DNA Repair Mechanisms and Carcinogenesis

  • Steven L. Dresler


The study of cellular mechanisms for repairing damaged DNA remains as an important element of modern carcinogenesis research. The impetus for investigating DNA repair mechanisms arises from several fundamental observations. First, many carcinogens, both natural and experimental, are known to be DNA-damaging agents,1,2 and cellular removal of DNA damage has been shown to correlate with a diminished incidence of neoplastic transformation in experimental systems.3 Second, human patients genetically deficient in DNA repair have a greatly increased incidence of malignant neoplasms.4 Third, the great majority of known carcinogens have been found to be mutagens as well5,6; it has been inferred from this that the carcinogenic potential of these agents is mediated by interactions with and damage to DNA. These observations have led to the conclusion that DNA repair mechanisms form one of the major anticarcinogenic defenses of the mammalian cell. A key goal of much current research in carcinogenesis is to understand why carcinogens are able to produce cancer in spite of the extensive cellular capacity to repair DNA damage. This review concludes with a consideration of this question.


Excision Repair Xeroderma Pigmentosum Ataxia Telangiectasia Repair Patch Repair Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Miller, E. C., 1978, Some current perspectives on chemical carcinogenesis in humans and experimental animals: Presidential address, Cancer Res. 38: 1479–1496.PubMedGoogle Scholar
  2. 2.
    Farber, E., 1981, Chemical carcinogenesis, N. Engl. J. Med. 305: 1379–1389.PubMedGoogle Scholar
  3. 3.
    McCormick, J. J., Fry, D. G., and Maher, V. M., 1986, Transformation of human fibroblasts by carcinogens or transfections of oncogenes, Prog. Clin. Biol. Res. 209A: 295–303.Google Scholar
  4. 4.
    Cleaver, J. E., 1983, Xeroderma pigmentosum, in: The Metabolic Basis of Inherited Disease (J. B. Stanbury, J. B. Wyngaarden, D. S. Fredrickson, J. L. Goldstein, and M. S. Brown, eds.), pp. 1227–1248, McGraw-Hill, New York.Google Scholar
  5. 5.
    McCann, J., Choi, E., Yamasaki, E., and Ames, B. N., 1975, Detection of carcinogens as mutagens in the Salmonella/microsome test: Assay of 300 chemicals, Proc. Natl. Acad. Sci. USA 72: 5135–5139.PubMedGoogle Scholar
  6. 6.
    McCann, J., and Ames, B. N., 1976, Detection of carcinogens as mutagens in the Salmonella/microsome test: Assay of 300 chemicals: Discussion, Proc. Natl. Acad. Sci. USA 73: 950–954.PubMedGoogle Scholar
  7. 7.
    Wang, S. U., 1976, Photochemistry and Photobiology of Nucleic Acids, Academic, New York.Google Scholar
  8. 8.
    Pearlman, D. A., Holbrook, S. R., Pirkle, D. H., and Kim, S.-H., 1985, Molecular models for DNA damaged by photoreaction, Science 227: 1304–1308.PubMedGoogle Scholar
  9. 9.
    Haseltine, W. A., 1983, Ultraviolet light repair and mutagenesis revisited, Cell 33: 13–77.PubMedGoogle Scholar
  10. 10.
    Berger, C. A., and Edenberg, H. J., 1986, Pyrimidine dimers block simian virus 40 replication forks, Mol. Cell Biol. 6: 3443–3450.PubMedGoogle Scholar
  11. 11.
    Santella, R. M., Grunberger, D., and Weinstein, I. B., 1983, Carcinogens can induce alternate conformations in nucleic acid structures, Cold Spring Harbor Symp. Quant. Biol. 48: 339–346.Google Scholar
  12. 12.
    Moore, P. D., Rabkin, S. D., Osborn, A. L., King, C. M., and Strauss, B. S., 1982, Effect of acetylated and deacetylated 2-aminofluorene adducts on in vitro DNA synthesis, Proc. Natl. Acad. Sci. USA 79: 7166–7170.PubMedGoogle Scholar
  13. 13.
    Yoshida, S., Koiwai, O., Suzuki, R., and Tada, M., 1984, Arrest of DNA elongation by DNA polymerases at guanine adducts on 4-hydroxyaminoquinoline 1-oxide-modified DNA template, Cancer Res. 44: 1867–1870.PubMedGoogle Scholar
  14. 14.
    Singer, B., and Kusmierek, J. T., 1982, Chemical mutagenesis, Annu. Rev. Biochem. 52: 655–693.Google Scholar
  15. 15.
    Miller, J. H., 1983, Mutational specificity in bacteria, Annu. Rev. Genet. 17: 215–238.PubMedGoogle Scholar
  16. 16.
    Ward, J. F., 1975, Molecular mechanisms of radiation-induced damage to nucleic acids, Adv. Radiat. Biol. 5: 181–239.Google Scholar
  17. 17.
    Kohn, K. W., Spears, C. L., and Doty, P., 1966, Interstrand crosslinking of DNA by nitrogen mustard, J. Mol. Biol. 19: 266–288.PubMedGoogle Scholar
  18. 18.
    Roberts, J. J., and Thomson, A. J., 1979, The mechanism of action of antitumor platinum compounds, Frog. Nucleic Acids Res. Mol. Biol. 22: 71–133.Google Scholar
  19. 19.
    Hecht, S. M., 1986, DNA strand scission by activated bleomycin group antibiotics, Fed. Proc. 45: 2784–2791.PubMedGoogle Scholar
  20. 20.
    Bimboim, H. C., 1982, DNA strand breakage in human leukocytes exposed to a tumor promoter, phorbol myristate acetate, Science 215: 1247–1249.Google Scholar
  21. 21.
    Henner, W. D., Rodriguez, L. O., Hecht, S. M., and Haseltine, W. A., 1983, Ray induced deoxyribonucleic acid strand breaks. 3’ glycolate termini, J. Biol. Chem. 258: 711–713.PubMedGoogle Scholar
  22. 22.
    Szostak, J. W., On-Weaver, T. L., Rothstein, R. J., and Stahl, F. W., 1983, The double-strand break repair model for recombination, Cell 33: 25–35.PubMedGoogle Scholar
  23. 23.
    Friedberg, E. C., 1984, DNA Repair, W. H. Freeman, San Francisco.Google Scholar
  24. 24.
    Sutherland, B. M., 1978, Enzymatic photoreactivation of DNA, in: DNA Repair Mechanisms ( P. C. Hanawalt, E. C. Friedberg, and C. F. Fox, eds.), pp. 113–122, Academic, New York.Google Scholar
  25. 25.
    Sutherland, B. M., 1974, Photoreactivating enzyme from human leukocytes, Nature (Lond.) 48: 109–112.Google Scholar
  26. 26.
    Newbold, R. F., Warren, W., Medcalf, A. S. C., and Amos, J., 1980, Mutagenicity of carcinogenic methylating agents is associated with a specific DNA modification, Nature (Lond.) 283: 596–599.Google Scholar
  27. 27.
    Singer, B., 1979, N-nitrosoalkylating agents: Formation and persistence of alkyl derivatives in mammalian nucleic acids as contributing factors in carcinogenesis, J. Natl. Cancer Inst. 62: 1329–1339.PubMedGoogle Scholar
  28. 28.
    Doniger, J., Day, R. S., and Dipaulo, J. A. 1985, Quantitative assessment of the role of 06-methylguanine in the initiation of carcinogenesis by methylating agents, Proc. Natl. Acad. Sci. USA 82: 421–425.PubMedGoogle Scholar
  29. 29.
    Yarosh, D. B., 1985, The role of 06-methylguanine-DNA methyltransferase in cell survival, mutagenesis, and carcinogenesis, Mutat. Res. 145: 1–16.PubMedGoogle Scholar
  30. 30.
