Radiohalogenation of Antibodies: Chemical Aspects

  • Michael R. Zalutsky
Part of the NATO ASI Series book series (NSSA, volume 152)


Proteins have been labeled with halogen isotopes for many years. These tracers have been exploited as probes of protein metabolism and pharmacokinetics in vivo and have provided invaluable tools for use in radioimmunoassay. Because of this extensive experience with radioiodinated proteins and the direct applicability of in vitro data obtained with I-125, labeling with halogen isotopes has been an attractive approach to the development of monoclonal antibodies as agents for radioimmunodiagnostic and therapeutic applications.


Label Antibody Acylation Reaction Thyroid Uptake Cyanuric Chloride Mixed Anhydride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. I. Vedeneyev, L. V. Gurvich, V. N. Kondrat’yev, V. A. Medvedev and Y. L. Frankevich, “Bond Energies, Ionization Potentials and Electron Affinities”, St. Martin’s Press, New York (1966).Google Scholar
  2. 2.
    K. Berei and L. Vasaros, Organic chemistry of astatine, Hungarian Academy of Sciences Report KFKI-1981-10 p, 41 (1981).Google Scholar
  3. 3.
    A. S. McFarlane, Efficient trace-labelling of proteins with iodine, Nature 182:53 (1958).PubMedCrossRefGoogle Scholar
  4. 4.
    U. Rosa, G. A. Scassellati, F. Pennisi, N. Riccioni, P. Giagnoni, and R. Giordani, Labelling of human fibrinogen with I-131 by electrolytic iodination, Biochem. Biophys. Acta 86:519 (1964).PubMedCrossRefGoogle Scholar
  5. 5.
    W. M. Hunter and F. C. Greenwood, Preparation of iodine-131 labelled human growth hormone of high specific activity, Nature 194:495 (1962).PubMedCrossRefGoogle Scholar
  6. 6.
    M. A. K. Markwell, A new solid state reagent to iodinate proteins, Anal. Biochem. 125:427 (1983).CrossRefGoogle Scholar
  7. 7.
    W. R. Butt, The iodination of Follicle-stimulating and other hormones for radioimmunoassay, Enocrinology 55:453 (1972).CrossRefGoogle Scholar
  8. 8.
    F. Tejedor and J. P. G. Ballesta, Iodination of biological samples without loss of functional activity, Anal. Biochem. 127:143 (1982).PubMedCrossRefGoogle Scholar
  9. 9.
    J. J. Marchalonis, An enzymatic method for the trace iodination of immunoglobulins and other proteins, Biochem. J. 113:299 (1969).PubMedGoogle Scholar
  10. 10.
    L. Knight, K. A. Krohn, M. J. Welch, B. Spomer and L. P. Hager, Br-77: A new protein label, in: “Radiopharmaceuticals”, G. Subramanian, B. A. Rhodes, J. F. Cooper, and V. J. Sodd, eds., Society of Nuclear Medicine, New York (1975).Google Scholar
  11. 11.
    K. D. McElvany and M. J. Welch, Characterization of bromine-77-labeled proteins prepared using bromoperoxidase, J. Nucl. Med. 21:953 (1980).PubMedGoogle Scholar
  12. 12.
    G. S. David, Solid state lactoperoxidase:. A highly stable enzyme for simple, gentle iodination of proteins, Biochem. Biophys. Res. Comm. 48:464 (1972).PubMedCrossRefGoogle Scholar
  13. 13.
    G. S. David and R. A. Reisfeld, Protein iodination with solid state lactoperoxidase, Biochem. 13:1014 (1974).CrossRefGoogle Scholar
  14. 14.
    P. J. Fraker and J. C. Speck, Protein and cell membrane iodinations with a sparingly soluble chloramide 1,3,4,6-tetrachloro-3 α-6α-diphenylglycouril, Biochem. Biophys. Res. Comm. 80:849 (1978).PubMedCrossRefGoogle Scholar
  15. 15.
    M. R. Zalutsky, D. F. Hayes, and D. W. Kufe, Radioiodination of DF3 antibody: Optimization using in vitro binding assays, J. Label. Cmpd. Radiopharm. (in press).Google Scholar
  16. 16.
