Chemical Carcinogenesis in Experimental Animals and Humans

  • Elizabeth K. Weisburger


The carcinogenic effect of exposure of humans to a mixture of chemical compounds (soot) was reported more than 200 years ago. By 1915, when Japanese research workers demonstrated the carcinogenicity of coal tar in rabbits, many cases of cancer had been noted in workers exposed to oil shales, coal tar, or dyestuff intermediates. In essence, exposed humans were the test organisms that indicated the deleterious effects of long exposure to certain substances. Unfortunately, more recent epidemiologic studies on exposed people have still been the initial indicators of carcinogenicity for some compounds.


Aromatic Amine Chemical Carcinogen Sulfur Mustard Chemical Carcinogenesis Mercapturic Acid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Miller, E. C. and Miller, J. A., 1981, Mechanisms of chemical carcinogenesis, Cancer 47: 1055–1064.PubMedCrossRefGoogle Scholar
  2. 2.
    Gamer, R. C., Martin, C. N., and Clayson, D. B., 1984, Carcinogenic aromatic agents and related compounds, in: Chemical Carcinogens, 2nd ed. (C. E. Searle, ed.), pp. 175–276, ACS Monograph 182, American Chemical Society, Washington, D. C.Google Scholar
  3. 3.
    Radomski, J. L., 1979, The primary aromatic amines: Their biological properties and structure—activity relationships, Annu. Rev. Pharmacol. Toxicol. 19: 129–157.PubMedCrossRefGoogle Scholar
  4. 4.
    Kiese, M., 1959, Oxydation von Anilin zu Nitrosobenzol im Hunde, Naunyn-Schmiedebergs Arch. Pharmakol. Exp. Pathol. 235: 354–359.Google Scholar
  5. 5.
    Weisburger, J. H., and Weisburger, E. K., 1973, Biochemical formation and pharmacological, toxicological, and pathological properties of hydroxylamines and hydroxamic acids, Pharmacol. Rev. 25: 166.Google Scholar
  6. 6.
    Nebert, D. W., Eisen, H. J., Negishi, M., Lang, M. A., and Hjelmeland, L. M., 1981, Genetic mechanisms controlling the induction of polysubstrate monooxygenase (P-450) activities, Annu. Rev. Pharmacol. Toxicol. 21: 431–462.PubMedCrossRefGoogle Scholar
  7. 7.
    Thorgeirsson, S. S., Sanderson, N., Park, S. S., and Gelboin, H. V., 1983, Inhibition of 2-acetylaminofluorene oxidations by monoclonal antibodies specific to 3-methylcholanthrene-induced rat liver cytochrome P450, Carcinogenesis 4: 639–641.PubMedCrossRefGoogle Scholar
  8. 8.
    Gram, T. E., Okine, L. K., and Gram, R. A., 1986, The metabolism of xenobiotics by certain extrahepatic organs and its relation to toxicity, Annu. Rev. Pharmacol. Toxicol. 26: 259–291.PubMedCrossRefGoogle Scholar
  9. 9.
    Weisburger, J. H., and Williams, G. M., 1982, Metabolism of chemical carcinogens, in: Cancer: A Comprehensive Treatise, 2nd ed. ( F. F. Becker, ed.), pp. 241–333, Plenum, New York.Google Scholar
  10. 10.
    Boyd, J. A., Harvan, D. J., and Eling, T. E., 1983, The oxidation of 2-aminofluorene by prostaglandin endoperoxide synthetase, J. Biol. Chem. 258: 8246–8254.PubMedGoogle Scholar
  11. 11.
    Wise, R. W., Zenser, T. V., Kadlubar, F. F., and Davis, B. B., 1984, Metabolic activation of carcinogenic aromatic amines by dog bladder and kidney prostaglandin H synthase, Cancer Res. 44: 1893–1897.PubMedGoogle Scholar
  12. 12.
    King, C. M., and Weber, W. W., 1981, Formation, metabolic activation by N,0-acyltransfer, and hydrolysis of N-acyl-N-arylamine derivatives, Natl. Cancer Inst. Monog. 58: 117–122.Google Scholar
  13. 13.
