Advertisement

Structure—Reactivity Relationships for Ionic Transition Metal Carbonyl Cluster Fragments

  • David H. Russell
  • Donnajean Anderson Fredeen
  • Ronald E. Tecklenburg
Part of the Modern Inorganic Chemistry book series (MICE)

Abstract

Many parallels have been made between transition metal clusters and metal surfaces. The geometric features of the metal-cluster-bound ligands are similar to those of adsorbed molecules on a metal surface, and the average metal-ligand and metal-metal binding energies of transition metal clusters are comparable to the binding energies of the metal surfaces and chemisorbed molecules.(1)) The cluster/surface analogy (in terms of chemical properties) begins to break down, however, when the coordination saturation of the transition metal cluster is considered. Typically, the coordination number for metal-ligand interactions of metal clusters is high, and the coordination number for metal-metal interactions is low. Conversely, the high coordination number for metal surfaces is due to the metal-metal interaction. Because most clusters are stable, coordinatively saturated molecules which obey the 18-electron rule,(2) experimental methods for probing coordinatively unsaturated clusters and cluster fragments, e.g., matrix isolation(3) and fast time-resolved infrared spectrscopy,(4) are being developed. The target species for many of these studies are the reactive 17-electron species and higher coordinatively unsaturated species. For the past several years the development of methods for preparing coordinatively unsaturated ionic transition metal cluster fragments has been actively pursued in our laboratory. As a direct result of this work, ionic transition metal cluster fragments have a range of numbers of metal atoms (typicallly 2–8) and ligands (typically CO) can be prepared.