    P. Reay, Use of N-bromosuccinimide for the iodination of proteins for radioimmunoassay, Ann. Clin. Chem. 19:129 (1982).Google Scholar
  17. 17.
    A. E. Bolton and W. M. Hunter, The labelling of proteins to high specific activities by conjugation to a I-125-containing acylating agent, Biochem. J. 133:529 (1973).PubMedGoogle Scholar
  18. 18.
    A. E. Bolton, V. Lee-Own, R. Kramer McLean, and G. S. Challand, Three different radioiodinat ion methods for human spleen ferritin compared, Clin. Chem. 25:1826 (1979).PubMedGoogle Scholar
  19. 19.
    V. S. Chang, H. W. Cho, and H. Y. Meltzer, Labeling of creatinine phosphokinase without loss of enzyme activity, Biochem. Biophys. Res. Comm. 65:413 (1975).CrossRefGoogle Scholar
  20. 20.
    L. C. Knight, S. S. L. Harwig and M. J. Welch, In vitro stability and in vivo clearance of fibrinogen or serum albumin labeled with Br-77, I-131, I-125 by direct or indirect synthetic methods, J. Nucl. Med. 18:282 (1977).PubMedGoogle Scholar
  21. 21.
    F. T. Wood M. M. Wu, and J. C. Gerhart, The radioactive labeling of proteins with an iodinated amidation reagent, Anal. Biochem. 69:339 (1975).PubMedCrossRefGoogle Scholar
  22. 22.
    C. E. Hayes and I. J. Goldstein, Radioiodinat ion of sulfhydryl-sensitive proteins, Anal. Biochem. 67:580 (1975).PubMedCrossRefGoogle Scholar
  23. 23.
    M. R. Zalutsky, A. M. Friedman, F. Buckingham, W. Wung, F. P. Stuart, and S. J. Simonian, Synthesis of a non-labile astatine-protein conjugate, J. Label Cmpd Radiopharm. 13:181 (1977).Google Scholar
  24. 24.
    G. W. Barendsen, T. L. J. Beusker, A. J. vergroesen, and L. Budke, Effects of different ionizing radiations on human cells in tissue culture, Radiation Res. 13:841 (1960).PubMedCrossRefGoogle Scholar
  25. 25.
    E. L. Lloyd, M. A. Gammell, C. B. Henning, D. S. Ganmell, and B. J. Zabransky, Cell survival following multiple-track alpha particle irradiation Int. J. Radiat. Biol. 35:23 (1979).CrossRefGoogle Scholar
  26. 26.
    C. Aaij, W. R. J. M. Tschrotts, L. Lendner, and T. E.W. Feltkamp, The preparation of astatine labeled proteins, Int. J. Appl. Radiat. Isot. 26:25 (1975).PubMedCrossRefGoogle Scholar
  27. 27.
    A. T. M. Vaughan and J. H. Fremlin, The preparation of astatine labeled proteins using an electrophilic reaction, Int. J. Nucl., Med. Biol. 5:229 (1978).CrossRefGoogle Scholar
  28. 28.
    G. W. M. Visser, E. L. Diemer, and F. M. Kaspersen, The preparation and stability of astatotyrosine and astatoiodotyrosine, Int. J. Appl. Radiat. Isot. 30:749 (1979).CrossRefGoogle Scholar
  29. 29.
    G. W. M. Visser, E. L. Diemer, and F. M. Kaspersen, The nature of the astatine-protein bond, Int. J. Appl. Radiat. Isot. 32:905 (1981).CrossRefGoogle Scholar
  30. 30.
    A. M. Friedman, M. R. Zalutsky, W. Wung, F. Buckingham, P. V. Harper, G. H. Sherr, B. Wainer, R. L. Hunter, E. H. Appelman, R. M. Rothberg, F. W. Fitch, F. P. Stuart, and S. J. Simonian, Preparation of a biologically stable and immunogenically competent astatinated protein, Int. J. Nucl. Med. Biol. 4:219 (1977).PubMedCrossRefGoogle Scholar
  31. 31.
    A. T. M. Vaughan, The labeling of proteins with At-211 using an acylation reaction, Int. J. Appl. Radiat. Isot. 30:576 (1979).CrossRefGoogle Scholar
  32. 32.
