Production and Use of Prospective Radionuclides for Radioimmunotherapy

  • Leonard F. Mausner
  • Rita F. Straub
  • Suresh C. Srivastava
Part of the NATO ASI Series book series (NSSA, volume 152)


The potential of utilizing monoclonal antibodies (Mab) as carriers of radionuclides for the selective destruction of tumors has stimulated much research activity. The approach should be most beneficial for treatment of tumors not easily amenable to surgical control, for treatment of early recurrence and of distant metastases. Even though significant progress has been made, more work will be necessary to understand the various chemical and biological factors which can influence antibody specificity, stability and kinetics, as well as dosimetric considerations for effective therapy. The choice of radiolabel is an important factor that needs to be optimized to allow the modality to fulfill its potential. For immunoscintigraphy, I-123, I-131, In-111, and Tc-99m have all been used with some success. However, almost all therapeutic trials have utilized I-131. This is largely due to its ready availability at moderate cost, the ease of halogenation techniques for proteins, and its long history of use in treating thyroid malignancy, rather than any careful analysis of its suitability for radioimmunotherapy.


Excitation Function Dose Ratio Product Element Beta Emission Label Chemistry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. W. Bradley, P. C. Chan, and S. J. Adelstein, The radiotoxicity of I-125 in mammalian cells. I. Effects on the survival curve of radioiodine incorporated into DNA. Radiat. Res. 64: 555 (1975).PubMedCrossRefGoogle Scholar
  2. 2.
    P. C. Chan, E. Lisco, H. Lisco, and S. J. Adelstein, The radiotoxicity of I-125 in mammalian cells. II. A comparative study on cell survival and cytotoxic responses to IUdR-125, IUdR-132, and HTdR-3. Radiat. Res. 67: 332 (1976).PubMedCrossRefGoogle Scholar
  3. 3.
    A. I. Kassis, S. J. Adelstein, C. Haycock, K.S.R. Sastry, K. D. McElvany, and M. J. Welch. Lethality of Auger electrons from the decay of Br-77 in the DNA of mammalian cells. Radiat. Res. 90: 362 (1982).PubMedCrossRefGoogle Scholar
  4. 4.
    J. A. Jungerman, P. Yu Kin-Hung, and C. I. Zanelli, Radiation absorbed dose estimates at the cellular level for some electronemitting radionuclides for radioimmunotherapy. Int. J. Appl. Radiat. Isot. 35: 883 (1984).PubMedCrossRefGoogle Scholar
  5. 5.
    B. W. Wessels, and R. D. Rogers, Radionuclide selection and model absorbed dose calculations for radiolabeled tumor-associated antibodies. Med. Phys. 11: 638 (1984).PubMedCrossRefGoogle Scholar
  6. 6.
    J. L. Humm, Dosimetric Aspects of Radiolabeled Antibodies for Tumor Therapy. J. Nucl. Med. 27: 1490 (1986).PubMedGoogle Scholar
  7. 7.
    S. J. DeNardo, K. Erickson, E. Benjamini, H. Hines, R. Scibienski, and G. DeNardo, Monoclonal antibodies for radiation therapy of melanoma in: “Nuclear Medicine and Biology”, C. Raynaud, ed., Pergamon Press, Paris (1982), p. 182.Google Scholar
  8. 8.
    T. Ghose, N. Kulkarni, S. Ferrone, S. T. Nowell, P. Kulkarni, and A. H. Blair, Imaging human tumors in nude mice, in: “Radioimmunoimaging and Radioimmunotherapy”, S. W. Burchiel and B. A. Rhodes, eds., Elsevier, New York (1983), p.255.Google Scholar
  9. 9.
    G. DeNardo and S.J. DeNardo, Perspectives on the Future of Radioimmunodiagnosis and Radioimmunotherapy of Cancer, in: “Radioimmunoimaging and Radioimmunotherapy,” S. Burchiel and B.A. Rhodes, eds., Elsevier, New York (1983), p. 41.Google Scholar
  10. 10.
    D. A. Scheinberg, and M. A. Strand, Kinetic and catabolic considerations of monoclonal antibody targeting in erythroleukemic mice. Cancer Res. 43: 265 (1983).PubMedGoogle Scholar
  11. 11.
    R. N. Buick, R. Pullam, J. B. Bizzari, and W. J. Mackillop, The phenotypic heterogeneity of human ovarian tumor cells in relation to cell function, in: “Radioimmunoimaging and Radioimmunotherapy”, S. W. Burchiel and B. A. Rhodes, eds., Elsevier, New York (1983), p. 3.Google Scholar
  12. 12.
