Organ and Species Specificity in Chemical Carcinogenesis and Tumor Promotion

  • Bhalchandra A. Diwan
  • Jerry M. Rice


Chemical carcinogens include substances as diverse as mineral fibers (e.g., asbestos), plastic films, certain metals and their salts, and organic compounds of low molecular weight. All these categories include specific compounds or preparations that are carcinogenic both for humans and for experimental animals. Far more substances have been tested and found positive for carcinogenicity in rodents than have been shown to cause cancer in humans, especially among the organic compounds that constitute by far the largest group of known carcinogens.


Mouse Skin Carcinogenic Risk Chemical Carcinogenesis Potassium Bromate IARC Monograph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Peto, J., Seidman, H., and Selikoff, I. J., 1982, Mesothelioma mortality in asbestos workers: Implications for models of carcinogenesis and risk assessments, Br. J. Cancer 45: 124–129.PubMedCrossRefGoogle Scholar
  2. 2.
    IARC, 1973, Some inorganic and organometallic compounds. IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Man, Vol. 2, pp. 17–47, International Agency for Research on Cancer, Lyons, France.Google Scholar
  3. 3.
    Wilbourn, J., Haroun, L., Haseltine, E., Kaldor, J., Partensky, C., and Vainio, H., 1986, Responses of experimental animals to human carcinogens: An analysis based upon the IARC monographs program, Carcinogenesis 7: 1853–1863.PubMedCrossRefGoogle Scholar
  4. 4.
    Clayson, D. B., and Gamer, R. C., 1976, Carcinogenic aromatic amines and related compounds, in: Chemical Carcinogens ( C. E. Searle, ed.), pp. 366–461, American Chemical Society, Washington, D.C.Google Scholar
  5. 5.
    IARC, 1974, Some aromatic amines, hydrazine and related substances, N-nitroso compounds, and miscellaneous alkylating agents. IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Man, Vol. 4, pp. 97–111, International Agency for Research on Cancer, Lyons, France.Google Scholar
  6. 6.
    Maltoni, C., 1977, Vinyl chloride carcinogenicity: An experimental model for carcinogenesis studies, in: Origins of Human Cancer ( H. H. Hiatt, J. D. Watson, and J. A. Winsten, eds.), pp. 119–146, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  7. 7.
    Creech, J. L., and Johnson, M. N., 1974, Angiosarcomas of the liver in the manufacture of polyvinyl chloride, J. Occup. Med. 16: 150–153.PubMedGoogle Scholar
  8. 8.
    Weisburger, E. K., 1981, N-Substituted aryl compounds in carcinogenesis and mutagenesis, Natl. Cancer Inst. Monog. 58: 1–7.Google Scholar
  9. 9.
    So, B. H., and Wynder, E. L., 1972, Introduction of hamster tumors of the urinary bladder by 3,2’dimethyl-4-aminobiphenyl, J. Natl. Cancer Inst. 48: 1733–1738.PubMedGoogle Scholar
  10. 10.
    Irving, C. C., Wieseman, J. R., and Young, J. M., 1967, Carcinogenicity of 2-acetylaminofluorene in the rabbit, Cancer Res. 27: 838–848.PubMedGoogle Scholar
  11. 11.
    Miller, E. C., Miller, J. A., and Enomoto, M., 1964, The comparative carcinogenicities of 2-acetylaminofluorene and its N-hydroxy metabolite in mice, hamsters, and guinea pigs, Cancer Res. 24: 2018–2031.PubMedGoogle Scholar
  12. 12.
    Thorgeirsson, S. S., 1984, Metabolic determinants in the carcinogenicity of aromatic amines, in: Biochemical Basis of Chemical Carcinogenesis ( H. Geim, ed.), pp. 47–54, Raven, New York.Google Scholar
  13. 13.
    Cartwright, R. A., 1984, Epidemiological studies on N-acetylation and C-center oxidation in neoplasia, in: Genetic Variability in Responses to Chemical Exposure, Banbury Reports, Volume 16 ( G. S. Omenn and H. V. Gelboin, eds.), pp. 359–365, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  14. 14.
    Van Duuren, B. L., Katz, C., Goldschmidt, M., Frenkel, K., and Sivak, A., 1972, Carcinogenicity of halo-ethers. II. Structure—activity relationships of analogs of bis(chloromethyl)ether, J. Natl. Cancer Inst. 48: 1431–1439.PubMedGoogle Scholar
  15. 15.
    Laskin, S., Kuschner, M., Drew, R. T., Cappiello, V. P., and Nelson, N., 1971, Tumors of the respiratory tract induced by inhalation of bis(chloromethyl)ether, Arch. Environ. Health 23: 135–136.PubMedGoogle Scholar
  16. 16.
    Leong, B. K. J., MacFarland, H. N., and Reese, W. H., Jr., 1971, Induction of lung adenomas by chronic inhalation of bis(chloromethyl)ether, Arch. Environ. Health 22: 663–666.PubMedGoogle Scholar
  17. 17.