    A. Harrision and L. Royle, Preparation of a At-211-IgG conjugate which is stable in vivo, Int. J. Appl. Radiat. Isot. 35:1005 (1984).CrossRefGoogle Scholar
  33. 33.
    A. T. M. Vaughan, W. J. Bateman, and J. Cowan, The preparation and cytotoxic properties of 211At labelled concanavalin A bound to cell membranes, J. Radioanal. Chem. 64:33 (1981).CrossRefGoogle Scholar
  34. 34.
    A. T. M. Vaughan, W. J. Bateman, And D. R. Fisher, The in vivo fate of a 211At labelled monoclonal antibody with known specificity in a murine system, Int. J. Radiat. Oncol. Biol. Phys. 8:1943 (1982).PubMedCrossRefGoogle Scholar
  35. 35.
    A. T. M. Vaughan, W. J. Bateman, G. Brown, and J. Cowan, The specific inhibition of cellular clonogenic proliferation using At-211 labelled lectins and antibodies-I, Int. J. Nucl. Med. Biol. 9:167 (1982).PubMedCrossRefGoogle Scholar
  36. 36.
    W. J. Bateman, A. T. M. Vaughan, and G. Brown, Tumour localization of 211At labelled monoclonal antibody to a subcutaneous human heterograft in the nude mouse II, Int. J. Nucl. Med. Biol. 4:241 (1983).CrossRefGoogle Scholar
  37. 37.
    E. A. Kabat, T. T. Wu, and H. Bilofsky, Immunoglobulin sequences, NIH Publication No. 80-2008, p1, NIH, Bethesda, MD. (1979).Google Scholar
  38. 38.
    B. -K. Seon, O. A. Robolt and D. Pressman, Reactivity of tyrosine residues in the constant portion of type K Bence Jones protein, Biochem. Biophys. Acta. 200:81 (1970).PubMedCrossRefGoogle Scholar
  39. 39.
    S. K. Dube, O. A. Roholt and D. Pressman, Relative reactivity to iodination of tyrosine residues in α-chymotrypsin, J. Biol. Chem. 241:4665 (1965).Google Scholar
  40. 40.
    A. L. Grossberg, G. Radzimski, and D. Pressman, Effect of iodination on the active site of several antihapten antibodies, Biochem. 1:391 (1962).CrossRefGoogle Scholar
  41. 41.
    Y. Shechter, Y. Burstein, and A. Patchornik, Selective oxidation of methionine residues in proteins, Biochem. 14:4497 (1975).CrossRefGoogle Scholar
  42. 42.
    N. M. Alexander, Oxidative cleavage of tryptophanyl peptide bonds during chemical-and peroxidase-cata1yzed iodinations, J. Biol. Chem. 249:1946 (1974).PubMedGoogle Scholar
  43. 43.
    L. A. Sherman, S. Harwig, and O. A. Hayne, Macromolecular complexes formed as the result of chloramine-T radio-iodination of proteins, Int. J. Appl. Radiat. Isot. 25:81 (1974).PubMedCrossRefGoogle Scholar
  44. 44.
    D. F. Hayes, M. R. Zalutsky, W. Kaplan, M. Noska, A. Thor, D. Colcher, and D. W. Kufe, Pharmacokinetics of radiolabeled monoclonal antibody B6.2 in patients with metastatic breast cancer, Cancer Res. 46:3157 (1986).PubMedGoogle Scholar
  45. 45.
    D. C. Sullivan, J. S. Silva, C. E. Cox, D. E. Haagensen, Jr., C. C. Harris, W. H. Briner, and S. A. Wells, Jr., Localization of I-131 labeled goat and primate anti-carcinoembryonic antigen (CEA) antibodies in patients with cancer, Invest. Radiol. 17:350 (1982).PubMedCrossRefGoogle Scholar
  46. 46.
    P. Dumas, Deshalogenation de divers derives iodes phenoliques chez le rat normal et. thyroidectomise, Biochem. Pharmacol. 22:1599 (1973).PubMedCrossRefGoogle Scholar
  47. 47.
    W. Tong, A. Taurog, and I. L. Chaikoff, The metabolism of I-131-labeled diiodotyrosine, J. Biol. Chem. 207:59 (1954).PubMedGoogle Scholar
  48. 48.