    J. W. Fabre and A. S. Daar, Expression of normal epithelial membrane antigens on human colorectal and breast carcinomas, in: “Radioimmunoimaging and Radioimmunotherapy”, S.W. Burchiel and B. A. Rhodes, eds., Elsevier, New York (1983), p. 143.Google Scholar
  13. 13.
    D. J. Hnatowich, F. Virzi, and P. W. Doherty. DTPA-coupled antibodies labeled with Y-90. J. Nucl. Med. 26: 503 (1985).PubMedGoogle Scholar
  14. 14.
    S. C. Srivastava and G. E. Meinken, Correlating labeling chemistry and in vitro test results with the biological behavior of radiolabeled proteins. Int. J. Biol. Markers 1: 111 (1986).PubMedGoogle Scholar
  15. 15.
    S. Mirzadeh, L. F. Mausner, and S.C. Srivastava, Production of no-carried-added Cu-67. Int. J. Appl. Radiat. Isot. 37: 29 (1986).CrossRefGoogle Scholar
  16. 16.
    S. J. DeNardo, G. L. DeNardo, J. S. Peng, D. Colcher, Monoclonal antibody radiopharmaceuticals for cancer radioimmunotherapy, in: “Radioimmunoimaging and Radioimmunotherapy”, S. W., Burchiel and B.A. Rhodes, eds., Elsevier, New York (1983), p. 409.Google Scholar
  17. 17.
    J. A. Mercer Smith, N. J. Segura, F. J. Steinkruger, Z. V. Svitra, W. A. Taylor, and P. M. Wanek, Synthesis and biodistribution of Cu-67 meso-tetra (4-carboxyphenyl) porphine. Los Alamos National Laboratory Report LA-10429-PR, p. 145 (1984).Google Scholar
  18. 18.
    B. Grazman and D. E. Troutner. Rh-105 as a potential radiotherapeutic agent. J. Labelled Compounds and Radiopharm. 23: 1371 (1986)Google Scholar
  19. 19.
    J. Simon, W. F. Goeckler, B. Edwards, L. Stringham, W. A. Volkert, D. E. Troutner, and R. A. Holmes, Sm-EDTMP-153, a potential therapeutic bone agent. J. Labelled Compounds and Radiopharm. 23: 1344 (1986).Google Scholar
  20. 20.
    A. T. Vaughan, A. Keeling, and S.C.S. Yankuha, The production and biological distribution of Y-90 labelled antibodies, Int. J. Appl. Radiat. Isot. 36: 803 (1985).PubMedCrossRefGoogle Scholar
  21. 21.
    R. A. Fawwaz, T.S.T. Wang, S. C. Srivastava, J. M. Rosen, S. Ferrone, M. A. Hardy, and P. O. Alderson, Potential of Pd-109-labeled antimelanoma monoclonal antibody for tumor therapy. Nucl. Med. 25: 796 (1984).Google Scholar
  22. 22.
    S. M. Quadri, and B. W. Wessels, Radiolabeled biomolecules with Re-186: potential for radioimmunotherapy, J. Nucl. Med. Biol. 13: 447 (1986).Google Scholar
  23. 23.
    Chart of the Nuclides, Knolls Atomic Power Laboratory, General Electric Co., 13th edition, July 1983.Google Scholar
  24. 24.
    H. Munzel, J. Lange, and K.A. Keller, Estimation of Unknown Excitation Functions and Thick Target Fields in Landolt-Bornstein New Series Group 1, Vol. 5, Part C, Springer-Verlag, Berlin (1973).Google Scholar
  25. 25.
    W. Vaalburg, A.M.J. Paans, J.W. Terpstra, T. Wiegman, K. Dekens, A. Ripkamp, and M. G. Woldring, Fast Recovery by Dry Distillation of Br-75 Induced in Reusable Metal Selenide Targets via the Se-76 (p, 2n) Br-75 Reaction, Int. J. Appl. Radiat. Isot. 36: 961 (1985).CrossRefGoogle Scholar
  26. 26.
    R. Doering, W. Tucker, and L. Stang, A simple device for milking high purity Y-90 from Sr-90. J. Nucl. Med. 4: 55 (1963).Google Scholar
  27. 27.
    L. C. Washburn, T. T. Hwa Sun, J. E. Crook, B. L. Byrd, J. E. Carlton, Y. W. Hung, and Z. S. Steplewski, Y-90-labeled monoclonal antibodies for cancer therapy. Nucl. Med. Biol. 13: 453 (1986).Google Scholar
  28. 28.
    M. Furukawa, Excitation Functions for Alpha-Particle Induced Reactions on La-139, Nucl. Phys., 77: 565 (1966).CrossRefGoogle Scholar
  29. 29.
    E. V. Verdieck, J. M. Miller, Radiative Capture and Neutron Emission in La-139 + a and Ce-142 + p, Phys. Rev. 153: 1253 (1967).CrossRefGoogle Scholar
  30. 30.
    R.C. Boston, P.C. Greif, and M. Berman, Computer Programs in Biomedicine, 13: 111 (1981).PubMedCrossRefGoogle Scholar
  31. 31.
    A. M. Keenan, D. Colcher, S. Larson, and J. Schlom, Radioimmunoscintigraphy of human colon cancer xenografts in mice with radioiodinated monoclonal antibody B72.3, J. Nucl. Med. 25: 197 (1984).Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Leonard F. Mausner
    • 1
  • Rita F. Straub
    • 1
  • Suresh C. Srivastava
    • 1
  1. 1.Medical DepartmentBrookhaven National LaboratoryUptonUSA

Personalised recommendations