    Bartsch, H., Terracokini, B., Malaveille, C., Tomatis, L., Wahrendorf, J., Burn, G., and Dodet, B., 1983, Quantitative comparison of carcinogenicity, mutagenicity, and electrophilicity of 10 direct-acting alkylating agents and of the initial 06: 7 alkylguanine ratio in DNA with carcinogenic potency in rodents, Mutat. Res. 110: 181–219.PubMedGoogle Scholar
  18. 18.
    Garte, S. J., Hood, A. T., Hochwalt, A. E., D’Eustachio, P., Snyder, C. A., Segal, A., and Albert, R. E., 1985, Carcinogen specificity in the activation of transforming genes by direct-acting alkylating agents, Carcinogenesis 6: 1709–1712.PubMedCrossRefGoogle Scholar
  19. 19.
    IARC, 1978, Some nitroso compounds, IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, Vol. 17, pp. 191–215, International Agency for Research on Cancer, Lyons, France.Google Scholar
  20. 20.
    Berman, J. J., and Rice, J. M., 1980, Odontogenic tumours produced in Fischer rats by a single intraportal injection of methylnitrosourea, Arch. Oral Biol. 25: 213–220.PubMedCrossRefGoogle Scholar
  21. 21.
    Kleihues, P., Bucheler, J., and Riede, U. N., 1978, Selective induction of melanomas in gerbils (Meriones unguiculatus) following postnatal administration of N-ethyl-N-nitrosourea, J. Natl. Cancer Inst. 61: 859–863.PubMedGoogle Scholar
  22. 22.
    IARC, 1978, Some nitroso compounds, IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans, Voi. 17, pp. 227–255, International Agency for Research on Cancer, Lyons, France.Google Scholar
  23. 23.
    Thomas, C., Sierra, J. L., and Kersting, G., 1968, Neurogene Tumoren bei Ratten nach intraperitonealer Applikation von N-Nitroso-N-methyl-hamstoff, Naturwissenschaften 55: 183.PubMedCrossRefGoogle Scholar
  24. 24.
    Swenberg, J. A., Koestner, A., and Wechsler, W., 1972, The induction of tumors of the nervous system with intravenous methylnitrosourea, Lab. Invest. 26: 75–85.Google Scholar
  25. 25.
    Joshi, V. V., and Frei, J. V., 1970, Effects of dose and schedule of methylnitrosourea on incidence of malignant lymphoma in adult female mice, J. Natl. Cancer Inst. 45: 335–339.PubMedGoogle Scholar
  26. 26.
    Reznik, G., Mohr, U., and Kmock, N., 1976, Carcinogenic effect of different nitroso-compounds in Chinese hamsters: N-dibutylnitrosamine and N-nitrosomethylurea, Cancer Leu. 1:183–188.Google Scholar
  27. 27.
    Mohr, U., Haas, H., and Hilfrich, J., 1974, The carcinogenic effects of dimethylnitrosamine and nitrosomethylurea in European hamsters (Cricetus cricetus L.), Br. J. Cancer 29: 359–364.PubMedCrossRefGoogle Scholar
  28. 28.
    Haas, H., Hilfrich, J., Kmoch, N.. and Mohr, U., 1975, Specific carcinogenic effect of N-methyl-Nnitrosourea on the midventral sebaceous gland of the gerbil (Meriones unguiculatus), J. Natl. Cancer Inst. 55: 637–640.PubMedGoogle Scholar
  29. 29.
    Stavrou, D., Haglid, K. G., and Weidenbach, W., 1975, Experimentelle Induktion neurogener Tumoren beim Hund durch chronische parenterale Applikation von Methylnitrosoharnstoff, in: Proceedings of the Eighth International Congress of Neuropathology, Budapest, 1974, pp. 425–431, Excerpts Medica, Amsterdam.Google Scholar
  30. 30.
    Denlinger, R. J., Koestner, A., and Swenberg, J. A., 1978, Neoplasms in purebred boxer dogs following long-term administration of N-methyl-N-nitrosourea, Cancer Res. 38: 1711–1717.PubMedGoogle Scholar
  31. 31.
    Bots, G. T. A. M., and Willinghagen, R. G. T., 1975, Tumors in the mammary gland induced in Lewis rats by intravenous methylnitrosourea, Br. J. Cancer 31: 372–374.PubMedCrossRefGoogle Scholar
  32. 32.
    Terracini, B., and Testa, M. C., 1970, Carcinogenicity of a single administration of N-nitrosomethylurea: A comparison between newborn and 5-week-old mice and rats, Br. J. Cancer 24: 588–598.PubMedCrossRefGoogle Scholar
  33. 33.
    IARC, 1976, Some naturally occurring substances, IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Man, Vol. 10, pp. 73–77, International Agency for Research on Cancer, Lyons, France.Google Scholar
  34. 34.
    Roebuck, B. D., and Longnecker, D. S., 1977, Species and rat strain variation in pancreatic nodule induction by azaserine, J. Natl. Cancer Inst. 59: 1273–1278.PubMedGoogle Scholar
  35. 35.
    Roebuck, B. D., and Longnecker, D. S., 1979, Response of two rodents, Mastomys natalensis and Mystromys albicaudatus, to the pancreatic carcinogen, azaserine, J. Natl. Cancer Inst. 62: 1264–1272.Google Scholar
  36. 36.