    Ritter, C. L., Malejka-Giganti, D., and Polnaszek, C. F., 1983, Cytochrome c/H202-mediated one electron oxidation of carcinogenic N-fluorenylacetohydroxamic acids to nitroxyl free radicals, Chem. Biol. Interact. 46: 317–334.PubMedCrossRefGoogle Scholar
  14. 14.
    Malejka-Giganti, D., Ritter, C. L., Decker, R. W., and Suilman, J. M., 1986, Peroxidative metabolism of a carcinogen, N-hydroxy-N-2-fluorenylacetamide, by rat uterus and mammary gland in vitro, Cancer Res. 46: 6200–6206.PubMedGoogle Scholar
  15. 15.
    Dipple, A., Michejda, C. J., and Weisburger, E. K., 1985, Metabolism of chemical carcinogens, Pharmacol. Ther. 27: 265–296.PubMedCrossRefGoogle Scholar
  16. 16.
    Corcoran, G. B., Mitchell, J. R., Vaishnav, Y. N., and Horning, E. C., 1980, Evidence that acetaminophen and N-hydroxyacetaminophen form a common arylating metabolite, N-acetyl-p-benzoquinoneimine, Mol. Pharmacol. 18: 536–542.PubMedGoogle Scholar
  17. Kadlubar, F. F., and Beland, F. A., 1985, Chemical properties of ultimate carcinogenic metabolites of arylamines and arylamides, in: Polycyclic Hydrocarbons and Carcinogenesis (R. G. Harvey, ed.), pp. 341370, ACS Symposium Series 283,American Chemical Society, Washington, D. C.Google Scholar
  18. 18.
    Pullman, A., and Pullman, B., 1955, Electronic structure and carcinogenic activity of aromatic molecules. New developments, Adv. Cancer Res. 3: 117–169.PubMedCrossRefGoogle Scholar
  19. 19.
    Dipple, A., Moschel, R. C., and Bigger, C. A. H., 1984, Polynuclear aromatic carcinogens, in: Chemical Carcinogens, 2nd ed. (C. E. Searle, ed.), ACS Monograph 182, pp. 41–163, American Chemical Society, Washington, D. C.Google Scholar
  20. 20.
    Harvey, R. G., 1985, Synthesis of the dihydrodiol and diol epoxide metabolites of carcinogenic polycyclic hydrocarbons, in: Polycyclic Hydrocarbons and Carcinogenesis, (R. G. Harvey, ed.), pp. 35–62, ACS Symposium Series 283, American Chemical Society, Washington, D. C.Google Scholar
  21. 21.
    Levin, W., Wood, A., Chang, R., Ryan, D., Thomas, P., Yagi, H., Thakker, D., Vyas, K., Boyd, C., Chu, S.-Y., Conney, A., and Jerina, D., 1982, Oxidative metabolism of polycyclic aromatic hydrocarbons to ultimate carcinogens, Drug Met. Rev. 13: 555–580.CrossRefGoogle Scholar
  22. 22.
    Robertson, I. G. C., and Jernstrom, B., 1986, The enzymatic conjugation of glutathione with bay-region diol-epoxides of benzo[a]pyrene, benz[a]anthracene and chrysene, Carcinogenesis 7: 1633–1636.PubMedCrossRefGoogle Scholar
  23. 23.
    Pitts. J. N., Jr., Lokensgard, D. M., Ripley, P. S., Cauwenberghe, K. A., Van Vaeck, L., Shaffer, S. D., Thill, A. J., and Belser, W. L., Jr., 1980, Atmospheric epoxidation of benzo[a]pyrene by ozone: Formation of the metabolite benzo[a]pyrene-4,5-oxide, Science 210: 1347–1349.CrossRefGoogle Scholar
  24. 24.
    Gelboin, H. V., 1980, Benzo[a]pyrene metabolism, activation and carcinogenesis: Role and regulation of mixed function oxidases and related enzymes, Physiol. Rev. 60: 1107–1166.PubMedGoogle Scholar
  25. 25.
    Cavalieri, E. L., and Rogan, E. G., 1985, One-electron oxidation in aromatic hydrocarbon carcinogenesis, in: Polycyclic Hydrocarbons and Carcinogenesis (R. G. Harvey, ed.), ACS Symposium Series 283, pp. 289–305, American Chemical Society, Washington, D. C.Google Scholar
  26. 26.