    Grafstrom, R., Pegg, A. E., Trump, B. F., and Harris, C. C., 1984, 06-alkylguanine-DNA alkyltransferase activity in normal human tissues and cells, Cancer Res. 44: 2855–2857.Google Scholar
  31. 31.
    Yagi, T., Yarosh, D. B., and Day, R. S., 1984, Comparison of repair of 06-methylguanine produced by N-methyl-N’-nitro-N-nitrosoguanidine in mouse and human cells, Carcinogenesis 5: 593–600.PubMedGoogle Scholar
  32. 32.
    Singer, B., Spengler, S., and Bodell, W. J., 1981, Tissue dependent enzyme-mediated repair or removal of 0-ethyl pyrimidines and ethyl purines in carcinogen-treated rats, Carcinogenesis 2: 1069–1073.PubMedGoogle Scholar
  33. 33.
    Mymes, B., Giercksky, K. E., and Krokan, H., 1983, Interindividual variation in the activity of 06methylguanine-DNA methyltransferase and uracil-DNA glycosylase in human organs, Carcinogenesis 4: 1565–1568.Google Scholar
  34. 34.
    Krokan, H., Haugen, A., Mymes, B., and Guddal, P. H., 1983, Repair of premutagenic DNA lesions in human fetal tissues: Evidence for low levels of 06-methylguanine-DNA methyltransferase and uracilDNA glycosylase activity in some tissues, Carcinogenesis 4: 1559–1564.PubMedGoogle Scholar
  35. 35.
    Cohen, A., and Leung, C., 1986, 06-methylguanine-DNA methyltransferase activity and sensitivity to Nmethyl-N’-nitro-N-nitrosoguanidine during human T-lymphocyte differentiation, Carcinogenesis 7: 1877–1879.Google Scholar
  36. 36.
    O’Connor, P. J., Saffhill, R., and Margison, G. P., 1979, N-nitroso compounds: Biochemical mechanisms of action, in: Environmental Carcinogenesis ( P. Emmelot and E. Krick, eds.), pp. 73–96, Elsevier/North-Holland, Amsterdam.Google Scholar
  37. 37.
    Den Engelse, L., DeGraaf, A., DeBrij, R.-J., and Menkveld, G. J., 1987, TO2- and O4-ethylthymine and the ethylphosphotriester dTp(Et)dT are highly persistent DNA modifications in slowly dividing tissues of the ethylnitrosourea-treated rat, Carcinogenesis 8: 751–757.Google Scholar
  38. 38.
    Day, R. S., Ziolkowski, C. H. J., Scudiero, D. A., Meyer, S. A., and Mattem, M. R., 1980, Human tumor cell strains defective in the repair of alkylation damage, Carcinogenesis 1: 21–32.PubMedGoogle Scholar
  39. 39.
    Yarosh, D. B., Rice, M., Ziolkowski, C. H. J., Day, R. S., Scudiero, D. A., Foote, R. S., and Mitra, S., 1983, 06-methylguanine-DNA methyltransferase in human tumor cells in: Cellular Responses to DNA Damage (E. C. Friedberg and B. A. Bridges, eds.), pp. 261–270, Alan R. Liss, New York.Google Scholar
  40. 40.
    Sklar, R., and Strauss, B., 1981, Removal of 06-methylguanine from DNA of normal and xeroderma pigmentosum-derived lymphoblastoid cell lines, Nature (Lond.) 289: 417–420.Google Scholar
  41. 41.
    Harris, A. L., Karran, P., and Lindahl, T., 1983, 06-methylguanine-DNA methyltransferase of human lymphoid cells: Structural and kinetic properties and absence in repair-deficient cells, Cancer Res. 43: 3247–3252.Google Scholar
  42. 42.
    Scudiero, D. A., Meyer, S. A., Clutterbuck, B. E., Mattem, M. R., Ziolkowski, C. H. J., and Day, R. S., 1984, Relationship of DNA repair phenotypes of human fibroblast and tumor strains to killing by Nmethyl-N’-nitro-N-nitrosoguanidine, Cancer Res. 44: 961–969.PubMedGoogle Scholar
  43. 43.
    Karran, P., and Williams, S. A., 1985, The cytotoxic and mutagenic effects of alkylating agents on human lymphoid cells are caused by different DNA lesions, Carcinogenesis 6: 789–792.PubMedGoogle Scholar
  44. 44.
    Walker, G. C., 1984, Mutagenesis and inducible responses to deoxyribonucleic acid damage in E. coli, Microbiol. Rev. 48: 60–93.PubMedGoogle Scholar
  45. 45.
    Frosina, G., and Laval, F., 1987, The 06-methylguanine-DNA-methyltransferase activity of rat hepatoma cells is increased after a single exposure to alkylating agents, Carcinogenesis 8: 91–95.PubMedGoogle Scholar
  46. 46.
    Lefebvre, P., and Laval, F., 1986, Enhancement of 06-methylguanine-DNA-methyltransferase activity induced by various treatments in mammalian cells, Cancer Res. 46: 5701–5705.PubMedGoogle Scholar
  47. 47.
    Schlesinger, M. J., Ashbumer, M., and Tessieres, A. (eds.), 1982, Heat Shock: From Bacteria to Man, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  48. 48.
    Lindahl, T., 1982, DNA repair enzymes, Annu. Rev. Biochem. 51: 61–87.PubMedGoogle Scholar
  49. 49.
    Krokan, H., and Wittwer, C. U., 1981, Uracil DNA glycosylase from HeLa cells: General properties, substrate specificity and effect of uracil analogs, Nucleic Acids Res. 9: 2599–2613.PubMedGoogle Scholar
  50. 50.
    Karran, P., and Lindahl, T., 1980, Hypoxanthine in deoxyribonucleic acid: Generation by heat-induced hydrolysis of adenine residues and release in free form by a deoxyribonucleic acid glycosylase from calf thymus, Biochemistry 19: 6005–6011.PubMedGoogle Scholar
  51. 51.
    Cathcart, R., and Goldthwait, D. A., 1981, Enzymatic excision of 3-methyladenine and 7-methylguanine by a rat liver nucleic fraction, Biochemistry 20: 273–280.PubMedGoogle Scholar
  52. 52.
    Brnt, T. P., 1979, Partial purification and characterization of a human 3-methyladenine DNA glycosylase, Biochemistry 18: 911–916.Google Scholar
  53. 53.
    Singer, B., and Brent, T. P., 1981, Human lymphoblasts contain DNA glycosylase activity excising N-3 and N-7 methyl and ethyl purines but not 06-alkylguanines or 1-alkyladenines, Proc. Natl. Acad. Sci. USA 78: 856–860.PubMedGoogle Scholar
  54. 54.
    Margison, G. P., and Pegg, A. E., 1981, Enzymatic release of 7-methylguanine from methylated DNA by rodent liver extracts, Proc. Natl. Acad. Sci. USA 78: 861–865.PubMedGoogle Scholar
  55. 55.
    Verly, W. G., Colson, P., Zocchi, G., Goffin, C., Liuzzi, M., Buschenschmidt, G., and Muller, M., 1981, Localization of the phosphodiester bond hydrolyzed by the major apurinic/apyrimidinic endodeoxyribonuclease from rat-liver chromatin, Eur. J. Biochem. 118: 195–201.PubMedGoogle Scholar
  56. 56.
    Mosbaugh, D. W., and Linn, S., 1980, Further characterization of human fibroblast apurinic/apyrimidinic DNA endonucleases, J. Biol Chem. 255: 11743–11752.PubMedGoogle Scholar
  57. 57.