    Stoner, G. D., Lonram, P. B., Greisiger, E. A., Stober, J., Morgan, M., and Pereira, M. A., 1986, Comparison of two routes of chemical administration on the lung adenoma response in strain A/J mice, Toxicol. Appl. Pharmacol. 82: 19–31.PubMedCrossRefGoogle Scholar
  37. 37.
    Lhoste, E. F., Roebuck, B. D., Brinck-Johnsen, T., and Longnecker, D. S., 1987, Effect of castration and hormone replacement on azaserine-induced pancreatic carcinogenesis in male and female F344 rats, Carcinogenesis 8: 699–703.PubMedCrossRefGoogle Scholar
  38. 38.
    Liener, I. E., and Hasdai, A., 1986, The effect of the long-term feeding of raw soy flour on the pancreas of the mouse and hamster, Adv. Exp. Med. Biol. 199: 189–197.PubMedGoogle Scholar
  39. 39.
    Lhoste, E. F., and Longnecker, D. S., 1987, Effect of bombesin and caerulein on the early stages of carcinogenesis induced by azaserine in the rat pancreas, Cancer Res. 47: 3273–3277.PubMedGoogle Scholar
  40. 40.
    IARC, 1978, Some N-nitroso compounds, IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, Vol. 17, pp. 83–124, International Agency for Research on Cancer, Lyons, France.Google Scholar
  41. 41.
    IARC, 1978, Some N-nitroso compounds, IARC Monograph on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, Vol. 17, pp. 125–175, International Agency for Research on Cancer, Lyons, France.Google Scholar
  42. 42.
    Adamson, R. H., and Sieber, S. M., 1983, Chemical carcinogenesis studies in nonhuman primates, in: Organ and Species Specificity in Chemical Carcinogenesis ( R. Langenbach, S. Nesnow, and J. M. Rice, eds.), pp. 129–156, Plenum, New York.Google Scholar
  43. 43.
    Hard, G. C., 1979, Effect of age at treatment on incidence and type of renal neoplasm induced in the rat by a single dose of dimethylnitrosamine, Cancer Res. 39: 4965–4970.PubMedGoogle Scholar
  44. 44.
    Lijinsky, W., 1983, Species specificity in nitrosamine carcinogenesis, in: Organ and Species Specificity in Chemical Carcinogenesis ( R. Langenbach, S. Nesnow, and J. M. Rice, eds.), pp. 63–75, Plenum, New York.Google Scholar
  45. 45.
    Lijinsky, W., Saavedra, J. E., Nutsen, G. L., and Kovach, R. M., 1984, Comparison of the carcinogenic effectiveness of N-nitroso-bis(2-hydroxypropyl)amine, N-nitroso-bis(2-oxypropyl)amine, N-nitroso(2-hydroxypropyl(2-oxypropyl)amine and N-nitroso-2,6-dimethylmorpholine in Syrian hamsters, J. Natl. Cancer Inst. 72: 685–688.PubMedGoogle Scholar
  46. 46.
    Cardy, R. H., and Lijinsky, W., 1980, Comparison of the carcinogenic effects of five nitrosamines in guinea pigs, Cancer Res. 40: 1879–1884.PubMedGoogle Scholar
  47. 47.
    Keefer, L. K., Anjo, T., Wade, D., Wang, T., and Yang, C. S., 1987, Concurrent generation of methylamine and nitrite during denitrosation of N-nitrosodimethylamine by rat liver microsomes, Cancer Res. 47: 447–452.Google Scholar
  48. 48.
    Michejda, C. J., Kroeger-Koepke, M. B., Koepke, S. R., Magee, P. N., and Chu, C., 1982, Nitrogen formation during in vivo and in vitro metabolism of N-nitrosamines, Banbury Rep. 12: 69–85.Google Scholar
  49. 49.
    Heath, D. F., and Dutton, A., 1958, The detection of metabolic products from dimethylnitrosamine in rats and mice, Biochem. J. 70: 619–626.PubMedGoogle Scholar
  50. 50.
    Preussmann, R., and Stewart, B. W., 1984, N-nitroso carcinogens, in: Chemical Carcinogens, 2nd ed. (C. E. Searle, ed.), pp. 643–828, American Chemical Society Monograph 182, American Chemical Society, Washington, D.C.Google Scholar
  51. 51.
    Kokkinakis, D. M., Scarpelli, D. G., Subbarao, V., and Hollenberg, P. F., 1987, Species differences in the metabolism of N-nitroso(2-hydroxypropyl)(2-oxypropyl)amine, Carcinogenesis 8: 295–303.PubMedCrossRefGoogle Scholar
  52. 52.
    Kleihues, P., and Margison, G. P., 1974, Carcinogenicity of N-methyl-N-nitrosourea. Possible role of excision repair of 06-methylguanine from DNA, J. Natl. Cancer Inst. 53: 1839–1842.PubMedGoogle Scholar
  53. 53.
    Margison, G. P., and Kleihues, P., 1975, Chemical carcinogenesis in the nervous system. Preferential accumulation of 06-methylguanine in rat brain deoxyribunucleic acid during repetitive administration of N-methyl-N-nitrosourea, Biochem. J. 148: 521–525.PubMedGoogle Scholar
  54. 54.
