Advertisement

Criteria for the Selection of Nuclides for Radioimmunotherapy

  • S. James Adelstein
  • Amin I. Kassis
Part of the NATO ASI Series book series (NSSA, volume 152)

Abstract

For a number of years, the scientific and medical communities have contemplated the possibility of using radionuclides for therapy in cancer. The use of sealed sources, such as radium needles and capsules, is now commonplace. With the exception of a relatively selected number of applications, the hopes for employing unsealed sources are still unrealized. The problem has two components: the first, and the subject of this conference, is the discovery of a proper carrier molecule with which to bring the radionuclide into the vicinity of the cancer; the second involves interactions between the radionuclide and its biological environment, the radiation biology of the decay products. The accurate estimation of absorbed dose requires information about: the antibody — its specificity, immunoreactivity and stability; the biology of the cancer cell — the number of accessible antigenic sites and their affinity, the homogeneity of antibody presentation among the cancer cells, internalization and modulation of the antigen antibody complex, stability of the complex, stability and translocation of the label out of the complex, and the relationship of antigenicity to the cell cycle; the degree of natural immune surveillance; and the microenvironment of the tumor — its vascularity, its vascular permeability, oxygenation, microscopic organization and architecture including the mobility of the cells, their location and accessibility to intralymphatic, intraperitoneal, intracerebral and intramedullary pathways.

Keywords

Alpha Particle Relative Biological Effectiveness Beta Particle Pyrimidine Nucleoside ICRP Publication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. J. DeNardo, The design of a radiolabeled monoclonal antibody for radioimmunotherapy, This book, Part I.Google Scholar
  2. 2.
    W. P. Neacy, B. W. Wessels, E. Bradley, S. Kovandi, T. Justice, S. Danskin, and H. Sands, Comparison of radio-immunotherapy (RIT) and 4 MeV external beam radiotherapy of human tumor xenografts in athymic mice, J. Nucl. Med. 27:902 (1986).Google Scholar
  3. 3.
    G. L. DeNardo, Quantitative pharmacokinetics of radiolabeled monoclonal antibodies in patients, This book, Part IV.Google Scholar
  4. 4.
    R. E. Bigler, Adjuvant radioimmunotherapy for micrometastases: A strategy for cancer cure, This book, Part V.Google Scholar
  5. 5.
    A. I. Kassis, C. R. Harris, S. J. Adelstein, T. J. Ruth, R. Lambrecht, and A. P. Wolf, The in vitro radiobiology of astatine-211 decay, Radiat. Res. 105:27 (1986).PubMedCrossRefGoogle Scholar
  6. 6.
    W. D. Bloomer, W. H. McLaughlin, R. D. Neirinckx, S. J. Adelstein, P. R. Gordon, T. J. Ruth, and A. P. Wolf, Astat ine-211-tellurium radiocolloid cures experimental malignant ascites, Science 212:340 (1981).PubMedCrossRefGoogle Scholar
  7. 7.
    W. D. Bloomer, W. H. McLaughlin, R. M. Lambrecht, R. W. Atcher, S. Mirzadeh, J. L. Madara, R. A. Milius, M. R. Zalutsky, S. J. Adelstein, and A. P. Wolf, 211At radiocolloid therapy: Further observations and comparison with radiocolloids of 32P, 165Dy, and 90Y, Int. J. Radiat. Oncol. Biol. Phys. 10:341 (1984).PubMedCrossRefGoogle Scholar
  8. 8.
    R. F. Martin and W. A. Haseltine, Range of radiochemical damage to DNA with decay of iodine-125, Science 213:896 (1981).PubMedCrossRefGoogle Scholar
  9. 9.
    U. Linz and G. Stocklin, Chemical and biological consequences of the radioactive decay of iodine-125 in plasmid DNA, Radiat. Res. 101:262 (1985).PubMedCrossRefGoogle Scholar
  10. 10.
    E. W. Bradley, P. C. Chan, and S. J. Adelstein, The radiotoxicity of iodine-125 in mammalian cells I. Effects on the survival curve of radioiodine incorporated into DNA, Radiat. Res. 64:555 (1975).PubMedCrossRefGoogle Scholar
  11. 11.
    A. I. Kassis, K. S. R. Sastry, and S. J. Adelstein, Intracellular localization of Auger electron emitters: Biophysical dosimetry, Radiat. Prot. Dosim. 13:233 (1985).Google Scholar
  12. 12.
    A. I. Kassis, S. J. Adelstein, C. Haydock, K. S. R. Sastry, K. D. McElvany, and M. J. Welch, Lethality of Auger electrons from the decay of bromine-77 in the DNA of mammalian cells, Radiat. Res. 90:362 (1982).PubMedCrossRefGoogle Scholar
  13. 13.
    S. J. Adelstein, A. I. Kassis, F. Fayad, B. Kinsey, W. W. Layne, and K. S. R. Sastry, Radiotoxicity of 125I following cytoplasmic decay, in: “Abstracts of Papers for the Thirty-Fourth Annual Meeting of the Radiation Research Society, Las Vegas, Nevada, April 12–17, 1986”.Google Scholar
  14. 14.
    A. I. Kassis, S. J. Adelstein, C. Haydock, and K. S. R. Sastry, Thallium-201: An experimental and a theoretical radiobiological approach to dosimetry, J. Nucl. Med. 24:1164 (1983).PubMedGoogle Scholar
  15. 15.
    A. I. Kassis, C. N. Venkateshan, W. W. Layne, G. Eisenbarth, A. Kaldany, B. M. Kinsey, and S. J. Adelstein, Paper 120, Iodinated monoclonal antibody internalization by tumor cells, in: “Sixth International Symposium on Radiopharmaceutical Chemistry, Boston, June 29–July 3, 1986, Abstracts”.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • S. James Adelstein
    • 1
  • Amin I. Kassis
    • 1
  1. 1.Harvard Medical SchoolBostonUSA

Personalised recommendations