    Kane, C. M., and Linn, S., 1981, Purification and characterization of an apurinic/apyrimidinic endonuclease from HeLa cells, J. Biol. Chem. 256: 3405–3414.PubMedGoogle Scholar
  58. 58.
    Sancar, A., and Rupp, W. D., 1983, A novel repair enzyme: UVRABC excision nuclease of Escherichia coli cuts a DNA strand on both sides of the damaged region, Cell 33: 249–260.PubMedGoogle Scholar
  59. 59.
    Seeberg, E., and Steinum, A. L., 1983, Properties of the uvrABC endonuclease from E. coli, in: Cellular Responses to DNA Damage (E. C. Friedberg and B. A. Bridges, eds.) pp. 39–49, Alan R. Liss, New York.Google Scholar
  60. 60.
    Yeung, A. T., Mattes, W. B., Oh, E. Y., and Grossman, L., 1983, Enzymatic properties of purified Escherichia coli uvrABC proteins, Proc. Natl. Acad. Sci. USA 80: 6157–6161.PubMedGoogle Scholar
  61. 61.
    Mortelmans, K., Friedberg, E. C., Slor, H., Thomas, G., and Cleaver, J. E., 1976, Evidence for a defect in thymine dimer excision in extracts of xeroderma pigmentosum cells, Proc. Natl. Acad. Sci. USA 73: 2757–2761.PubMedGoogle Scholar
  62. 62.
    Waldstein, E. A., Peller, S., and Setlow, R. B., 1979, UV-endonuclease from calf thymus with specificity toward pyrimidine dimers in DNA, Proc. Natl. Acad. Sci. USA 76: 3746–3750.PubMedGoogle Scholar
  63. 63.
    Feldberg, R. S., and Grossman, L., 1976, A DNA binding protein from human placenta specific for ultraviolet damaged DNA, Biochemistry 15: 2402–2408.PubMedGoogle Scholar
  64. 64.
    Feldberg, R. S., Lucas, J. L., and Dannenberg, A., 1982, A damage-specific DNA binding protein. Large scale purification from human placenta and purification, J. Biol. Chem. 257: 6394–6401.PubMedGoogle Scholar
  65. 65.
    Weinfield, M., Gentner, N. E., Johnson, L. D., and Paterson, M. C., 1986, Photoreversal-dependent release of thymidine and thymidine monophosphate from pyrimidine dimer-containing DNA excision fragments isolated from ultraviolet-damaged human fibroblasts, Biochemistry 25: 2656–2664.Google Scholar
  66. 66.
    Paterson, M. C., Middlestadt, M. V., MacFarlane, S. J., Gentner, N. E., and Weinfield, M., 1987, Molecular evidence for cleavage of intradimer phosphodiester linkage as a novel step in excision repair of cyclobutyl pyrimidine photodimers in cultured human cells, J. Cell. Sci. (Suppl.) 6: 161–176.Google Scholar
  67. 67.
    Friedberg, E. C., Ehmann, U. K., and Williams, J. I., 1979, Human diseases associated with defective DNA repair, Adv. Radial. Biol. 8: 85–174.Google Scholar
  68. 68.
    Kramer, K. H., 1977, Progressive degenerative diseases associated with defective DNA repair: Xeroderma pigmentosum and ataxia teleangectasia, in: DNA Repair Processes (W. W. Nichols and D. G. Murphy, eds.), pp. 37–71, Symposium Specialists, Miami.Google Scholar
  69. 69.
    Fornace, A. J., Kohn, K. W., and Kann, H. E., 1976, DNA single-strand breaks during repair of UV damage in human fibroblasts and abnormalities of repair in xeroderma pigmentosum, Proc. Natl. Acad. Sci. USA 73: 39–43.PubMedGoogle Scholar
  70. 70.
    Erixon, K., and Ahnstrom, G., 1979, Single-strand breaks in DNA during repair of UV-induced damage in normal human and xeroderma pigmentosum cells as determined by alkaline DNA unwinding and hydroxylapatite chromatography, Mutat. Res. 59: 257–271.PubMedGoogle Scholar
  71. 71.
    Cook, P. R., Brazell, I. A., Pawsey, S. A., and Gianelli, F., 1978, Changes induced by ultraviolet light in the superhelical DNA of lymphocytes from subjects with xeroderma pigmentosum and normal controls, J. Cell Sci. 29: 117–127.PubMedGoogle Scholar
  72. 72.
    Tanaka, K., Sekiguchi, M., and Okada, Y., 1975, Restoration of ultraviolet-induced unscheduled DNA synthesis of xeroderma pigmentosum cells by the concomitant treatment with bacteriophage T4 endonuclease V and HVJ (Sendai virus), Proc. Natl. Acad. Sci. USA 72: 4071–4075.PubMedGoogle Scholar
  73. 73.
    Tanaka, H., Hagakawa, H., Sekiguchi, M., and Okada, Y., 1977, Specific action of T4 endonuclease V on damaged DNA in xeroderma pigmentosum cells in vivo, Proc. Natl. Acad. Sci. USA 74: 2958–2962.PubMedGoogle Scholar
  74. 74.
    Smith, C. A., and Hanawalt, P. C., 1978, Phage T4 endonuclease V stimulates DNA repair replication in isolated nuclei from ultraviolet-irradiated human cells, including xeroderma pigmentosum fibroblasts, Proc. Natl. Acad. Sci. USA 75: 2598–2602.PubMedGoogle Scholar
  75. 75.
    Ciarrocchi, G., and Linn, S., 1978, A cell-free assay measuring repair DNA synthesis in human fibroblasts, Proc. Natl. Acad. Sci. USA 75: 1887–1891.PubMedGoogle Scholar
  76. 76.
    Dresler, S. L., Roberts, J. D., and Lieberman, M. W., 1982, Characterization of deoxyribonucleic acid repair synthesis in permeable human fibroblasts, Biochemistry 21: 2557–2564.PubMedGoogle Scholar
  77. 77.
    Kraemer, K. H., de Weerd-Kastelein, E. A., Robbins, J. H., Keijzer, W., Barrett, S. F., Petinga, R. A., and Bootsma, D., 1975, Five complementation groups in xeroderma pigmentosum, Mutat. Res. 33: 327–340.Google Scholar
  78. 78.
    Arase, S., Kozuka, T., Tanaka, K., Ikenaga, M., and Takebe, H., 1979, A sixth complementation group in xeroderma pigmentosum, Mutat. Res. 59: 143–146.PubMedGoogle Scholar
  79. 79.
    Keijzer, W., Jaspers, N. G. J., Abrahams, P. J., Taylor, A. M. R., Arlett, C. F., Zelle, B., Takebe, H., Kinmont, P. D. S., and Bootsma, D., 1979, A seventh complementation group in excision-deficient xeroderma pigmentosum, Mutat. Res. 62: 183–190.PubMedGoogle Scholar
  80. 80.
    Robbins, J. H., Moshell, A. N., Lutzner, M. A., Ganges, M. D., and Dupuy, J.-M., 1983, A new patient with both xeroderma pigmentosum and Cockayne syndrome is in a new xeroderma pigmentosum complementation group, J. Invest. Dermatol. 80: 331.Google Scholar
  81. 81.
    Fischer, E., Keijzer, W., Thielman, H. W., Popanda, O., Bohnert, E., Edler, L., Jung, E. G., and Bootsma, D., 1985, A ninth complementation group in xeroderma pigmentosum, XP I, Mutat. Res. 145: 217–225.PubMedGoogle Scholar
  82. 82.
    Andrews, A. D., Barrett, S. F., and Robbins, J. H., 1978, Xeroderma pigmentosum neurological abnormalities correlate with colony-forming ability after ultraviolet radiation, Proc. Natl. Acad. Sci. USA 75: 1984–1988.PubMedGoogle Scholar
  83. 83.