Keywords

Bond Dissociation Energy Proper Number Carbonyl Ligand Electron Deficiency Cluster Fragment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1a.
    Muetterites, E.L. Catal. Rev.-Sci. Eng. 1981, 23 ,69;CrossRefGoogle Scholar
  2. 1b.
    Muetterites, E.L., Rhodin, T.N.; Band, E., Brucker, C.F.; Pretzer, W.R. Chem. Rev. 1979, 79 ,91;CrossRefGoogle Scholar
  3. 1c.
    Sung, S.-S.; Hoffman, R. J. Am. Chem. Soc. 1985, 107 ,578.CrossRefGoogle Scholar
  4. 2a.
    Wade, K. In Transition Metal Clusters; Johnson, B.F.G., Ed., J. Wiley and Sons: New York, 1980; Chapter 3, p. 193;Google Scholar
  5. 2b.
    Mingos, D.M.P. Acc. Chem. Res. 1984, 17 ,311.CrossRefGoogle Scholar
  6. 3a.
    Burdett, J.K. Coord. Chem. Rev. 1978, 27 ,1;CrossRefGoogle Scholar
  7. 3b.
    Hitam, R.B., Mahmoud, K.A., Rest, A.J. Coord. Chem. Rev. 1984, 55, 1.CrossRefGoogle Scholar
  8. 4.
    Poliakoff, M. Adv. Organomet. Chem. 1986, 25 ,277.CrossRefGoogle Scholar
  9. 5.
    Fredeen, D.A.; Russell, D.H. J. Am. Chem. Soc. 1985, 107 ,3762.CrossRefGoogle Scholar
  10. 6.
    Fredeen, D.A.; Russell, D.H. J. Am. Chem. Soc. 1986, 108 ,1860.CrossRefGoogle Scholar
  11. 7.
    Lauher, J.W. J. Am. Chem. Soc. 1978, 100 ,5305.CrossRefGoogle Scholar
  12. 8.
    Fredeen, D. A.; Russell, D. H. J. Am. Chem. Soc. 1987, 109 ,3903.CrossRefGoogle Scholar
  13. 9.
    Longoni, G.; Manassero, M.; Sansoni, M. J. Am. Chem. Soc. 1980, 102 ,7973.CrossRefGoogle Scholar
  14. 10.
    Sosinsky, B.A.; Shong, R.G.; Fitzgerald, N.N.; O’Rourke, C. Inorg. Chem. 1983, 22 ,3124.CrossRefGoogle Scholar
  15. 11.
    Arndt, L.W.; Darensbourg, M.Y.; Fackler, J.P., Jr., Lusk, R.J.; Marler, D.O., Youngdahl, K.A. J. Am. Chem. Soc. 1985, 107 ,7218.CrossRefGoogle Scholar
  16. 12.
    Chini, P. J. Organomet. Chem. 1980, 200 ,37.CrossRefGoogle Scholar
  17. 13.
    Freas, R.B.; Ridge, D.P. J. Am. Chem. Soc. 1984, 106 ,825.CrossRefGoogle Scholar
  18. 14.
    MacMillan, D.K.; Gross, M.L. Chapter 12 of this text.Google Scholar
  19. 15.
    Tecklenburg, R.E.; Russell, D.H. J. Am. Chem. Soc. 1987, 109 ,7654.CrossRefGoogle Scholar
  20. 16.
    Tyler, D.R.; Levenson, R.A.; Gray, H.B. J. Am. Chem. Soc. 1978, 100 ,7888.CrossRefGoogle Scholar
  21. 17a.
    Hettich, R.L.; Freiser, B.S. J. Am. Chem. Soc. 1985, 107 ,62222;CrossRefGoogle Scholar
  22. 17b.
    Cassady, C.J.; Freiser, B.S. J. Am. Chem. Soc. 1984, 106 ,6176;CrossRefGoogle Scholar
  23. 17c.
    Leopold, D.G.; Lineberger, W.C. J. Chem. Phys. 1986, 85 ,51.CrossRefGoogle Scholar
  24. 18.
    Poliakoff, M.; Weitz, E. Acc. Chem. Res. 1987, 20 ,408.CrossRefGoogle Scholar
  25. 19.
    Rothberg, L. J.; Gerrity, D.P.; Vaida, V. J. Chem. Phys. 1981, 74 ,2218.CrossRefGoogle Scholar
  26. 20.
    Leopold, D.G.; Vaida, V. J. Am. Chem. Soc. 1984, 106 ,3720.CrossRefGoogle Scholar
  27. 21.
    Kobayashi, T.; Ohtani, H.; Noda, H.; Teratani, S.; Yamazaki, H.; Yasufuku, K. Organometal lics 1986, 5, 110.CrossRefGoogle Scholar
  28. 22.
    Welch, J.A.; Vaida, V.; Geoffroy, G.L. J. Phys. Chem. 1983, 87 ,3635.CrossRefGoogle Scholar
  29. 23.
    Leutwyler, S.; Even, U. Chem. Phys. Lett. 1981, 84 ,188.CrossRefGoogle Scholar
  30. 24.
    Hollingsworth, W.E., Vaida, V. J. Phys. Chem. 1986, 90 ,1235.CrossRefGoogle Scholar
  31. 25.
    Lichtin, D.A.; Bernstein, R.B., Vaida, V. J. Am. Chem. Soc. 1982, 104 ,1830.CrossRefGoogle Scholar
  32. 26.
    Levenson, R.A., Gray, H.B. J. Am. Chem. Soc. 1975, 97 ,6042.CrossRefGoogle Scholar
  33. 27.
    Green, J.C.; Mingos, D.M.P., Seddon, E.A. Inorg. Chem. 1981, 20 ,2595.CrossRefGoogle Scholar
  34. 28.
    Connor, J.A., Zafarani-Moattar, M.T.; Bickerton, J.; El-Saied, N.I.; Suradi, S.; Carson, R.; AI Takhin, G.; Skinner, H.A. Organometallics 1982, 1, 1166.CrossRefGoogle Scholar
  35. 29.
    Martinho Simoes, J.A.; Schultz, J.C.; Beauchamp, J.L. Organometallics 1985, 4 ,1238.CrossRefGoogle Scholar
  36. 30.
    Connor, J.A.; Skinner, H.A.; Virmani, Y. Faraday Symp. Chem. Soc. 1984, 8 ,18.CrossRefGoogle Scholar
  37. 31.
    Ervin, K.; Loh, S.K.; Aristov, N., Armentrout, P.B. J. Phys. Chem. 1983, 87 ,3593.CrossRefGoogle Scholar
  38. 32.
    Jarrold, M.F.; lilies, A.J.; Bowers, M.T. J. Am. Chem. Soc. 1985, 107 ,7339.CrossRefGoogle Scholar
  39. 33.
    Svec, H.J.; Junk, G.A. J. Am. Chem. Soc. 1967, 89 ,2836.CrossRefGoogle Scholar
  40. 34.
    Bray, R.G.; Seidler, P.F.; Gethner, J.S.; Woodin, R.L. J. Am. Chem. Soc. 1986, 108 ,1312.CrossRefGoogle Scholar
  41. 35.
    Horak, D.V.; Winn, J.S. J. Phys. Chem. 1983, 87 ,265.CrossRefGoogle Scholar
  42. 36.
    Nagano, Y.; Achiba, Y.; Kimura, K. J. Chem. Phys. 1986, 84 ,1063.CrossRefGoogle Scholar
  43. 37.
    Yardley, J.T.; Gitlin, B.; Nathanson, G., Rosan, A.M. J. Chem. Phys. 1981, 74 ,370.CrossRefGoogle Scholar
  44. 38.
    Jarrold, M.F.; Misev, L., Bowers, M.T. J. Phys. Chem. 1984, 88 ,3928.CrossRefGoogle Scholar
  45. 39.
    Seder, T.A.; Ouderkirk, A.J.; Weitz, E. J. Chem. Phys. 1986, 85 ,1977.CrossRefGoogle Scholar
  46. 40.
    Ouderkirk, A.J.; Seder, T.A.; Weitz, E. Applications of Lasers to Industrial Chemistry; SPIE-The International Society for Optical Engineering: Bellingham, Washington, 1984; Vol. 458, p. 148.Google Scholar
  47. 41.
    Seder, T.A., Church, S.P.; Weitz, E. J. Am. Chem. Soc. 1986, 108 ,4721.CrossRefGoogle Scholar
  48. 42.
    Reents, W.D., Jr.; Strobel, F., Freas, R.B., III; Wronka, J.; Ridge, D.P. J. Phys. Chem. 1985, 89 ,5666.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • David H. Russell
    • 1
  • Donnajean Anderson Fredeen
    • 1
  • Ronald E. Tecklenburg
    • 1
  1. 1.Department of ChemistryTexas A&M UniversityCollege StationUSA

Personalised recommendations