Use of Bifunctional Chelating Agents for Radiolabeling Antibodies

  • Claude F. Meares
Conference paper
Part of the NATO ASI Series book series (NSSA, volume 152)


A remarkably large number of metallic ions form “stable” chelate complexes with certain organic molecules (chelators, or ligands). For example, diligent — but probably incomplete — searching of the literature reveals references to the preparation and/or thermodynamic stability constants of the chelates of about 70 different elements with the chelator EDTA (1,2). These elements (Figure 1) have a great range of properties; included are radionuclides suitable for medical diagnosis and therapy, as well as paramagnetic, chemically reactive, or luminescent metals appropriate to other applications. Since many of these elements have only moderate stability as EDTA chelates, there are good reasons to search for new chelators that will permit particular metals to be used in vivo as probes or cell-killing agents.


Human Serum Albumin Stability Constant Copper Chelate Conditional Stability Constant EDTA Chelate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    “Stability Constants of Metal Ion Complexes,” L. G. Sillen and A. E. Martell, eds., Chemical Society, London (1964) .Google Scholar
  2. 2.
    “Critical Stability Constants,” A. E. Martell and R. M. Smith, eds., Plenum, New York (1974).Google Scholar
  3. 3.
    A. Ringbom, “Complexation in Analytical Chemistry,” Interscience, New York (1963).Google Scholar
  4. 4.
    S-J. Lau and B. Sarkar, A peptide molecule mimicking the copper (II) transport site of human serum albumin, J. Biol. Chem. 24 6: 5938 (1971).PubMedGoogle Scholar
  5. 5.
    A. White, P. Handler, and E. L. Smith, “Principles of Biochemistry,” 4th ed., p. 711, McGraw-Hill, New York (1968).Google Scholar
  6. 6.
    Reference 2, pp. 204–225.Google Scholar
  7. 7.
    H. Stetter, W. Frank, and R. Mertens, Darstellung und komplexbildung von polyazacycloalkan-N-essigsauren, Tetrahedron 37: 767 (1981).CrossRefGoogle Scholar
  8. 8.
    M. K. Moi, C. F. Meares, M. J. McCall, W. C. Cole, and S. J. DeNardo, Copper chelates as probes of biological systems: stable copper complexes with a macrocyclic bifunctional chelating agent, Analyt. Biochem. 148: 249 (1985) .PubMedCrossRefGoogle Scholar
  9. 9.
    W. C. Cole, S. J. DeNardo, C. F. Meares, M. J. McCall, G. L. DeNardo, A. L. Epstein, H. A. O’Brien, and M. K. Moi, Comparative Serum Stability of Radiochelates for Antibody Radiopharmaceuticals. J. Nucl. Med. 28: 83 (1987) .PubMedGoogle Scholar
  10. 10.
    D. W. Margerum, G. R. Cayley, D. C. Weatherburn, and G. K. Pagenkopf, Kinetics and Mechanisms of Complex Formation and Ligand Exchange, in “Coordination Chemistry,” Vol 2, A. E. Martell, ed., American Chemical Society, Washington, D. C. (1978).Google Scholar
  11. 11.
    S. M. Yeh, C. F. Meares, and D. A. Goodwin, Decomposition rates of radiopharmaceutical indium chelates in serum, J. Radioanalytical Chem. 53: 327 (1979).CrossRefGoogle Scholar
  12. 12.
    M. J. Welch, and T. J. Welch, Solution chemistry of carrierfree indium, in “Radiopharmaceuticals,” pp. 73–79, G. Subramanian, B. A. Rhodes, J. F. Cooper, and V. J. Sodd, eds., Soc. Nuclear. Med., New York (1975)Google Scholar
  13. 13.
    P. Aisen, A. Leibman, and J. Zweier, Stoichiometric and site characteristics of the binding of iron to human transferrin, J. Biol. Chem. 253: 1930 (1978).PubMedGoogle Scholar
  14. 14.
    Reference 2, pp. 281–285.Google Scholar
  15. 15.
    Reference 5, p. 711.Google Scholar
  16. 16.
    M. W. Sundberg, C. F. Meares, D. A. Goodwin, and C. I. Diamanti, Chelating agents for the binding of metal ions to macromolecules, Nature 250: 587 (1974).PubMedCrossRefGoogle Scholar
  17. 17.
    M. W. Sundberg, C. F. Meares, D. A. Goodwin, and C. I. Diamanti, Selective binding of metal ions to macromolecules using bifunctional analogs of EDTA, J. Med. Chem. 17: 1304 (1974).PubMedCrossRefGoogle Scholar
  18. 18.
    W. R. Harris, K. N. Raymond, and F. L. Weitl, Ferric ion sequestering agents. 6. The spectrophotometric and potentiometric evaluation of sulfonated tricatecholate ligands, J. Am. Chem. Soc. 103: 2667 (1981).CrossRefGoogle Scholar
  19. 19.
    J. M. Lehn, Supramolecular Chemistry: Receptors, Catalysts, and Carriers, Science 227: 849 (1985).PubMedCrossRefGoogle Scholar
  20. 20.
    G. E. Krejcarek and K. L. Tucker, Covalent attachment of chelating groups to macromolecules, Biochem. Biophys. Res. Commun. 77: 581 (1977).PubMedCrossRefGoogle Scholar
  21. 21.
    D. J. Hnatowich, W. W. Layne, R. L. Childs, Radioactive labeling of antibody: a simple and efficient method, Science 220: 613 (1983).PubMedCrossRefGoogle Scholar
  22. 22.
    S. M. Yeh, D. G. Sherman, and C. F. Meares, A New Route to Bifunctional Chelating Agents: Conversion of Amino Acids to Analogs of EDTA, Analyt. Biochem. 100: 152 (1979).PubMedCrossRefGoogle Scholar
  23. 23.
    C. F. Meares, M. J. McCall, D. T. Reardan, D. A. Goodwin, C. I. Diamanti, and M. McTigue, Conjugation of Antibodies with Bifunctional Chelating Agents: Isothiocyanate and Bromoacetamide Reagents, Methods of Analysis, and Subsequent Addition of Metal Ions, Analyt. Biochem. 142: 68 (1984).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Claude F. Meares
    • 1
  1. 1.Chemistry DepartmentUniversity of CaliforniaDavisUSA

Personalised recommendations