    Kraemer, K. H., Coon, H. B., Petinga, R. A., Barrett, S. F., Rahe, A. E., and Robbins, J. H., 1975, Genetic heterogeneity in xeroderma pigmentosum: Complementation groups and their relation to DNA repair rates, Proc. Natl. Acad. Sci. USA 72: 59–63.PubMedGoogle Scholar
  84. 84.
    Kano, Y., and Fujiwara, Y., 1983, Defective thymine dimer excision from xeroderma pigmentosum chromatin and its characteristic catalysis by cell-free extracts, Carcinogenesis 4: 1419–1424.PubMedGoogle Scholar
  85. 85.
    Matsukama, S., Zelle, B., Keijzer, W., Berends, F., and Bootsma, D., 1981, Different rates of restoration of repair capacity in complementing xeroderma pigmentosum cells after fusion, Exp. Cell Res. 134: 103–112.Google Scholar
  86. 86.
    Gianelli, F., Pawsey, S. A., and Avery, J. A., 1982, Differences in patterns of complementation of the more common groups of xeroderma pigmentosum: Possible implications, Cell 29: 451–458.Google Scholar
  87. 87.
    Kuhnlein, U., Penhoet, E. E., and Linn, S., 1976, An altered apurinic DNA endonuclease activity in group A and group D xeroderma pigmentosum fibroblasts, Proc. Natl. Acad. Sci. USA 73: 1169–1173.Google Scholar
  88. 88.
    Dresler, S. L., and Lieberman, M. W., 1983, Requirement of ATP for specific incision of ultraviolet-damaged DNA during excision repair in permeable human fibroblasts, J. Biol. Chem. 258: 12269–12273.PubMedGoogle Scholar
  89. 89.
    Dresler, S. L., and Robinson-Hill, R. M., 1987, Direct inhibition of u.v.-induced DNA excision repair in human cells by novobiocin, coumermycin and nalidixic acid, Carcinogenesis 8: 813–817.PubMedGoogle Scholar
  90. 90.
    Lindahl, T., Galley, J. A., and Edelman, G. M., 1969, Deoxyribunuclease IV: A new exonuclease from mammalian tissues, Proc. Natl. Acad. Sci. USA 62: 597–603.PubMedGoogle Scholar
  91. 91.
    Cook, K. H., and Friedberg, E. C., 1978, Multiple thymine dimer excising nuclease activities in extracts of human KB cells, Biochemistry 17: 850–857.PubMedGoogle Scholar
  92. 92.
    Doniger, J., and Grossman, L., 1976, Human correxonuclease. Purification and properties of a DNA repair exonuclease from placenta, J. Biol. Chem. 251: 4579–4587.PubMedGoogle Scholar
  93. 93.
    Bose, K., Karran, P., and Strauss, B., 1978, Repair of depurinated DNA in vitro by enzymes purified from human lymphoblasts, Proc. Natl. Acad. Sci. USA 75: 794–798.PubMedGoogle Scholar
  94. 94.
    Kelly, R. B., Atkinson, M. R., Huberman, J. A., and Komberg, A., 1969, Excision of thymine dimers and other mismatched sequences by DNA polymerase of Escherichia coli, Nature (Lond.) 224: 495–501.Google Scholar
  95. 95.
    Livingston, D. M., and Richardson, C. C., 1975, Deoxyribonucleic acid polymerase III of Escherichia coli. Characterization of associated exonuclease activities, J. Biol. Chem. 250: 470–478.PubMedGoogle Scholar
  96. 96.
    Kornberg, A., 1980, DNA Replication, W. H. Freeman, San Francisco.Google Scholar
  97. 97.
    Friedberg, E. C., Rude, J. M., Cook, K. H., Ehmann, U. K., Mortelmans, K., Cleaver, J. E., and Slor, H., 1977, Excision repair in mammalian cells and the current status of xeroderma pigmentosum, in DNA Repair Processes (W. W. Nichols and D. G. Murphy, eds.), pp. 21–36, Symposium Specialists, Miami.Google Scholar
  98. 98.
    Snyder, R. D., and Regan, J. D., 1982, Differential responses of log and stationary phase human fibroblasts to inhibition of DNA repair by aphidicolin, Biochim. Biophys. Acta 697: 229–234.PubMedGoogle Scholar
  99. 99.
    Mosbaugh, D. W., and Linn, S., 1982, Characterization of the action of Escherichia coli DNA polymerase I at incisions produced by repair endodeoxyribunucleases, J. Biol. Chem. 257: 575–583.PubMedGoogle Scholar
  100. 100.
    Warner, H. R., Demple, B. F., Deutsch, W. A., Kane, C. M., and Linn, S., 1980, Apurinic/apyrimidinic endonucleases in repair of pyrimidine dimers and other lesions in DNA, Proc. Natl. Acad. Sci. USA 77: 4602–4606.PubMedGoogle Scholar
  101. 101.
    Henner, W. D., Grunberg, S. M., and Haseltine, W. A., 1983, Enzyme action at 3’ termini of ionizing radiation-induced DNA strand breaks, J. Biol. Chem. 258: 15198–15205.PubMedGoogle Scholar
  102. 102.
    Lee, M. Y. W. T., Tan, C.-K., Downey, K. M., and So, A. G., 1981, Structural and functional properties of calf thymus DNA polymerase S, Prog. Nucleic Acids Res. Mol. Biol. 26: 83–96.Google Scholar
  103. 103.
    Wahl, A. F., Crute, J. J., Sabatino, R. D., Bodner, J. B., Marraccino, R. L., Harwell, L. W., Lord, E. M., and Bambara, R. A., 1986, Properties of two forms of DNA polymerase delta from calf thymus, Biochemistry 25: 7821–7827.PubMedGoogle Scholar
  104. 104.
    Byrnes, J. J., 1985, Differential inhibitors of DNA polymerases a and S, Biochem. Biophys. Res. Commun. 132: 628–634.PubMedGoogle Scholar
  105. 105.
    Lee, M. Y. W. T., Toomey, N. L., and Wright, G. E., 1985, Differential inhibition of human placental DNA polymerases S and a by BuPdGTP and BuAdATP, Nucleic Acids Res. 13: 8623–8630.PubMedGoogle Scholar
  106. 106.
    Loeb, L. A., and Kunkel, T. A., 1982, Fidelity of DNA synthesis, Annu. Rev. Biochem. 51: 429–457.PubMedGoogle Scholar
  107. 107.
    Kunkel, T. A., Sabatino, R. D., and Bambara, R. A., 1987, Exonucleolytic proofreading by calf thymus DNA polymerase S, Proc. Natl. Acad. Sci. USA 84: 4865–4869.PubMedGoogle Scholar
  108. 108.
    Miller, M. R., and Chinault, D. N., 1982, The roles of DNA polymerases a, 13, and y in DNA repair synthesis induced in hamster and human cells by different DNA damaging agents, J. Biol. Chem. 257: 10204–10209.PubMedGoogle Scholar
  109. 109.
    Dresler, S. L., and Lieberman, M. W., 1983, Identification of DNA polymerases involved in DNA excision repair in diploid human fibroblasts, J. Biol. Chem. 258: 9990–9994.PubMedGoogle Scholar
  110. 110.
    Tyrrell, R. M., 1983, Specific toxicity of aphidicolin to ultraviolet-irradiated excision proficient human skin fibroblasts, Carcinogenesis 4: 327–329.PubMedGoogle Scholar
  111. 111.