    Marnett, L. J., 1985, Hydroperoxide-dependent oxygenation of polycyclic aromatic hydrocarbons and their metabolites, in: Polycyclic Hydrocarbons and Carcinogenesis, (R. G. Harvey, ed.), ACS Symposium Series 283, pp. 307–326, American Chemical Society, Washington, D. C.Google Scholar
  27. 27.
    Flesher, J. W., Stansbury, K. H., and Sydnor, K. L., 1982, S-Adenosyl-L-methionine is a carbon donor in the conversion of benzo[a]pyrene to 6-hydroxymethylbenzo[a]pyrene by rat liver S-9, Cancer Lett. 16:9194.Google Scholar
  28. 28.
    Flesher, J. W., Myers, S. R., Bergo, C. H., and Blake, J. W., 1986, Bioalkylation of dibenz[a,h]anthracene in rat liver cytosol, Chem. Biol. Interact. 57: 223–233.PubMedCrossRefGoogle Scholar
  29. 29.
    Anders, M. W., Kubic, V. L., and Ahmed, A. E., 1977, Metabolism of halogenated methanes and macromolecular binding, J. Environ. Pathol. Toxicol. 1: 117–124.PubMedGoogle Scholar
  30. 30.
    Ahmed, A. E., and Anders, M. W., 1978, Metabolism of dihalomethanes to formaldehyde and inorganic halide. II. Studies on the mechanism of the reaction, Biochem. Pharmacol. 27: 2021–2025.PubMedCrossRefGoogle Scholar
  31. 31.
    Gargas, M. L., Clewell, H. J. III, and Andersen, M. E., 1986, Metabolism of inhaled dihalomethanes in vivo: Differentiation of kinetic constants for two independent pathways, Toxicol. Appl. Pharmacol. 82: 211–223.PubMedCrossRefGoogle Scholar
  32. 32.
    Bolt, H. M., Laib, R. J., Peter, H., and Ottenwalder, H., 1986, DNA adducts of halogenated hydrocarbons, J. Cancer Res. Clin. Oncol. 112: 92–96.PubMedCrossRefGoogle Scholar
  33. 33.
    Davidson, I. W. F., Sumner, D. D., and Parker, J. C., 1982, Chloroform: A review of its metabolism, teratogenic, mutagenic, and carcinogenic potential, Drug Chem. Toxicol. 5 :1–87. Google Scholar
  34. 34.
    Bartsch, H., Malavielle, C., Barbin, A., and Planche, G., 1979, Mutagenic and alkylating metabolites of haloethylenes, chlorobutadienes and dichlorobutenes produced by rodent or human liver tissues: Evidence for oxirane formation by P450-linked microsomal mono-oxygenases, Arch. Toxicol. 41: 249–277.PubMedCrossRefGoogle Scholar
  35. 35.
    Miller, R., and Guengerich, F. P., 1982, Oxidation of TCE by liver microsomal cytochrome P-450: Evidence of chlorine migration in a transition state not involving trichloroethylene oxide, Biochemistry 21: 1090–1097.PubMedCrossRefGoogle Scholar
  36. 36.
    Dekant, W., Metzler, M., and Henschler, D., 1986, Identification of S-1,2,2-trichlorovinyl-N-acetylcysteine as a urinary metabolite of tetrachloroethylene: Bioactivation through glutathione conjugation as a possible explanation of its nephrotoxicity, J. Biochem. Toxicol. 1: 57–72.PubMedCrossRefGoogle Scholar
  37. 37.
    Chellman, G. J., White, R. D., Norton, R. M., and Bus, J. S., 1986, Inhibition of the acute toxicity of methyl chloride in male B6C3F1 mice by glutathione depletion, Toxicol. Appl. Pharmacol. 86: 93–104.PubMedCrossRefGoogle Scholar
  38. 38.
    Hill, D. L., Shih, T.-W., Johnston, T. P., and Struck, R. F., 1978, Macromolecular binding and metabolism of the carcinogen 1,2-dibromoethane, Cancer Res. 38: 2438–2442.PubMedGoogle Scholar
  39. 39.
    van Bladeren, P. J., Breimer, D. D., Rotteveel-Smigs, G. M. T., de Knijff, P., Mohn, G. R., van Meeteren-Walchli, B., Buijs, W., and van der Gen, A., 1981, The relation between the structure of vicinal dihalogen compounds and their mutagenic activation via conjugation of glutathione, Carcinogenesis 2: 499505.Google Scholar
  40. 40.