    J. B. Stanbury and M. L. Morris, Deiodination of diodotyrosine by cell-free systems, J. Biol. Chem. 233:106 (1958).PubMedGoogle Scholar
  49. 49.
    I. J. Chopra, A study of extrathyroidal conversion of thyroxine (T4) to 3, 3′, 5,-triiodothyronine (T3) in vitro, Endocrinology 101:453 (1977).PubMedCrossRefGoogle Scholar
  50. 50.
    M. M. Kaplan and R. D. Utiger, Iodothyronine metabolism in rat liver homogenates J. Clin. Invest. 61:459 (1978).PubMedCrossRefGoogle Scholar
  51. 51.
    R. Ientile, S. Macaione, P. Russo, G. Pugliese, and R. DiGiorgio, Phenolic and tyrosyl ring deiodination in thyroxine from rat retina during postnatal development, Eur. J. Biochem. 142:15 (1984).PubMedCrossRefGoogle Scholar
  52. 52.
    R. C. Smallridge and N. E. Whorton, 3′-monoiodothyronine degradation in rat liver homogenate: Enzymatic characteristics and documentation of deiodination by high-pressure liquid chromatography Metabolism 33:1034 (1984).PubMedCrossRefGoogle Scholar
  53. 53.
    R. C. Smallridge, K. D. Burman, K. E. Ward, L. Wartofsky, R. C. Dimond, F. D. Wright, and K. R. Latham, 3′,5′ -diiodothyronine to 3′-mono-iodothyronine conversion in the fed and fasted rat: Enzyme characteristics and evidence for two distinct S′-deiodinases, Endocrinology 108:2336 (1981).PubMedCrossRefGoogle Scholar
  54. 54.
    J. L. Leonard and I. N. Rosenbert, Subcellular distribution of thyroxine S′-deiodinase in the rat kidney: A plasma membrane location, Endocrinology 103:274 (1977).CrossRefGoogle Scholar
  55. 55.
    M. R. Zalutsky, D. Colcher, W. Kaplan, And D. F. Kufe, Radioiodinated B6.2 monoclonal antibody: Further characterization of a potential radiopharmaceutical for the identification of breast tumors, Int. J. Nucl. Med. Biol. 12:227 (1985).PubMedCrossRefGoogle Scholar
  56. 56.
    D. S. Wilbur, D. S. Jones, A. R. Fritzberg, and A. C. Morgan, Radioiodination of monoclonal antibodies, Labeling with para-iodophenyl (PIP) derivatives for in vivo stability of the radioiodine label, J. Nucl. Med. 27:959 (1986) abstract.Google Scholar
  57. 57.
    J. L. Goldstein and M. S. Brown, Binding and degradation of low density lipoproteins by cultured human fibroblasts, J. Biol. Chem. 249:5153 (1974).PubMedGoogle Scholar
  58. 58.
    S. Terris and D. F. Steiner, Binding and degradation of I-125-insulin by rat hepatocytes, J. Biol. Chem. 250:8389 (1975).PubMedGoogle Scholar
  59. 59.
    G. Carpenter and S. Cohen, 125I-labeled human epidermal growth factor: Binding, internalization and degradation in human fibroblasts, J. Cell Biol. 71:159 (1976).PubMedCrossRefGoogle Scholar
  60. 60.
    A. S. H. DeJong, J. M. W. Bouma, and M. Gruber, O-(4-diazo-3,5-di[I-125]iodobenzoy1-sucrose, a novel radioactive label for determining organ sites of catabolism of plasma proteins, Bio. Chem. J. 198:45 (1981).Google Scholar
  61. 61.
    R. C. Pittman, T. E. Carew, C. K. Glass, S. R. Green, C. A. Taylor, Jr., and A. D. Attie, A radioiodinated, intracellularly trapped ligand for determining the sites of plasma protein degradation in vivo, Biochem. J. 212:791 (1983).PubMedGoogle Scholar
  62. 62.
    M. R. Zalutsky and A. Narula, A method for the radiohalogenation of proteins resulting in decreased thyroid uptake of radioiodine, Appl. Radiat. Isot. 38:1051 (1987).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Michael R. Zalutsky
    • 1
  1. 1.Department of RadiologyDuke University Medical CenterDurhamUSA

Personalised recommendations