    Dresler, S. L., and Frattini, M. G., 1986, DNA replication and UV-induced DNA repair synthesis in human fibroblasts are much less sensitive than DNA polymerase a to inhibition by butylphenyl-deoxyguanosine triphosphate, Nucleic Acids Res. 14: 7093–7102.PubMedGoogle Scholar
  112. 112.
    Dresler, S. L., and Kimbro, K. S., 1987, 2’,3’-dideoxythymidine 5’-triphosphate inhibition of DNA replication and ultraviolet-induced DNA repair synthesis in human cells: Evidence for involvement of DNA polymerase S, Biochemistry 26: 2664–2668.Google Scholar
  113. 113.
    Dresler, S. L., 1984, Comparative enzymology of ultraviolet-induced DNA repair synthesis and semiconservative DNA replication in permeable diploid human fibroblasts, J. Biol. Chem. 259: 13947–13952.PubMedGoogle Scholar
  114. 114.
    Hauschka, P. V., 1973, Analysis of nucleotide pools in animal cells, Methods Cell Biol. 7: 361–462.PubMedGoogle Scholar
  115. 115.
    Hubscher, U., Kuenzle, C. C., and Spadari, S., 1979, Functional roles of DNA polymerases ß and y, Proc. Natl. Acad. Sci. USA 76: 2316–2320.PubMedGoogle Scholar
  116. 116.
    Regan, J. D., and Setlow, R. D., 1974, Two forms of repair in the DNA of human cells damaged by chemical carcinogens and mutagens, Cancer Res. 34: 3318–3325.PubMedGoogle Scholar
  117. 117.
    Snyder, R. D., and Regan, J. D., 1982, DNA repair in normal human and xeroderma pigmentosum group A fibroblasts following treatment with various methane sulfonates and the demonstration of a long-patch (u.v.-like) repair component, Carcinogenesis 3: 7–14.PubMedGoogle Scholar
  118. 118.
    Walker, I. G., and Th’ng, J. P. H., 1982, Excision repair patch size in DNA from human KB cells treated with UV-light, or methyl methanesulfonate, Mutat. Res. 105: 277–285.PubMedGoogle Scholar
  119. 119.
    Th’ng, J. P. H., and Walker, I. G., 1983, DNA repair patch measurements with nucleosomal DNA, Carcinogenesis 4: 975–978.PubMedGoogle Scholar
  120. 120.
    Hanawalt, P. C., Cooper, P. K., and Smith, C. A., 1981, Repair replication schemes in bacteria and human cells, Prog. Nucleic Acids Res. Mol. Biol. 26: 181–196.Google Scholar
  121. 121.
    Dresler, S. L., 1985, Stimulation of deoxyribonucleic acid excision repair in human fibroblast pretreated with sodium butyrate, Biochemistry 24: 6861–6869.PubMedGoogle Scholar
  122. 122.
    Miller, M. R., and Liu, L. H., 1982, Participation of different DNA polymerases in mammalian DNA repair synthesis is not related to “patch size,” Biochem. Biophys. Res. Commun. 108: 1676–1682.PubMedGoogle Scholar
  123. 123.
    Soderhall, S., and Lindahl, T., 1976, DNA ligases of eukaryotes, FEBS Lett. 67: 1–8.PubMedGoogle Scholar
  124. 124.
    Soderhall, S., and Lindahl, T., 1975, Mammalian DNA ligases: Serological evidence for two separate enzymes, J. Biol. Chem. 250: 8438–8444.PubMedGoogle Scholar
  125. 125.
    Creissen, D., and Shall, S., Regulation of DNA ligase activity by poly(ADP-ribose), Nature (Lond.) 296: 271–272.Google Scholar
  126. 126.
    Squires, S., and Johnson, R. T., 1983, U.V. induces long-lived DNA breaks in Cockayne’s Syndrome and cells from an immunodeficient individual (46BR): Defects and disturbance in post incision steps of excision repair, Carcinogenesis 4: 565–572.PubMedGoogle Scholar
  127. 127.
    Teo, I. A., Broughton, B. C., Day, R. S., James, M. R., Karran, P., Mayne, L. V., and Lehmann, A. R., 1983, A biochemical defect in the repair of alkylated DNA in cells from an immunodeficient patient (46BR), Carcinogenesis 4: 559–564.PubMedGoogle Scholar
  128. 128.
    Henderson, L. M., Arlett, C. F., Harcourt, S. A., Lehmann, A. R., and Broughton, B. C., 1985, Cells from an immunodeficient patient (46BR) with a defect in DNA ligation are hypomutable but hypersensitive to the induction of sister chromatid exchange, Proc. Natl. Acad. Sci. USA 82: 2044–2048.PubMedGoogle Scholar
  129. 129.
    Igo-Kemenes, T., Horz, W., and Zachau, H. G., 1982, Chromatin, Annu. Rev. Biochem. 51: 89–121.PubMedGoogle Scholar
  130. 130.
    Cleaver, J. E., 1977, Nucleosome structure controls the rate of excision repair in the DNA of human cells, Nature (Lond.) 270: 451–453.Google Scholar
  131. 131.
    Smerdon, M. J., Tlsty, T. D., and Lieberman, M. W., 1978, Distribution of ultraviolet-induced DNA repair synthesis in nuclease sensitive and resistant regions of human chromatin, Biochemistry 17: 2377–2386.PubMedGoogle Scholar
  132. 132.
    Smerdon, M. J., and Lieberman, M. W., 1978, Nucleosome rearrangement in human chromatin during UV-induced DNA repair synthesis, Proc. Natl. Acad. Sci. USA 75: 4238–4241.PubMedGoogle Scholar
  133. 133.
    Williams, J. I., and Friedberg, E. C., 1979, Deoxyribonucleic acid excision repair in chromatin after ultraviolet irradiation of human fibroblasts in culture, Biochemistry 18: 3965–3972.PubMedGoogle Scholar
  134. 134.
    Bodell, W. J., and Cleaver, J. E., 1981, Transient conformational changes in chromatin during excision repair of ultraviolet damage to DNA, Nucleic Acids Res. 9: 359–370.Google Scholar
  135. 135.
    Zolan, M. E., Smith, C. A., Calvin, N. M., and Hanawalt, P. C., 1982, Rearrangement of mammalian chromatin structure following excision repair, Nature (Lond.) 299: 461–464.Google Scholar
  136. 136.
    Oleson, F. B., Mitchell, B. L., Dipple, A., and Lieberman, M. W., 1979, Distribution of DNA damage in chromatin and its relation to repair in human cells treated with 7-bromomethyl-benz(a)anthracene, Nucleic Acids Res. 7: 1343–1361.PubMedGoogle Scholar
  137. 137.
    Tlsty, T. D., and Lieberman, M. W., 1978, The distribution of DNA repair synthesis in chromatin and its rearrangement following damage with N-acetoxy-2-acetylaminofluorene, Nucleic Acids Res. 5: 3261–3273.PubMedGoogle Scholar
  138. 138.
    Sidik, K., and Smerdon, M. J., 1984, Nuclease sensitivity of repair-incorporated nucleotides in chromatin and nucleosome rearrangement in human cells damaged by methylmethanesulfonate and methylnitrosourea, Carcinogenesis 5: 245–253.PubMedGoogle Scholar
  139. 139.
    Bodell, W. J., Kaufmann, W. K., and Cleaver, J. E., 1982, Enzyme digestion of intermediates of excision repair in human cells irradiated with ultraviolet light, Biochemistry 21: 6767–6772.PubMedGoogle Scholar
  140. 140.
    Hunting, D. J., Dresler, S. L., and Lieberman, M. W., 1985, Multiple conformation states of repair patches in chromatin during DNA excision repair, Biochemistry 24: 3219–3226.PubMedGoogle Scholar
  141. 141.