    Ozawa, N., and Guengerich, F. P., 1983, Evidence for formation of an S-[2-(N7-guanyl)ethyl]glutathione adduct in glutathione-mediated binding of the carcinogen 1,2-dibromcethane to DNA, Proc. Natl. Acad. Sci. USA 80: 5266–5270.PubMedCrossRefGoogle Scholar
  41. 41.
    Reichert, D., and Schutz, S., 1986, Mercapturic acid formation is an activation and intermediary step in the metabolism of hexachlorobutadiene, Biochem. Pharmacol. 35: 1271–1275.PubMedCrossRefGoogle Scholar
  42. 42.
    Climie, I. J. G., Hutson, D. H., Morrison, B. J., and Stoydin, G., 1979, Glutathione conjugation in the detoxification of (Z)-1,3-dichloropropene (a component of the nematocide D-D) in the rat, Xenobiotica 9: 149–156.PubMedCrossRefGoogle Scholar
  43. 43.
    Bond, J. A., Dahl, A. R., Henderson, R. F., Dutcher, J. S., Mauderly, J. L., and Birnbaum, L. S., 1986, Species differences in the disposition of inhaled butadiene, Toxicol. Appl. Pharmacol. 84: 617–627.PubMedCrossRefGoogle Scholar
  44. 44.
    Kluwe, W. M., Gupta, B. N., and Lamb, J. C., IV., 1983, The comparative effects of 1,2-dibromo-3chloropropane (DBCP) and its metabolites, 3-chloro-1,2-propaneoxide (epichlorohydrin), 3-chloro-1,2propanediol (alphachlorohydrin), and oxalic acid, upon the urogenital system of male rats, Toxicol. Appl. Pharmacol. 70: 67–86.Google Scholar
  45. 45.
    International Agency for Research on Cancer, 1974, IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Man. Some Organochlorine Pesticides, Vol. 5, pp. 83–124, IARC, Lyons, France.Google Scholar
  46. 46.
    Williams, G. M., 1981, An epigenetic mechanism of carcinogenicity of organochlorine pesticides, in: Toxicology of Halogenated Hydrocarbons. Health and Ecological Effects ( M. A. Q. Khan and R. H. Stanton, eds.), pp. 161–170, Pergamon, New York.Google Scholar
  47. 47.
    Colvin, L. B., 1969, Metabolic fate of hydrazines and hydrazides, J. Pharm. Sci. 58: 1433–1443.PubMedCrossRefGoogle Scholar
  48. 48.
    Bosan, W. S., and Shank, R. C., 1983, Methylation of liver DNA guanine in hamsters given hydrazine, Toxicol. Appl. Pharmacol. 70: 324–334.PubMedCrossRefGoogle Scholar
  49. 49.
    Shank, R. C., 1984, Toxicity-induced aberrant methylation of DNA and its repair, Pharmacol. Rev. 36: 19S - 24S.PubMedGoogle Scholar
  50. 50.
    Bosan, W. S., Lambert, C. E., and Shank, R. C., 1986, The role of formaldehyde in hydrazine-induced methylation of liver DNA guanine, Carcinogenesis 7: 413–418.PubMedCrossRefGoogle Scholar
  51. 51.
    Lambert, C. E., Bosan, W. S., and Shank, R. C., 1986, Tetraformyltrisazine and hydrazine-induced methylation of liver DNA guanine, Carcinogenesis 7: 419–422.PubMedCrossRefGoogle Scholar
  52. 52.
    Zedeck, M. S., 1984, Hydrazine derivatives, azo and azoxy compounds, and methylazoxymethanol and cycasin, in: Chemical Carcinogens, 2nd ed. (C. E. Searle, ed.), ACS Monograph 182, pp. 915–944, American Chemical Society, Washington, D. C.Google Scholar
  53. 53.
    Toth, B., and Erickson, J., 1986, Cancer induction in mice by feeding of the uncooked cultivated mushroom of commerce Agaricus bisporus, Cancer Res. 46: 4007–4011.PubMedGoogle Scholar
  54. 54.
