of these areas has to be investigated systematically to guarantee a successful radioimmunodetection technology. This paper focuses its discussion primarily on chemical and immunochemical aspects associated with radiolabeling of antibodies with In-111 and Tc-99m. A bifunctional chelate approach using a cyclic DTPA dianhydride is used as a model reaction for the indirect labeling of antibody and antihuman serum albumin antibody is used as a model antibody. The optimization of important chemical parameters is discussed for the conjugation and labeling reactions. The relationship between the number of DTPA groups and the antibody immunoreactivity is also discussed.


Conjugation Reaction High Affinity Site Conjugation Yield DTPA Concentration Stannous Tartrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.E. Krejcarek and K.L. Tucker. Covalent attachment of chelating groups to macromolecules, Biochem Biophy Res Comm 77:581 (1977).CrossRefGoogle Scholar
  2. 2.
    B.A. Khaw, J.T. Fallon, H.W. Strauss, et al., Myocardial infarct imaging of antibodies to canine cardiac myosin with indium-111-diethylenetriaminepentaacetic acid, Science 209:295 (1980).PubMedCrossRefGoogle Scholar
  3. 3.
    C.H. Paik, P.R. Murphy, W.C. Eckelman, et al., Optimization of the DTPA mixed-anhydride reaction with antibodies at low concentration, J Nucl Med 24:932 (1983).PubMedGoogle Scholar
  4. 4.
    S.S. Zoghbi, R.D. Neuman and A. Gottschalk, A modified procedure for rapid labeling of low concentrations of bioactive proteins with In-111, Intl J. Nucl Med Biol 12:159 (1985).CrossRefGoogle Scholar
  5. 5.
    W.C. Eckelman, S.M. Karesh, and R.C. Reba, New compounds: fatty acid and long chain hydrocarbon derivatives containing a strong chelating agent, J Pharm Sci. 64:704 (1975).PubMedCrossRefGoogle Scholar
  6. 6.
    D.J. Hnatowich, W.W. Layne, and R.L. Childs, The preparation and labeling of DTPA-coupled albumin, Intl J Appl Radiat Isot 33:327 (1982).CrossRefGoogle Scholar
  7. 7.
    C.H. Paik, M.A. Ebbert, P.R. Murphy, et al. Factors influencing DTPA conjugation with antibodies by cyclic DTPA anhydride, J Nucl Med 24: 1158 (1983).PubMedGoogle Scholar
  8. 8.
    C.H. Paik, C.R. Lassman, P.R. Murphy, et al., A carbodiimide method for DTPA conjugation to antibodies, Hybridoma 2:248 (1983) (Abstract).Google Scholar
  9. 9.
    A. Najafi, R.L. Childs, D.J. Hnatowich, Coupling antibody with DTPA: An alternative to the cyclic anhydride, Intl J Appl Radiat Isot 35:554 (1984).CrossRefGoogle Scholar
  10. 10.
    A. Najafi and N. Hutchinson, The use of DTPA diactivated ester in coupling DTPA to proteins, Intl J Appl Radiat Isot 37:548 (1986).CrossRefGoogle Scholar
  11. 11.
    C.H. Paik, et al. Unpublished results.Google Scholar
  12. 12.
    C.H. Paik, J.J. Hong, M.A. Ebbert, et al., Relative reactivity of DTPA, immunoreactive antibody-DTPA conjugates and nonimmunoreactive antibody-DTPA conjugates toward In-111, J Nucl Med 26:482 (1985).PubMedGoogle Scholar
  13. 13.
    D.W. Wong, F. Mishkin and T. Lee. A rapid chemical method of labeling human plasma proteins with Tc-99m pertechnetate at pH 7.4, Intl J Appl Radiat Isot 29:251 (1978).CrossRefGoogle Scholar
  14. 14.
    W.A. Pettit, F.H. DeLand, S.J. Bennett, et al., Improved protein labeling by stannous tartrate reduction of pertechnetate, J Nucl Med 21:59 (1980).PubMedGoogle Scholar
  15. 15.