    Kleihues, P., Hodgson, R. M., Veit, C., Schweinsberg, F., and Wiessler, M., 1983, DNA modification and repair in vivo: Towards a biochemical basis of organo-specific carcinogenesis by methylating agents, in: Organ and Species Specificity in Chemical Carcinogenesis ( R. Langenbach, S. Nesnow, and J. M. Rice, eds.), pp. 509–528, Plenum, New York.Google Scholar
  55. 55.
    Kleihues, P., Magee, P. N., Austoker, J., Cox, D., and Mathias, A. P., 1973, Reaction of N-methyl-Nnitrosourea with DNA of neuronal and glial cells in vivo, FEBS Lett. 32: 105–108.PubMedCrossRefGoogle Scholar
  56. 56.
    Pegg, A. E., 1984, Methylation of 06 positions of guanine in DNA is the most likely initiating event in carcinogenesis by methylating agents, Cancer Invest. 2: 223–231.PubMedCrossRefGoogle Scholar
  57. 57.
    Swenberg, J. A., Dyroff, M. C., Bedell, M. A., Popp, J. A., Huh, N., Kirstein, A., and Rajewsky, M. F., 1984, 04-Ethyldeoxythymidine, but not 06-ethyldeoxyguanosine, accumulates in DNA of hepatocytes of rats exposed continuously to diethylnitrosamine, Proc. Natl. Acad. Sci. USA 81: 1692–1695.Google Scholar
  58. 58.
    Zurlo, J., Roebuck, B. D., Rutkowski, J. V., Curphey, T. J., and Longnecker, D. S., 1984, Effect of pyridoxal deficiency on pancreatic DNA damage and nodule induction by azaserine, Carcinogenesis 5: 555–558.PubMedCrossRefGoogle Scholar
  59. 59.
    Roebuck, B. D., Lilja, H. S., Curphey, T. J., and Longnecker, D. S., 1980, Pathological and biochemical effects of azaserine in inbred Wistar/Lewis rats and noninbred CD1 mice, J. Natl. Cancer Inst. 65: 383–389.PubMedGoogle Scholar
  60. 60.
    Bishop, J. M., 1983, Cellular oncogenes and retroviruses, Annu. Rev. Biochem. 52: 301–354.PubMedCrossRefGoogle Scholar
  61. 61.
    Barbacid, M., 1987, ras Genes, Annu. Rev. Biochem. 56: 779–827.Google Scholar
  62. 62.
    Sukumar, S., Notano, V., Martin-Zanca, D., and Barbacid, M., 1983, Induction of mammary carcinomas in rats by nitrosomethylurea involves malignant activation of H-ras-1 locus by single point mutations, Nature (Lond.) 306: 658–661.CrossRefGoogle Scholar
  63. 63.
    Zarbl, H., Sukumar, S., Arthur, A. V., Martin-Zanca, D., and Barbacid, M., 1985, Direct mutagenesis of H-ras-1 oncogenes by N-nitroso-N-methylurea during initiation of mammary carcinogenesis in rats, Nature (Lond.) 315: 382–385.CrossRefGoogle Scholar
  64. 64.
    Balmain, A., and Pragneil, I. B., 1983, Mouse skin carcinomas induced in vivo by chemical carcinogens have a transforming Harvey-ras oncogene, Nature (Lond.) 303: 72–74.CrossRefGoogle Scholar
  65. 65.
    Balmain, A., Ramsden, M., Bowden, G. T., and Smith, J., 1984, Activation of the mouse cellular Harvey-ras gene in chemically induced benign skin papillomas, Nature (Lond.) 307: 658–660.CrossRefGoogle Scholar
  66. 66.
    Pelling, J. C., Ernst, S. M., Strawhecker, J. M., Johnson, J. A., Nairn, R. S., and Slaga, T. J., 1986, Elevated expression of Ha-ras is an early event in two stage skin carcinogenesis in SENCAR mice, Carcinogenesis 7: 1599–1602.PubMedCrossRefGoogle Scholar
  67. 67.
    Bizub, D., Wood, A. W., and Skulka, A. M., 1986, Mutagenesis of the H-ras oncogene in mouse skin tumors induced by polycyclic aromatic hydrocarbons, Proc. Natl. Acad. Sci. USA 83: 6048–6052.PubMedCrossRefGoogle Scholar
  68. 68.
    Reynolds, S. H., Stowers, S. J., Maronpot, R. R., Anderson, M. W., and Aaronson, S. A., 1986, Detection and identification of activated oncogenes in spontaneously occurring benign and malignant hepatocellular tumors of the B6C3F1 mouse, Proc. Natl. Acad. Sci. USA 83: 33–37.PubMedCrossRefGoogle Scholar
  69. 69.
    Wiseman, R. W., Stowers, S. J., Miller, E. C., Anderson, M. W., and Miller, J. A., 1986, Activating mutations of the c-Ha-ras proto-oncogene in chemically induced hepatomas of the male B6C3F1 mouse, Proc. Natl. Acad. Sci. USA 83: 5825–5829.PubMedCrossRefGoogle Scholar
  70. 70.
    McMahon, G., Hanson, L., Lee, J. J., and Wogan, G. N., 1986, Identification of an activated c-Ki-ras oncogene in rat liver tumors induced by aflatoxin B1, Proc. Natl. Acad. Sci. USA 83: 9418–9422.PubMedCrossRefGoogle Scholar
  71. 71.