    Wattenberg, L. W., 1978, Inhibitors of chemical carcinogenesis, Adv. Cancer Res. 26: 197–226.PubMedCrossRefGoogle Scholar
  55. 55.
    Fiala, E. S., Kulakis, C., Christiansen, G., and Weisburger, J. H., 1978, Inhibition of the metabolism of the colon carcinogen, azoxymethane, by pyrazole, Cancer Res. 38: 4515–4521.PubMedGoogle Scholar
  56. 56.
    Lijinsky, W., 1986, The significance of N-nitroso compounds as environmental carcinogens, J. Environ. Sci. Health C4: 1–45.Google Scholar
  57. 57.
    Preussmann, R., and Stewart, B. W., 1984, N-Nitroso carcinogens, in: Chemical Carcinogens, 2nd ed. (C. E. Searle, ed.), ACS Monograph 182, pp. 643–828, American Chemical Society, Washington, D. C.Google Scholar
  58. 58.
    Jarman, M., and Manson, D., 1986, The metabolism of N-nitrosomorpholine by rat liver microsomes and its oxidation by the Fenton system, Carcinogenesis, 7: 559–565.PubMedCrossRefGoogle Scholar
  59. 59.
    Hecht, S. S., and Young, R., 1981, Metabolic a-hydroxylation of Nnitrosomorpholine and 3,3,5,5tetradeutero-N-nitrosomorpholine in the F344 rat, Cancer Res. 41: 5039–5043.PubMedGoogle Scholar
  60. 60.
    Hoffmann, D., and Hecht, S. S., 1985, Nicotine-derived N-nitrosamines and tobacco-related cancer: Current status and future directions, Cancer Res. 45: 935–944.PubMedGoogle Scholar
  61. 61.
    Hecht, S. S., Castonguay, A., Rivenson, A., Mu, B., and Hoffmann, D., 1983, Tobacco specific nitrosamines: Carcinogenicity, metabolism, and possible role in human cancer, J. Environ. Sci. Health C1:1— 54.Google Scholar
  62. 62.
    Hecht, S. S., Trushin, N., Castonguay, A., and Rivenson, A., 1986, Comparative tumorigenicity and DNA methylation in F344 rats by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and N-nitroso-dimethylamine, Cancer Res. 46: 498–502.PubMedGoogle Scholar
  63. 63.
    Busby, W. F., Jr., and Wogan, G. N., 1984, Aflatoxins, in: Chemical Carcinogens, 2nd ed. (C. E. Searle, ed.), ACS Monograph 182, pp. 945–1136, American Chemical Society, Washington, D. C.Google Scholar
  64. 64.
    Wiseman, R. W., Fennell, T. R., Miller, J. A., and Miller, E. C., 1985, Further characterization of the DNA adducts formed by electrophilic esters of the hepatocarcinogens l’-hydroxysafrole and 1’-hydroxyestragole in vitro and in mouse liver in vivo, including new adducts at C-8 and N-7 of guanine residues, Cancer Res. 45: 3096–3105.PubMedGoogle Scholar
  65. 65.
    Ribovich, M. L., Miller, J. A., Miller, E. C., and Timmins, L. G., 1982, Labeled 1,N6–ethenoadenosine and 3,N4–ethenocytidine in hepatic RNA of mice given [ethyl–1,23H or ethy1–1–14C]ethyl carbamate (urethan), Carcinogenesis 3: 539 – 546.PubMedCrossRefGoogle Scholar
  66. 66.
    Woo, Y.-T., Argus, M. F., and Arcos, J. C., 1978, Effect of mixed-function oxidase modifiers on metabolism and toxicity of the oncogen dioxane, Cancer Res. 38: 1621–1625.PubMedGoogle Scholar
  67. 67.
    Styles, J., Ashby, J., and Mattocks, A. R., 1980, Evaluation in vitro of several pyrrolizidine alkaloid carcinogens: Observations on the essential pyrrolic nucleus, Carcinogenesis 1: 161–164.PubMedCrossRefGoogle Scholar
  68. 68.