    J.T. Huang, M. Kaiszadeh, and I. Sakimura, Detection of bacterial endocarditis with Tc-99m labeled antistaphylococcal antibody, J Nucl Med 21:783 (1980).PubMedGoogle Scholar
  16. 16.
    B.A. Rhodes, D.A. Torvestad, K. Breslow, et al., Tc-99m labeling and acceptance testing of antibodies, in “Tumor Imaging”, S.W. Burchiel and B.A. Rhodes, eds . , Masson Publishing USA (1982), p. 111.Google Scholar
  17. 17.
    E. Sundrehagen, Formation of Tc-99m immunoglobulin G complexes free from radionuclides, quality controlled by radioimmunoelectrophoresis, Eur J Nucl Med 7:549 (1982).PubMedCrossRefGoogle Scholar
  18. 18.
    C.H. Paik, L.N.B. Phan, J.J. Hong, et al. The labeling of high affinity sites of antibodies with Tc-99m, Intl J Nucl Med Biol 12:3 (1985).CrossRefGoogle Scholar
  19. 19.
    B.A. Rhodes, P.O. Zamora, K.D. Newell, et al., Tc-99m labeling of murine monoclonal antibody fragments, J Nucl Med 27:685 (1986).PubMedGoogle Scholar
  20. 20.
    C.H. Paik, W.C. Eckelman and R.C. Reba, Transchelation of Tc-99m from low affinity sites to high affinity sites of antibody, Intl J Nucl Med Biol 13:359 (1986).Google Scholar
  21. 21.
    B.A. Khaw, H.W. Strauss, A. Carvalho, et al, Tc-99m labeling of antibodies to cardiac myosin Fab and to human fibrinogen, J Nucl Med 23:1011 (1982).PubMedGoogle Scholar
  22. 22.
    D. Lanteigne and D.J. Hnatowich. The labeling of DTPA-coupled proteins with Tc-99m, Intl J Appl Radiat Isot 35:617 (1984).CrossRefGoogle Scholar
  23. 23.
    Y. Arano, A. Yokoyama, Y. Magata, et al. Synthesis and evaluation of a new bifunctional chelating agent for Tc-99m labeling of proteins: p-Carboxyethylphenyl-glyoxal-di(N-methylthiosemicarbazone), Intl J Nucl Med Biol 12:425 (1985).CrossRefGoogle Scholar
  24. 24.
    G.L. Tolman, R.A. Hadijian, M.M. Morelock, et al. The use of metalloproteins as bifunctional chelators, J Nucl Med 26:438 (1985).Google Scholar
  25. 25.
    A.R. Fritzberg, S. Kasina, J.M. Reno, et al., Radiolabeling of antibodies with Tc-99m using N2S2 ligands, J Nucl Med 27:957 (1986) (Abstract).Google Scholar
  26. 26.
    S.M. Quadri, C.H. Paik, K. Yokoyama, et al., Synthesis and in vivo comparison of antibody DTPA conjugates with different chemical bonds, Proceedings of Sixth International Symposium on Radiopharmaceutical Chemistry, Boston, June 29–July 3, 1986. p. 266.Google Scholar
  27. 27.
    J.D. Rodwell, V.L. Alvarez, C. Lee, et al. Site specific covalent modification of monoclonal antibodies: In vitro and in vivo evaluations, Proc Natl Acad Sci USA 83:2632 (1986).PubMedCrossRefGoogle Scholar
  28. 28.
    C.H. Paik, S.M. Quadri and R.C. Reba. Enhancement of blood clearance of Tc-99m labeled antibody by placing ester bonds, presented at the 34th SNM Annual Meeting, Toronto, Canada, June 2–5, 1987.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Chang H. Paik
    • 1
  • William C. Eckelman
    • 1
    • 2
  • Richard C. Reba
    • 1
  1. 1.George Washington University Medical CenterUSA
  2. 2.The Squibb Institute for Medical ResearchPrincetonUSA

Personalised recommendations