    Sukumar, S., Perantoni, A., Reed, C., Rice, J. M., and Wenk, M., 1986, Activated K-ras and N-ras oncogenes in primary renal mesenchymal tumors induced in F344 rats by methyl(methoxymethyl)nitrosamine, Mol. Cell. Biol. 6: 2716–2720.PubMedGoogle Scholar
  72. 72.
    Eva, A., and Aaronson, S. A., 1983, Frequent activation of c-Ki-ras as a transforming gene in fibrosarcomas induced by methylcholanthrene, Science 220: 955–956.PubMedCrossRefGoogle Scholar
  73. 73.
    Tahira, T., Hayashi, K., Ochiai, M., Tsuchidu, N., Nagao, M., and Sugimura, T., 1986, Structure of the c-K-ras gene in a rat fibrosarcoma induced by 1,8-dinitropyrene, Mol. Cell. Biol. 6: 1349–1351.PubMedGoogle Scholar
  74. 74.
    Stowers, S. J., Glover, P. L., Reynolds, S. H., Boone, L. R., Maronpot, R. R., and Anderson, M. W., 1987, Activation of the K-ras proto-oncogene in lung tumors from rats and mice chronically exposed to tetranitromethane, Cancer Res. 47: 3212–3219.PubMedGoogle Scholar
  75. 75.
    Santos, E., Martin-Zanca, D., Reddy, P., Pierotti, M., Della Porta, G., and Barbacid, M., 1984, Malignant activation of a K-ras oncogene in lung carcinoma but not in normal tissue of the same patient, Science 223: 661–664.PubMedCrossRefGoogle Scholar
  76. 76.
    Schechter, A. L., Stern, D. F., Vaidyanathan, L., Decker, S. J., Drebin, J. A., Greene, M. I., and Weinberg, R. A., 1984, The neu oncogene: An erb-B-related gene encoding a 185,000-M,. tumor antigen, Nature (Lond.) 312: 513–516.CrossRefGoogle Scholar
  77. 77.
    Bargmann, C., Hung, M., and Weinberg, R., 1986, Multiple independent activations of the neu oncogene by a point mutation altering the transmembrane domain of p185, Cell 45: 644–657.CrossRefGoogle Scholar
  78. 78.
    Perantoni, A. O., Rice, J. M., Reed, C. D., Watatani, M., and Wenk, M. L., 1987, Activated neu oncogene sequence in primary tumors of the peripheral nervous system induced in rats by transplacental exposure to ethylnitrosourea, Proc. Natl. Acad. Sci. USA 84: 6317–6321.PubMedCrossRefGoogle Scholar
  79. 79.
    Brown, K., Quintanilla, M., Ramsden, M., Kerr, I. B., Young, S., and Balmain, A., 1986, V-ras genes from Harvey and BALB murine sarcoma viruses can act as initiators of two-stage mouse skin carcinogenesis, Cell 46: 447–456.PubMedCrossRefGoogle Scholar
  80. 80.
    Kinsella, A. R. and Radman, M., 1978, Tumor promoter induces sister chromatid exchanges: Relevance to mechanisms of carcinogenesis, Proc. Natl. Acad. Sci. USA 75: 6149–6153.PubMedCrossRefGoogle Scholar
  81. 81.
    Newbold, R. F., and Overell, R. W., 1983, Fibroblast immortality is a prerequisite to transformation by EJ c-Ha-ras oncogene, Nature (Load.) 304: 468–651.CrossRefGoogle Scholar
  82. 82.
    Quintanilla, M., Brown, K., Ramsden, M., and Balmain, A., 1986, Carcinogen-specific mutation and amplification of Ha-ras during mouse skin carcinogenesis, Nature (Lond.) 322: 78–80.CrossRefGoogle Scholar
  83. 83.
    Eva, A., and Trimmer, R. W., 1986, High frequency of c-K-ras activation in 3-methylcholanthreneinduced mouse thymomas, Carcinogenesis 7: 1931–1933.PubMedCrossRefGoogle Scholar
  84. 84.
    Guerrero, I., Calzada, P., Mayer, A., and Pellicer, A., 1984, A molecular approach to leukemogenesis: mouse lymphomas contain an activated c-ras oncogene, Proc. Natl. Acad. Sci. USA 81: 202–205.PubMedCrossRefGoogle Scholar
  85. 85.
    Dandekar, S., Sukumar, S., Zarbl, H., Young, L. J., and Cardiff, R. D., 1986, Specific activation of the cellular Harvey-ras oncogene in dimethylbenzanthracene-induced mouse mammary tumors, Mol. Cell. Biol. 6: 4104–4108.PubMedGoogle Scholar
  86. 86.
    Reynolds, S. H., Stowers, S. J., Patterson, R. M., Maronpot, R. R., Arronson, S. A., and Anderson, M. W., 1987, Activated oncogenes in B6C3F1 mouse liver tumors: Implications for risk assessment, Science 237: 1309–1316.PubMedCrossRefGoogle Scholar
  87. 87.