    Robertson, K. A., 1982, Alkylation of N2 in deoxyguanosine by dehydroretronecine, a carcinogenic metabolite of the pyrrolizidine alkaloid monocrotaline, Cancer Res. 42: 8–14.PubMedGoogle Scholar
  69. 69.
    Wickramanayake, P. P., Arbogast, B. L., Buhler, D. R., Deinzer, M. L., and Burlingame, A. L., 1985, Alkylation of nucleosides and nucleotides by dehydroretronecine; characterization of covalent adducts by liquid secondary ion mass spectrometry, J. Am. Chem. Soc. 107: 2485–2488.CrossRefGoogle Scholar
  70. 70.
    Winter, C. K., Segall, H. J., and Haddon, W. F., 1986, Formation of cyclic adducts of deoxyguanosine with the aldehydes trans-4-hydroxy-2-hexenal and trans-4-hydroxy-2-nonenal in vitro, Cancer Res. 46: 5682–5686.PubMedGoogle Scholar
  71. 71.
    Evans, I. A., 1984, Bracken carcinogenicity, in: Chemical Carcinogens, 2nd ed. (C. E. Searle, ed.), ACS Monograph 182, pp. 1171–1204, American Chemical Society, Washington, D. C.Google Scholar
  72. 72.
    Hirono, I., 1985, Recent advances in research on bracken carcinogen and carcinogenicity of betel nut, J. Environ. Sci. Health C3: 145–187.Google Scholar
  73. 73.
    Mehta, J. R., Przybylski, M., and Ludlum, D. B., 1980, Alkylation of guanosine and deoxyguanosine by phosphoramide mustard, Cancer Res. 40: 4183–4186.PubMedGoogle Scholar
  74. 74.
    Hemminki, K., 1985, Binding of metabolites of cyclophosphamide to DNA in a rat liver microsomal system and in vivo in mice, Cancer Res. 45: 4237–4243.PubMedGoogle Scholar
  75. 75.
    Lawley, P. D., 1984, Carcinogenesis by alkylating agents, in: Chemical Carcinogens, 2nd ed. (C. E. Searle, ed.), ACS Monograph 182, pp. 325–484, American Chemical Society, Washington, D. C.Google Scholar
  76. 76.
    Nebert, D. W., and Jensen, N. M., 1979, The Ah locus: Genetic regulation of the metabolism of carcinogens, drugs, and other environmental chemicals by cytochrome P-450-mediated monooxygenases, CRC Crit. Rev. Biochem. 8: 401–437.CrossRefGoogle Scholar
  77. 77.
    National Research Council, 1982, Diet, Nutrition and Cancer, National Academy Press, Washington, D. C.Google Scholar
  78. 78.
    Akaza, H., Murphy, W. M., and Soloway, M. S., 1984, Bladder cancer induced by noncarcinogenic substances, J. Urol. 131: 152–155.PubMedGoogle Scholar
  79. 79.
    Clayson, D. B., 1974, Bladder carcinogenesis in rats and mice: Possibility of artifacts, J. Natl. Cancer Inst. 52: 1685–1689.PubMedGoogle Scholar
  80. 80.
    Hagiwara, A., Shibata, M., Hirase, M., Fukushima, S., and Ito, N., 1984, Long-term toxicity and carcinogenicity study of sodium o-phenylphenate in B6C3F1 mice, Fd. Chem. Toxicol. 22: 809–814.CrossRefGoogle Scholar
  81. 81.
    Inskeep, P. B., Koga, N., Cmarik, J. L., and Guengerich, F. P., 1986, Covalent binding of 1,2-dihaloalkanes to DNA and stability of the major DNA adduct, S-[2-(N2-guanypethyl]glutathione, Cancer Res. 46: 2839–2844.PubMedGoogle Scholar
  82. 82.
    Goel, S. K., Lalwani, N. D., and Reddy, J. K., 1986, Peroxisome proliferation and lipid peroxidation in rat liver, Cancer Res. 46: 1324–1330.PubMedGoogle Scholar
  83. 83.
    Brusick, D., 1987, Principles of Genetic Toxicology, Plenum, New York.Google Scholar
  84. 84.
    Brown, M. M., Wasson, J. S., Mailing, H. V., Shelby, M. D., and Von Halle, E. S., 1979, Literature survey of bacterial, fungal, and Drosophila assay systems used in the evaluation of selected chemical compounds for mutagenic activity, J. Natl. Cancer Inst. 62: 841–871.PubMedGoogle Scholar
  85. 85.
