Specific Antibody Forming Cells in Lymphoid Follicles of Spleen: An Aspect of the Late Immune Response

  • N. van Rooijen
  • N. Kors
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 237)


Previously we described the pathway followed by antigen-reactive B cells that are differentiating into antibody-forming cells during the early primary and secondary immune response in the spleen (1). B cells following this ’differentiation pathway’ start in the marginal zone (MZ) and enter the outer periarteriolar lymphocyte sheath (PALS). There they migrate along the border with the MZ to the sites where small sheaths of lymphoid tissue around the terminal arterioles traverse the MZ. They follow these sheaths on their way to the red pulp, leave the spleen and enter the circulation. Follicles and their germinal centres, which are generally assumed to play a role in the generation of B-memory cells seemed not to be an obliged station on this route.


Human Serum Albumin Marginal Zone Booster Injection Antibody Produce Cell Secondary Immune Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. van Rooijen, E. Claassen, and P. Eikelenboom. Immunol. Today 7: 193 (1986).CrossRefGoogle Scholar
  2. 2.
    B. Sordat, M. Sordat, M.W. Hess, R.D. Stoner, and H. Cottier. J. Exp. Med. 131: 77 (1970).PubMedCrossRefGoogle Scholar
  3. 3.
    N. van Rooijen, R. van Nieuwmegen, and N. Kors. Cell Tissue Res. 239: 657 (1985).PubMedCrossRefGoogle Scholar
  4. 4.
    N. van Rooijen, N. Kors, R. van Nieuwmegen, and P. Eikelenboom. Anat. Rec. 206: 189 (1983).CrossRefGoogle Scholar
  5. 5.
    N. van Rooijen, R. van Nieuwmegen, N. Kors, and P. Eikelenboom. Anat. Rec. 208: 579 (1984).PubMedCrossRefGoogle Scholar
  6. 6.
    M.B. Wilson, and P.K. Nakane, in: ‘Immunofluorescence and related staining techniques’, p. 215, W. Knapp, K. Holubar, and G. Wick, eds., Elsevier, Amsterdam (1978).Google Scholar
  7. 7.
    D.M. Boorsma, and J.G. Streefkerk. J. Immunol. Meth. 30: 245 (1979).CrossRefGoogle Scholar
  8. 8.
    D.M. Boorsma, and J.G. Streefkerk. J. Histochem. Cytochem. 24: 481 (1976).PubMedCrossRefGoogle Scholar
  9. 9.
    R.C. Graham, U. Lundholm, and N.J. Karnovsky. J. Histochem. Cytochem. 13: 150 (1965).PubMedCrossRefGoogle Scholar
  10. 10.
    E. Claassen, N. Kors, and N. van Rooijen. Eur. J. Immunol. 16: 271 (1986).PubMedCrossRefGoogle Scholar
  11. 11.
    E. Claassen, N. Kors, C.D. Dijkstra, and N. van Rooijen. Immunology 57: 399 (1986).PubMedGoogle Scholar
  12. 12.
    G.G.B. Klaus, J.H. Humphrey, A. Kunkl and D.W. Dongworth. Immunol. Rev. 53: 3 (1980).PubMedCrossRefGoogle Scholar
  13. 13.
    N. van Rooijen, in: ‘Phylogeny of Immunological Memory’, p. 281, M.J. Manning, ed., Elsevier, Amsterdam (1980).Google Scholar
  14. 14.
    W.O. Weigle. Adv. Immunol. 21: 87 (1975).PubMedCrossRefGoogle Scholar
  15. 15.
    S.L. Donaldson, M.H. Kosco, A.K. Szakal, and J.G. Tew. J. Leuk. Biol. 40: 147 (1986).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • N. van Rooijen
    • 1
  • N. Kors
    • 1
  1. 1.Immunocytochemistry Unit, Medical Faculty, Department of HistologyFree UniversityAmsterdamThe Netherlands

Personalised recommendations