    McMahon, G., Davis, E., and Wogan, G. N., 1987, Characterization of c-K-ras oncogene alleles by direct sequencing of enzymatically amplified DNA from carcinogen-induced tumors, Proc. Natl. Acad. Sci. USA 84: 4974–4978.PubMedCrossRefGoogle Scholar
  88. 88.
    Montesano, R., and Slaga, T. J., 1983, Initiation and promotion in carcinogenesis: An appraisal, Cancer Surv. 2: 613–621.Google Scholar
  89. 89.
    Peraino, C., Fry, R. J., and Staffeldt, E., 1971, Reduction and enhancement by phenobarbital of hepatocarcinogenesis induced in the rat by 2-acetylaminofluorene, Cancer Res. 31: 1506–1512.PubMedGoogle Scholar
  90. 90.
    Williams, G. M., and Furuya, K., 1984, Distinction between liver neoplasm promoting and syncarcinogenic effects demonstrated by exposure to phenobarbital or diethylnitrosamine either before or after N-2-fluorenylacetamide, Carcinogenesis 5: 171–174.PubMedCrossRefGoogle Scholar
  91. 91.
    Chen, T.-H., Kavanagh, T. J., Chang, C. C., and Trosko, J. E., 1984, Inhibition of metabolic cooperation in Chinese hamster V79 cells by various organic solvents and simple compounds, Cell Biol. Toxicol. 1: 155–171.PubMedCrossRefGoogle Scholar
  92. 92.
    Boutwell, R. K., 1964, Some biological aspects of skin carcinogenesis, Progr. Exp. Tumor Res. 4: 207–250.PubMedGoogle Scholar
  93. 93.
    Slaga, T. J., 1983, Cellular and molecular mechanisms of tumor promotion, Cancer Surv. 2: 595–612.Google Scholar
  94. 94.
    Fujiki, H., and Sugimura, T., 1983, New potent tumor promoters: Teleocidin, lyngbyatoxin A and aplysiatoxin, Cancer Surv. 2: 539–556.Google Scholar
  95. 95.
    Suganuma, M., Fujiki, H., Morino, K., Takayama, S., and Sugimura, T., 1987, Tumor producing activity of teleocidin in skin and forestomach of mice initiated transplacentally with 7,12-dimethylbenz(a)anthracene, J. Cancer Res. Clin. Oncol. 113: 123–125.PubMedCrossRefGoogle Scholar
  96. 96.
    Nimomiya, M., Fujiki, H., Paik, N. S., Hakii, H., Suganuma, M., Hitotsuyanagi, Y., Aimi, N., Sakai, S., Endo, Y., Shudo, K., and Sugimura, T., 1986, Des-O-methylolivoretin C is a new member of the teleocidin class of tumor promoters, Jpn. J. Cancer Res. 77: 222–225.Google Scholar
  97. 97.
    Fujiki, H., Suganuma, M., Nakayasu, M., Hakii, H., Horiuchi, T., Takayama, S., and Sugimura, T., 1986, Palytoxin is a non-12-O-tetradecanoylphorbol-13-acetate type tumor promoter in two-stage mouse skin carcinogenesis, Carcinogenesis 7: 707–710.PubMedCrossRefGoogle Scholar
  98. 98.
    Shubik, P., 1950, Studies on the promoting phase in the stages of carcinogenesis in mice, rabbits and guinea pigs, Cancer Res. 10: 13–17.Google Scholar
  99. 99.
    Goerttler, K., Loehrke, H., Schweizer, J., and Hesse, B., 1980, Positive two stage carcinogenesis in female Sprague-Dawley rats using DMBA as initiator and TPA as promoter, Virchows Arch. 385: 181–186.Google Scholar
  100. 100.
    Schweizer, J., Loehrke, H., Edler, L., and Goerttler, K., 1987, Benzoyl peroxide promotes the formation of melanotic tumors in the skin of 7,12-dimethylbenz[a]anthracene-initiated Syrian golden hamsters, Carcinogenesis 8: 479–482.PubMedCrossRefGoogle Scholar
  101. 101.
    Siskin, E. E., and Barret, J. C., 1987, Hyperplasia of Syrian hamster epidermis induced by single but not multiple treatments with 12-O-tetradecanoylphorbol-13-acetate, Cancer Res. 41: 346–350.Google Scholar
  102. 102.
    Shoyab, M., Warren, T. C., and Todaro, C. J., 1982, Phorbol 12,13-diester, 12-ester hydrolase may prevent tumor promotion by phorbol diesters in skin, Nature (Lond.) 295: 152–154.CrossRefGoogle Scholar
  103. 103.
    Schulte-Hermann, R., 1985, Tumor promotion in liver, Arch. Toxicol. 57: 147–158.PubMedCrossRefGoogle Scholar
  104. 104.
    Ward, J. M., Rice, J. M., Creasia, D., Lynch, P., and Riggs, C., 1983, Dissimilar patterns of promotion by di(2-ethylhexyl)phthalate and phenobarbital of hepatocellular neoplasia initiated by diethylnitrosamine in B6C3F1 mice, Carcinogenesis 4: 1021–1029.PubMedCrossRefGoogle Scholar
  105. 105.