    Rosenkranz, H. S., and Poirier, L. A., 1979, Evaluation of the mutagenicity and DNA-modifying activity of carcinogens and noncarcinogens in microbial systems, J. Natl. Cancer Inst. 62: 873–892.PubMedGoogle Scholar
  86. 86.
    Poirier, L. A., and deSerres, F. J., 1979, Initial National Cancer Institute studies on mutagenesis as a prescreen for chemical carcinogens: An appraisal, J. Natl. Cancer Inst. 62: 919–926.Google Scholar
  87. 87.
    International Agency for Research on Cancer, 1980, Long-term and Short-term Screening Assays for Carcinogens: A Critical Appraisal, IARC Monograph Supplement 2, IARC, Lyons, France.Google Scholar
  88. 88.
    Weinstein, I. B., Yamasaki, H., Wigler, M., Lee, L.-S., Fisher, P. B., Jeffrey, A., and Grunberger, D., 1979, Molecular and cellular events associated with the action of initiating carcinogens and tumor promoters, in: Carcinogens: Identification and Mechanisms of Action ( A. C. Griffin and C. R. Shaw, eds.), pp. 399–418, Raven, New York.Google Scholar
  89. 89.
    Fujiki, H., Mori, M., Nakayasu, M., Terada, M., Sugimura, T., and Moore, R. E., 1981, Indole alkaloids: Dihydroteleocodicin B, teleocidin, and lyngbyatoxin A as members of a new class of tumor promoters, Proc. Natl. Acad. Sci. USA 78: 3872–3876.PubMedCrossRefGoogle Scholar
  90. 90.
    Trosko, J. E., and Chang, C. C., 1986, Role of intercellular communications in modifying the consequences of mutations in somatic cells, in: Antimutagenesis and Anticarcinogenesis Mechanisms ( D. E. Shankel, P. E. Hartman, T. Kada, and A. Hollander, eds.), pp. 439–456, Plenum, New York.Google Scholar
  91. 91.
    Woo, Y.-T., Arcos, J. C., and Lai, D. Y., 1985, Structural and functional criteria for suspecting chemical compounds of carcinogenic activity: State of the art of predictive formalism, in: Handbook of Carcinogen Testing ( H. A. Milman and E. K. Weisburger, eds.), pp. 2–25, Noyes, Park Ridge, New Jersey.Google Scholar
  92. 92.
    Harris, C. C., 1987, Human tissues and cells in carcinogenesis research, Cancer Res. 47: 1–10.PubMedGoogle Scholar
  93. 93.
    Blair, A., Stewart, P., O’Berg, M., Gaffey, W., Walrath, J., Ward, J., Bales, R., Kaplan, S., and Cubit, D., 1986, Mortality among industrial workers exposed to formaldehyde, J. Natl. Cancer Inst. 76: 1071 1084.Google Scholar
  94. 94.
    Hoover, R. N., and Strasser, P. H., 1980, Artificial sweeteners and human bladder cancer, Lancet 1: 837840.Google Scholar
  95. 95.
    Silvers, A., and Crump, K. S., 1985, Examination of risk estimation models, in: Handbook of Carcinogen Testing ( H. A. Milman and E. K. Weisburger, eds.), pp. 502–525, Noyes, Park Ridge, New Jersey.Google Scholar
  96. 96.
    Turnbull, D., and Rodricks, J. V., 1985, Assessment of possible carcinogenic risks to humans resulting from exposure to di(2-ethylhexyl)phthalate(DEHP), J. Am. Coll. Toxicol. 4: 111–145.CrossRefGoogle Scholar
  97. 97.
    International Agency for Research on Cancer, 1982, IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans, IARC Monograph Supplement 4, Lyons, France.Google Scholar
  98. 98.
    U.S. Department of Health and Human Services, 1985, Fourth Annual Report on Carcinogens, U.S. Department of Health and Human Services, Washington, D. C.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Elizabeth K. Weisburger
    • 1
  1. 1.Division of Cancer Etiology, National Cancer InstituteNational Institutes of HealthBethesdaUSA

Personalised recommendations