    Smerdon, M. J., 1986, Completion of excision repair in human cells. Relationship between ligation and nucleosome formation, J. Biol. Chem. 261: 244–252.PubMedGoogle Scholar
  142. 142.
    Lieberman, M. W., Smerdon, M. J., Tlsty, T. D., and Oleson, F. B., 1979, The role of chromatin structure in DNA repair in human cells damaged with chemical carcinogens and ultraviolet radiation, in: Environmental Carcinogenesis ( P. Emmelot and E. Kriek, eds.), pp. 345–363, Elsevier/North-Holland, Amsterdam.Google Scholar
  143. 143.
    Smerdon, M. J., and Lieberman, M. W., 1980, Distribution within chromatin of deoxyribonucleic acid repair synthesis occurring at different times after ultraviolet irradiation, Biochemistry 19: 2992–3000.PubMedGoogle Scholar
  144. 144.
    Lan, S. Y., and Smerdon, M. J., 1985, A nonuniform distribution of excision repair synthesis in nucleosome core DNA, Biochemistry 24: 7771–7783.PubMedGoogle Scholar
  145. 145.
    Smerdon, M. J., Watkins, J. F., and Lieberman, M. W., 1982, Effect of histone Hl removal on the distribution of ultraviolet-induced deoxyribonucleic acid repair synthesis within chromatin, Biochemistry 21: 3879–3885.PubMedGoogle Scholar
  146. 146.
    Smerdon, M. J., 1983, Rearrangements of chromatin structure in newly repaired regions of deoxyribonucleic acid in human cells treated with sodium butyrate or hydroxyurea, Biochemistry 22: 3516–3525.PubMedGoogle Scholar
  147. 147.
    Thi Man, M., and Shall, S., 1982, The alkylating agent, dimethyl sulfate, stimulates ADP-ribosylation of histone Hl and other proteins in permeabilized mouse lymphoma (L1210) cells, Eur. J. Biochem. 126: 83–88.PubMedGoogle Scholar
  148. 148.
    Jacobson, E. L., Antol, K. M., Juarez-Salinas, H., and Jacobson, M. K., 1983, Poly(ADP-ribose) metabolism in ultraviolet irradiated human fibroblasts, J. Biol. Chem. 258: 103–107.PubMedGoogle Scholar
  149. 149.
    Adamietz, P., and Rudolph, A., 1984, ADP-ribosylation of nuclear proteins in vivo. Identification of histone H2B as a major acceptor for mono-and poly(ADP-ribose) in dimethyl sulfate-treated hepatoma AH 7974 cells, J. Biol. Chem. 259: 6841–6846.PubMedGoogle Scholar
  150. 150.
    Kreimeyer, A., Wielckens, K., Adamietz, P., and Hilz, H., 1984, DNA repair-associated ADP-ribosylation in vivo. Modification of histone HI differs from that of the principal acceptor proteins, J. Biol. Chem. 259: 890–896.PubMedGoogle Scholar
  151. 151.
    Benjamin, R. C., and Gill, D. M., 1980, ADP-ribosylation in mammalian cell ghosts. Dependence of poly(ADP-ribose) synthesis on strand breakage in DNA. J. Biol. Chem. 255: 10502–10508.PubMedGoogle Scholar
  152. 152.
    Berger, N. A., and Sikorski, G. W., 1981, Poly(adenosine diphosphoribose) synthesis in ultraviolet-irradiation xeroderma pigmentosum cells reconstituted with Micrococcus luteus UV endonuclease, Biochemistry 20: 3610–3614.PubMedGoogle Scholar
  153. 153.
    Cohen, J. J., Catino, D. M., Petzold, S. J., and Berger, N. A., 1982, Activation of poly(adenosine diphosphate ribose) polymerase by SV40 minichromosomes: Effects of deoxyribonucleic acid damage and histone H1, Biochemistry 21: 4931–4940.PubMedGoogle Scholar
  154. 154.
    Ferro, A. M., Higgins, N. P., and Olivera, B. M., 1983, Poly(ADP-ribosylation) of a DNA topoisomerase, J. Biol. Chem. 258: 6000–6003.PubMedGoogle Scholar
  155. 155.
    Thraves, P. J., and Smulson, M. E., 1982, Acceptors for the poly ADP-ribosylation modification of chromatin structure are altered by carcinogen-induced DNA damage, Carcinogenesis 3: 1143–1148.PubMedGoogle Scholar
  156. 156.
    Edwards, M. J., and Taylor, A. M. R., 1980, Unusual levels of (ADP-ribose)„ and DNA synthesis in ataxia teleangectasia cells following -y-ray irradiation, Nature (Lond.) 287: 745–747.Google Scholar
  157. 157.
    Taniguchi, T., Agemori, M., Kameshita, I., Nishikimi, M., and Shizuta, Y., 1982, Participation of poly (ADP-ribosyl)ation in the depression of RNA synthesis caused by treatment of mouse lymphoma cells with methylnitrosourea, J. Biol. Chem. 257: 4027–4030.PubMedGoogle Scholar
  158. 158.
    Ramanathan, B., and Smerdon, M. J., 1986, Changes in nuclear protein acetylation in u.v.-damaged human cells, Carcinogenesis 7: 1087–1094.PubMedGoogle Scholar
  159. 159.
    Smerdon, M. J., Lan, S. Y., Calza, R. E., and Reeves, R., 1982, Sodium butyrate stimulates DNA repair in UV-irradiated normal and xeroderma pigmentosum human fibroblasts, J. Biol. Chem. 257: 13441–13447.PubMedGoogle Scholar
  160. 160.
    Cohn, S. M., and Lieberman, M. W., 1984, The distribution of DNA excision-repair sites in human diploid fibroblasts following ultraviolet irradiation, J. Biol. Chem. 259: 12463–12469.PubMedGoogle Scholar
  161. 161.
    Ganesan, A. K., Seawell, P. C., Lewis, R. J., and Hanawalt, P. C., 1986, Processivity of T4 endonuclease V is sensitive to NaCI concentration, Biochemistry 25: 5751–5755.PubMedGoogle Scholar
  162. 162.
    Gruskin, E. A., and Lloyd, R. S., 1986, The DNA scanning mechanism of T4 endonuclease V. Effect of NaC1 concentration on processive nicking activity, J. Biol. Chem. 261: 9607–9613.PubMedGoogle Scholar
  163. 163.
    Smith, C. A., 1987, DNA repair in specific sequences in mammalian cells, J. Cell. Sci. (Suppl.) 6: 225–241.Google Scholar
  164. 164.
    Zolan, M. E., Cortopassi, G. A., Smith, C. A., and Hanawalt, P. C., 1982, Deficient repair of chemical adducts in a DNA of monkey cells, Cell 28: 613–619.PubMedGoogle Scholar
  165. 165.
    Zolan, M. E., Smith, C. A., and Hanawalt, P. C., 1984, Formation and repair of furocoumarin adducts in a deoxyribonucleic acid and bulk deoxyribonucleic acid of monkey cells, Biochemistry 23: 63–69.PubMedGoogle Scholar
  166. 166.
    Leadon, S. A., Zolan, M. E., and Hanawalt, P. C., 1983, Restricted repair of aflatoxin B1 induced damage in alpha DNA of monkey cells, Nucleic Acids Res. 11: 5675–5689.PubMedGoogle Scholar
  167. 167.
    Leadon, S. A., and Hanawalt, P. C., 1984, Ultraviolet irradiation of monkey cells enhances the repair of DNA adducts in alpha DNA, Carcinogenesis 5: 1505–1510.PubMedGoogle Scholar
  168. 168.
    Bohr, V. B., Smith, C. A., Okumoto, D. S., and Hanawalt, P. C., 1985, DNA repair in an active gene: Removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall, Cell 40: 359–369.PubMedGoogle Scholar
  169. 169.