    Ito, N., Fukushima, S., and Tsuda, H., 1986, Carcinogenicity and modification of the carcinogenic response by BHA, BHT, and other antioxidants, in: CRC Critical Reviews in Toxicology, Vol. 15 ( D. B. Clayson, D. Krewski, and I. Munro, eds.), pp. 109–149, CRC Press, Boca Raton, Florida.Google Scholar
  106. 106.
    Hicks, M. R., 1982, Promotion in bladder cancer, in: Carcinogenesis and Biological Effects of Tumor Promoters, Vol. 7 (E. Hecker, N. E. Fusenig, W. Kunz, F. Marks, and H. W. Thielman, eds.), pp. 139–154, Raven, New York.Google Scholar
  107. 107.
    Narisawa, T., Magadia, N. E., Weisburger, J. H., and Wynder, E. L., 1974, Promoting effect of bile acids on colon carcinogenesis after intrarectal instillation of N-methyl-N-nitro-N-nitrosoguanidine in rats, J. Natl. Cancer Inst. 53: 1093–1097.PubMedGoogle Scholar
  108. 108.
    Diwan, B. A., Ward, J. M., Anderson, L. M., Hagiwara, A., and Rice, J. M.. 1986, Lack of effect of phenobarbital on hepatocellular carcinogenesis initiated by N-nitrosodiethylamine or methylazoxymethanol acetate in male Syrian golden hamsters, Toxicol. Appl. Pharmacol. 86: 298–307.PubMedCrossRefGoogle Scholar
  109. 109.
    Tanaka, T., Mori, H., and Williams, G. M., 1987, Enhancement of dimethylnitrosamine-initiated hepatocarcinogenesis in hamster by subsequent administration of carbon tetrachloride but not phenobarbital or p,p’-dichlorodiphenyltrichloroethane, Carcinogenesis 8: 1171–1178.PubMedCrossRefGoogle Scholar
  110. 110.
    Palmer, A. E., Rice, J. M., Ward, J. M., Ohshima, M., Cicmanec, J. L., Dove, L. F., and Lynch, P. H., 1984, Promotion by sodium phenobarbital of liver tumors initiated by diethylnitrosamine in the patas monkey, Proc. Am. Assoc. Cancer Res. 25: 141.Google Scholar
  111. 111.
    Nims, R. W., Devor, D. E., Henneman, J. R., and Lubet, R. A., 1987, Induction of alkoxyresorufin Odealkylases, epoxide hydrolase, and liver weight gain, correlation with liver tumor-promoting potential in a series of barbiturates, Carcinogenesis 8: 67–71.PubMedCrossRefGoogle Scholar
  112. 112.
    Diwan, B. A., Rice, J. M., Hu, H., and Ward, J. M., 1986, Barbiturate structure/tumor promotion relationships: Tumor promoting effects of two long-acting hypnotic barbiturates, 5,5-diallylbarbituric acid and 5-allyl-5-isopropylbarbituric acid, and two monosubstituted analogs of phenobarbital, 5-ethyl-and 5phenyl-barbituric acid in rat liver, Proc. Am. Assoc. Cancer Res. 27: 141.Google Scholar
  113. 113.
    Shinozuka, H., Lombardi, B., and Abanobi, S. E., 1982, A comparative study of the efficacy of four barbiturates as promoters of the development of -y-glutamyltranspeptidase-positive foci in the liver of carcinogen treated rats, Carcinogenesis 3: 1017–1020.PubMedCrossRefGoogle Scholar
  114. 114.
    Peraino, C., 1981, Initiation and promotion of liver tumorigenesis, Natl. Cancer Inst. Monog. 58: 55–61.Google Scholar
  115. 115.
    Diwan, B. A., Rice, J. M., Ohshima, M., Ward, J. M., and Dove, L. F., 1985, Comparative tumor promoting activities of phenobarbital, amobarbital, barbital sodium, and barbituric acid on livers and other organs of male F344/NCr rats following initiation with N-nitrosodiethylamine, J. Natl. Cancer Inst. 74: 325–336.Google Scholar
  116. 116.
    Hagiwara, A., Diwan, B. A., Rice, J. M., and Ward, J. M., 1987, Toxic and tumor promoting effects of sodium salts of phenobarbital and barbital on bladder tumors initiated by FANFT in F344 rats, Toxicologist 7: 103.Google Scholar
  117. 117.
    Diwan, B. A., Rice, J. M., Nims, R. A., and Ward, J. M., 1987, Tumor promoting effects of two hydantoin derivatives, 5-ethyl-5-phenyl hydantoin and 5,5-diethylhydantoin in rat liver, Proc. Am. Assoc. Cancer Res. 28: 169.Google Scholar
  118. 118.
    Diwan, B. A., Rice, J. M., and Ward, J. M., 1986, Tumor-promoting activity of benzodiazepine tranquilizers, diazepam and oxazepam, in mouse liver, Carcinogenesis 7: 789–794.PubMedCrossRefGoogle Scholar
  119. 119.
    Preat, V., de Gerlache, J., Lans, M., and Roberfroid, M., 1987, Promoting effect of oxazepam in rat hepatocarcinogenesis, Carcinogenesis 8: 97–100.Google Scholar
  120. 120.
