Mycobacterium Tuberculosis Antigen Specific Human T-Cell Lines are Cytolytic to Autologous Antigen Pulsed Macrophages

  • D. S. Kumararatne
  • P. Drysdale
  • J.-S. Gaston
  • P. Stacey
  • P. Richardson
  • R. Wise
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 237)


Mycobacterium tuberculosis is a bacterial pathogen capable of survival and replication within human macrophages. Current ideas about antimycobacterial immunity grew out of the pioneering work of Lurie1 and Mackaness2. In summary, it is believed that acquired resistance to tuberculosis depends on T-cell mediated macrophage activation, resulting in an enhancement of the bacteriostatic or bacteriocidal capacity of the latter cells3. However, experimental confirmation of the above using human T-cells and macrophages has been very difficult (reviewed by Rook, 1987)4. Recent evidence indicates that murine T-cells possess cytolytic capacity against mycobacterial antigen bearing macrophages5. Adoptive transfer of such L3T4 negative Lyt-2 positive cells induces protection against intracellular bacterial infections including tuberculosis5,6. Therefore, we have investigated the generation of human T-cell lines with cytotoxic capacity against mycobacterial-antigen-pulsed macrophages.


Mycobacterial Antigen Lepromatous Leprosy Cytotoxicity Experiment Tuberculoid Leprosy Macrophage Monolayer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Lurie M B (1942). J. Exp. Med. 75, 247.PubMedCrossRefGoogle Scholar
  2. (2).
    Maekaness G B (1969). J. Exp. Med. 129, 973.Google Scholar
  3. (3).
    Hahn H, Kaufmann S H (1985). Rev. Inf. Dis. 3. 1221.CrossRefGoogle Scholar
  4. (4).
    Rook G A W (1987). Clin. Exp. Imm. 69, 1.Google Scholar
  5. (5).
    Kaufmann S H, Chiplunkar S, Fleisch I, De Libero G (1986). Lep. Rev. 57 Suppl 2, 101.Google Scholar
  6. (6).
    Orme I (1987). J. Immunol. 138, 293.PubMedGoogle Scholar
  7. (7).
    Matthews R, Scoging A, Rees A D M (1985). Immunology 54, 17.PubMedGoogle Scholar
  8. (8).
    Gaston J S H, Rickinson A B, Epstein M A (1983). J. Exp. Med. 158, 1804.PubMedCrossRefGoogle Scholar
  9. (9).
    Hassan N F, Campbell D E, Douglas S D (1986). J. Imm. Methods 95, 273.CrossRefGoogle Scholar
  10. (10).
    Leu R W, Herriott M J (1984). J. Imm. Methods 67, 63.CrossRefGoogle Scholar
  11. (11).
    Ling N R, Richardson P (1981). J. Imm. Methods 47, 265.CrossRefGoogle Scholar
  12. (12).
    Leucocyte Typing III. (1987). Ed. A.J. McMichael et al, Oxford University Press.Google Scholar
  13. (13).
    Odinsen O, Nilson T, Hunber D P (1986). Int. J. Leprosy 54, 403.Google Scholar
  14. (14).
    Hansen P and Kristensen T (1986). Tissue Antigens 27, 217.PubMedCrossRefGoogle Scholar
  15. (15).
    Moulder J W (1985). Microbiol. Rev. 49, 298.PubMedGoogle Scholar
  16. (16).
    Braakman G, Rotteveil F T M, Bleek van G, et al (1987). Immunology Today 8, 265.CrossRefGoogle Scholar
  17. (17).
    Mustafa A S, Godai T (1985). Clin. exp. Immunol. 62, 474.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • D. S. Kumararatne
    • 1
  • P. Drysdale
    • 1
  • J.-S. Gaston
    • 2
  • P. Stacey
    • 3
  • P. Richardson
    • 1
  • R. Wise
    • 3
  1. 1.Department of ImmunologyThe Medical SchoolBirminghamUK
  2. 2.Department of RheumatologyThe Medical SchoolBirminghamUK
  3. 3.Department of MicrobiologyDudley Road HospitalBirminghamUK

Personalised recommendations