    Mellon, I., Bohr, V. A., Smith, C. A., and Hanawalt, P. C., 1986, Preferential repair of an active gene in human cells, Proc. Natl. Acad. Sci. USA 83: 8878–8882.PubMedGoogle Scholar
  170. 170.
    Bohr, V. A., Okumoto, D. S., and Hanawalt, P. C., 1986, Survival of UV-irradiated mammalian cells correlates with efficient DNA repair in an essential gene, Proc. Natl. Acad. Sci. USA 83: 3830–3833.PubMedGoogle Scholar
  171. 171.
    Madhani, H. D., Leadon, S. A., Smith, C. A., and Hanawalt, P. C., 1986, Differential DNA repair in transcriptionally active and inactive proto-oncogenes: c-abl and c-mos, Cell 45: 417–422.PubMedGoogle Scholar
  172. 172.
    Mayne, L. V., and Lehmann, A. R., 1982, Failure of RNA synthesis to recover after UV irradiation: An early defect in cells from individuals with Cockayne’s syndrome and xeroderma pigmentosum, Cancer Res. 42: 1473–1478.PubMedGoogle Scholar
  173. 173.
    Bohr, V. A., Okumoto, D. S., Ho, L., and Hanawalt, P. C., 1986, Characterization of a DNA repair domain containing the dihydrofolate reductase gene in Chinese hamster ovary cells, J. Biol. Chem. 261: 16666–16672.PubMedGoogle Scholar
  174. 174.
    Kraemer, K. H., Lee, M. M., and Scotto. J., 1984, DNA repair protects against cutaneous and internal neoplasia: Evidence from xeroderma pigmentosum, Carcinogenesis 5: 511–514.PubMedGoogle Scholar
  175. 175.
    Granstein, R. D., and Sober, A. J., 1982, Current concepts in ultraviolet carcinogenesis, Proc. Soc. Exp. Biol. Med. 170: 115–125.PubMedGoogle Scholar
  176. 176.
    Protic-Sabljic, M., Whyte, D. B., and Kraemer, K. H., 1985, Hypersensitivity of xeroderma pigmentosum cells to dietary carcinogens, Mutat. Res. 145: 89–94.PubMedGoogle Scholar
  177. 177.
    Cairns, J., 1981, The origin of human cancers, Nature (Lond.) 289: 353–357.Google Scholar
  178. 178.
    Paterson, M. C., and Smith, P. J., 1979, Ataxia telangiectasis: An inherited human disorder involving hypersensitivity to ionizing radiation and related DNA damaging chemicals, Annu. Rev. Genet. 13: 291–318.PubMedGoogle Scholar
  179. 179.
    Boder, E., 1984, Ataxia telangiectasia: An overview, in: Ataxia Telangiectasia: Genetics, Neuropathology, and Immunology of a Degenerative Disease of Childhood, Kroc Foundation Series, Vol. 19 ( R. A. Gatti and M. Swift, eds.), pp. 1–61, Alan R. Liss, New York.Google Scholar
  180. 180.
    Swift, M., Reitnauer, P. J., Morrell, D., and Chase, C. L., 1987, Breast and other cancers in families with ataxia-telangectasia, N. Engl. J. Med. 316: 1289–1294.PubMedGoogle Scholar
  181. 181.
    Taylor, R. M., Hamden, D. G., Arlett, C. F., Harcourt, S. A., Lehmann, A. R., Stevens, S., and Bridges, B. A., 1985, Ataxia telangiectasia: A human mutation with abnormal radiation sensitivity, Nature (Lond.) 258: 427–429.Google Scholar
  182. 182.
    Taylor, R. M., Rosney, C. M., and Campbell, J. B., 1979, Unusual sensitivity of ataxia telangiectasia cells to bleomycin, Cancer Res. 39: 1046–1050.PubMedGoogle Scholar
  183. 183.
    Little, J. B., and Nagasawa, H., 1985, Effect of confluent holding on potentially lethal damage repair, cell cycle progression, and chromosomal aberrations in human normal and ataxia-telangiectasia fibroblasts, Radiat. Res. 101: 81–93.PubMedGoogle Scholar
  184. 184.
    Shiloh, Y., Tabor, E., and Becker, Y., 1983, Abnormal response of ataxia telangiectasia cells to agents that break the deoxyribose moiety of DNA via a targeted free radical mechanism, Carcinogenesis 4: 1317–1322.PubMedGoogle Scholar
  185. 185.
    Paterson, M. C., Smith, B. P., Lohman, P. M. H., Anderson, A. K., and Fishman, L., 1976, Defective excision repair of gamma-ray damaged DNA in human (ataxia telangiectasia) fibroblasts, Nature (Loud.) 260: 444–447.Google Scholar
  186. 186.
    Lehman, A. R., and Stevens, S., 1977, The production and repair of double-strand breaks in cells from normal humans and from patients with ataxia-telangiectasia, Biochim, Biophys. Acta 474: 49–60.Google Scholar
  187. 187.
    Coquerelle, T. M., Weibezahn, K. F., and Lucke-Huhle, C., 1987, Rejoining of double strand breaks in normal human and ataxia-telangiectasia fibroblasts after exposure to 60Co -y-rays, 241Am a-particles or bleomycin, Int. J. Rad. Biol. 51: 209–218.Google Scholar
  188. 188.
    Fornace, A. J., Kinsella, T. J., Dobson, P. P., and Mitchell, J. B., 1986, Repair of ionizing radiation DNA base damage in ataxia telangiectasia cells, Cancer Res. 46: 1703–1706.PubMedGoogle Scholar
  189. 189.
    Cox, R., Debenham, P. G., Masson, W. K., and Webb, M. B., 1986, Ataxia-telangiectasia: A human mutation giving high frequency misrepair of DNA double-stranded scissions, Mol. Biol. Med. 3: 229–244.PubMedGoogle Scholar
  190. 190.
    Painter, R. B., and Young, B. R., 1980, Radiosensitivity in ataxia-telangiectasia: A new explanation, Proc. Natl. Acad. Sci. USA 77: 7315–7317.PubMedGoogle Scholar
  191. 191.
    Painter, R. B., 1981, Radioresistant DNA synthesis: An intrinsic feature of ataxia-telangiectasia, Mutat. Res. 84: 183–190.PubMedGoogle Scholar
  192. 192.
    Mohamed, R., Ford, M., and Lavin, M. F., 1986, Ionizing radiation and DNA-chain elongation in ataxia telangiectasia lymphoblastoid cells, Mutat. Res. 165: 117–122.PubMedGoogle Scholar
  193. 193.
    German, J., Bloom, D., and Passarge, E., 1979, Bloom’s syndrome. VII. Progress report for 1978, Clin. Genet. 15: 361–367.PubMedGoogle Scholar
  194. 194.
    Emerit, I., and Cerotti, P., 1981, Clastongenic activity from Bloom syndrome fibroblast cultures, Proc. Natl. Acad. Sci. USA 78: 1868–1872.PubMedGoogle Scholar
  195. 195.
    Willis, A. E., and Lindahl, T., 1987, DNA ligase I deficiency in Bloom’s syndrome, Nature (Lond.) 325: 355–357.Google Scholar
  196. 196.
    Chan, J. Y. H., Becker, F. F., German, J., and Ray, J. H., 1987, Altered DNA ligase I activity in Bloom’s syndrome cells, Nature (London) 325: 357–359.Google Scholar
  197. 197.
    Sasaki, M. S., 1978, Fanconi’s anemia: A condition possibly associated with defective DNA repair, in: DNA Repair Mechanisms ( P. C. Hanawalt, E. C. Friedberg, and C. F. Fox, eds.), pp. 675–684, Academic, New York.Google Scholar
  198. 198.