    Hino, O., and Kitagawa, T., 1982, Effect of diazepam on hepatocarcinogenesis in the rat, Toxicol. Lett. 11: 155–157.PubMedCrossRefGoogle Scholar
  121. 121.
    Schwartz, M. A., Bommer, P., and Vane, F. M., 1983, Diazepam metabolites in the rat: Characterization by high resolution mass spectrometry and nuclear magnetic resonance, Arch. Biochem. Biophys. 121: 508–516.CrossRefGoogle Scholar
  122. 122.
    Marcucci, F., Fanelli, R., Mussini, E., and Garattini, S., 1970, Further studies on species differences in diazepam metabolism, Eur. J. Pharmacol. 9: 253–256.PubMedCrossRefGoogle Scholar
  123. 123.
    Yanagi, S., Sakamoto, M., Takahashi, S., Tsutsumi, M., Konishi, Y., Shibata, K., and Kamiya, T., 1987, Promotion of hepatocarcinogenesis by suxibuzone in rats initiated with 3’-methyl-4-dimethylaminoazobenzene, Cancer Lett. 36: 11–18.PubMedCrossRefGoogle Scholar
  124. 124.
    Carr, B. J., Reilly, J. G., and Riggs, A. D., 1984, 5-Azacytidine: Promotion activity for rat hepatocellular carcinoma, in: Models, Mechanisms and Etiology of Tumor Promotion (M. Borszonyi, N. E. Day, K. Lapis, and H. Yamasaki, eds.), pp. 409–412. IARC Scientific Publication No. 56, International Agency for Research on Cancer, Lyons, France.Google Scholar
  125. 125.
    Dragani, T. A., Manenti, G., Galliani, G., and Della Porta, G., 1985, Promoting effects of 1,4bis[2-(3,5-dichloropyridyloxy)]benzene in mouse hepatocarcinogenesis, Carcinogenesis 6: 225–228.PubMedCrossRefGoogle Scholar
  126. 126.
    Shirai, T., Ohshima, M., Masuda, A., Tamano. S., and Ito, N., 1984, Promotion of 2-(ethylnitrosamino)ethanol-induced renal carcinogenesis in rats by nephrotoxic commpounds: Positive responses with folic acid, basic lead acetate, and N-(3,5-dichlorophenyl)succinimide but not with 2,3-dibromo-l-propanol phosphate, J. Natl. Cancer Inst. 72: 477–482.PubMedGoogle Scholar
  127. 127.
    Hiasa, Y., Ohshima, M., Kitahori, Y., Konishi, N., Fujita, T., and Yuasa, T., 1983, 13-cyclodextrin: Promoting effect on the development of renal tubular cell tumors in rats treated with N-ethyl-N-hydroxyethylnitrosamine, J. Natl. Cancer Inst. 69: 963–967.Google Scholar
  128. 128.
    Kurokawa. Y., Takashi, M., Kokubo, T., Ohno, Y., and Hayashi, Y., 1983, Enhancement by potassium bromate of renal tumorigenesis initiated by N-ethyl-N-hydroxyethylnitrosamine in F344 rats, Gann 74: 607–610.Google Scholar
  129. 129.
    Shinozuka, H., Abanobi, S. E., and Lombardi, B., 1983, Modulation of tumor promotion in liver carcinogenesis, Environ. Health Perspect. 50: 163–168.PubMedCrossRefGoogle Scholar
  130. 130.
    Nishio, Y., Kakizoe, T., Ohtani, M., Sato, S., Sugimura, T., and Fukushima, S., 1985, L-Isoleucine and L-leucine: Tumor promoters of bladder cancer in rats, Science 231: 843–845.CrossRefGoogle Scholar
  131. 131.
    Hiasa, Y., Enoki, N., Kitahori, Y., Konishi, N., and Shimoyama, T., 1984, DL-Serine: Promoting activity on renal tumorigenesis by N-ethyl-N-hydroxyethylnitrosamine in rats, J. Natl. Cancer Inst. 73: 297–299.PubMedGoogle Scholar
  132. 132.
    Rao, P. M., Laconi, E., Rajalakshmi, S., and Sarma, D. S. R., 1986, Orotic acid (OA), a liver tumor promoter, also promotes carcinogenesis of the intestine in the rat, Proc. Am. Assoc. Cancer Res. 27: 142.Google Scholar
  133. 133.
    Rosenberg, M. R., Novicki, D. L., Jirtle, R. L., Novotny, A., and Michalopoulos, G., 1985, Promoting effect of nicotinamide on the development of renal tubular cell tumors in rats initiated with diethylnitrosamine, Cancer Res. 45: 809–814.PubMedGoogle Scholar
  134. 134.
    Ohshima, M., and Ward, J. M., 1984, Promotion of N-methyl-N-nitrosourea-induced thyroid tumors by iodine deficiency in F344; NCr rats. J. Natl. Cancer Inst. 73: 289–296.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Bhalchandra A. Diwan
    • 1
    • 2
  • Jerry M. Rice
    • 1
    • 2
  1. 1.Biological Carcinogenesis Development ProgramProgram Resources, Inc.FrederickUSA
  2. 2.Laboratory of Comparative Carcinogenesis, National Cancer Institute, National Institutes of HealthFrederick Cancer Research FacilityFrederickUSA

Personalised recommendations