    Fujiwara, Y., Tatsumi, M., and Sasaki, M. S., 1977, Crosslink repair in human cells and its possible defect in Fanconi’s anemia cells, J. Mol. Biol. 113: 635–649.PubMedGoogle Scholar
  199. 199.
    Poll, E. H. A., Arwert, F., Kortbeek, H. T., and Eriksson, A. W., 1984, Fanconi anemia cells are not uniformly deficient in unhooking of DNA interstrand crosslinks, induced by mitomycin C or 8-methoxypsoralen plus UVA, Hum. Genet. 68: 228–234.PubMedGoogle Scholar
  200. 200.
    Wade, M. H., and Chu, E. H. Y., 1979, Effects of DNA damaging agents on cultured fibroblasts derived from patients with Cockayne syndrome, Mutat. Res. 59: 49–60.PubMedGoogle Scholar
  201. 201.
    Lehmann, A. R., Kirk-Bell, S., and Mayne, L., 1979, Abnormal kinetics of DNA synthesis in UV light irradiated cells from patients with Cockayne’s syndrome, Cancer Res. 39: 4237–4241.PubMedGoogle Scholar
  202. 202.
    Hanawalt, P. C., and Sarasin, A., 1986, Cancer-prone hereditary diseases with DNA processing abnormalities, Trends Genet. 2: 124–129.Google Scholar
  203. 203.
    Pero, R. W., Miller, D. G., Lipkin, M., Markowitz, M., Gupta, S., Winawer, S. J., Enker, W., and Good, R., 1983, Reduced capacity for DNA repair synthesis in patients with or genetically predisposed to colorectal cancer, J. Natl. Cancer Inst. 70: 867–875.PubMedGoogle Scholar
  204. 204.
    Pero, R. W., and Lund-Pero, M., 1983, The reproducibility of individual estimations in the covalent binding of N-acetoxy-2-acetylaminofluorene to DNA and the induction of unscheduled DNA synthesis, Mutat. Res. 120: 219–224.PubMedGoogle Scholar
  205. 205.
    Pero, R. W., Bryngelsson, C., Bryngelsson, T., and Norden, A., 1983, A genetic component of the variance of N-acetoxy-2-acetylaminofluorene-induced DNA damage in mononuclear leukocytes determined by a twin study, Hum. Genet. 65: 181–184.PubMedGoogle Scholar
  206. 206.
    Mymes, B., Eggset, G., Volden, G., and Krokan, H., 1984, Enzymatic repair of premutagenic DNA lesions in human epidermis. Quantitation of 06-methylguanine-DNA methyltransferase and uracil-DNA glycosylase activities, Mutat. Res. 131: 183–186.Google Scholar
  207. 207.
    Maher, V. M., Domey, D. J., Konze-Thomas, B., and McCormick, J. J., 1979, DNA excision-repair processes in human cells can eliminate cytotoxic and mutagenic consequences of ultraviolet radiation, Mutat. Res. 62: 311–339.PubMedGoogle Scholar
  208. 208.
    Rich, A., Nordheim, A., and Wang, A. H.-J., 1984, The chemistry and biology of Z-DNA, Annu. Rev. Biochem. 53: 791–846.PubMedGoogle Scholar
  209. 209.
    Boiteux, S., Costa de Oliviera, R., and Laval, J., 1985, The Escherichia coli 06-methylguanine-DNA methyltransferase does not repair promutagenic 06-methylguanine residues when present in Z-DNA, J. Biol. Chem. 260: 8711–8715.PubMedGoogle Scholar
  210. 210.
    Lagravere, C., Malfoy, B., Leng, M., and Laval, J., 1984, Ring-opened alkylated guanine is not repaired in Z-DNA, Nature (Lond.) 310: 798–800.Google Scholar
  211. 211.
    Park, S. D., Choi, K. H., Hong, S. W., and Cleaver, J. E., 1981, Inhibition of excision-repair of ultraviolet damage in human cells by exposure to methylmethanesulfonate, Mutat. Res. 82: 365–371.PubMedGoogle Scholar
  212. 212.
    Park, S. D., and Cleaver, J. E., 1982, Inactivation of nucleotide excision repair in Chinese hamster ovary cells by exposure to an alkylating agent, Photochem. Photobiol. 35: 419–421.PubMedGoogle Scholar
  213. 213.
    Krokan, H., Grafstrom, R. C., Sundqvist, K., Esterbauer, H., and Harris, C. C., 1985, Cytotoxicity, thiol depletion and inhibition of 06-methylguanine-DNA methyltransferase by various aldehydes in cultured human bronchial fibroblasts, Carcinogenesis 12: 1755–1759.Google Scholar
  214. 214.
    Zlotogorski, C., and Erickson, L. C., 1984, Pretreatment of human colon tumor cells with DNA methylating agents inhibits their ability to repair chloroethyl monoadducts, Carcinogenesis 5: 83–87.PubMedGoogle Scholar
  215. 215.
    Howard-Flanders, P., 1983, Workshop summary: Recombination repair, in: Cellular Responses to DNA Damage ( E. C. Friedberg and B. A. Bridges, eds.), pp. 577–583, Alan R. Liss, New York.Google Scholar
  216. 216.
    Witkin, E. M., 1976, Ultraviolet mutagenesis and inducible DNA repair in E. coli, Bacteriol. Rev. 40: 869–907.Google Scholar
  217. 217.
    Miller, J. H., 1982, Carcinogens induce targeted mutations in Escherichia coli, Cell 31: 5–7.Google Scholar
  218. 218.
    Brandenburger, A., Godson, G. N., Radman, M., Glickman, B. W., Van Sluis, C. A., and Doubleday, O. P., 1981, Radiation-induced base substitution mutagenesis in single-stranded DNA phage M13, Nature (Lond.) 294: 180–182.Google Scholar
  219. 219.
    Meneghini, R., Menck, C. F. M., and Schumacher, R. I., 1981, Mechanisms of tolerance to DNA lesions in mammalian cells, Quant. Rev. Biophys. 14: 381–432.Google Scholar
  220. 220.
    Lehmann, A. R., 1972, Postreplication repair of DNA in ultraviolet-irradiated mammalian cells, J. Mol. Biol. 66: 319–337.PubMedGoogle Scholar
  221. 221.
    Buhl, S. N., Stillman, R. M., Setlow, R. B., and Regan, J. D., 1972, DNA chain elongation and joining in normal human and xeroderma pigmentosum cells after ultraviolet irradiation, Biophys. J. 12: 1183–1191.PubMedGoogle Scholar
  222. 222.
    Lehmann, A. R., and Kirk-Bell, S., 1978, Pyrimidine dimer sites associated with the daughter DNA strands in UV-irradiated human fibroblasts, Photochem. Photobiol. 27: 297–307.PubMedGoogle Scholar
  223. 223.
    Moustacchi, E., Ehmann, U. K., and Friedberg, E. C., 1979, Defective recovery of semiconservative DNA synthesis in xeroderma pigmentosum cells following split dose ultraviolet-irradiation, Mutat. Res. 62: 159–171.PubMedGoogle Scholar
  224. 224.
    Sarasin, A., and Benoit, A., 1980, Induction of an error-prone mode of DNA repair in UV-irradiated monkey kidney cells, Mutat. Res. 70: 71–81.PubMedGoogle Scholar
  225. 225.
    Bourre, F., and Sarasin, A., 1983, Targeted mutagenesis of SV40 DNA induced by UV light, Nature (Lond.) 305: 68–70.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Steven L. Dresler
    • 1
  1. 1.Department of PathologyWashington University School of MedicineSt. LouisUSA

Personalised recommendations