Tumor Invasion and Metastases

Biochemical Mechanisms
  • Lance A. Liotta
  • Mary L. Stracke
  • Ulla M. Wewer
  • Elliott Schiffmann


A metastatic colony is the end result of a complicated series of tumor—host interactions.1,2 Potential mechanisms underlying this complex process are outlined in Table I. In this regard, primary tumor initiation and promotion are followed by the transition from in situ to locally invasive cancer and angiogenesis.3–6 Newly formed tumor vessels are often defective and easily invaded by tumor cells within the primary mass. At the invasion front, tumor cells also invade pre-established host blood vessels. Tumor cells are discharged into the venous drainage in single cell form and in clumps. For rapidly growing tumors 1 cm in size, millions of tumor cells can be shed into the circulation every day. Fortunately for the patient, only a very small percentage (< .01%) of circulating tumor cells initiate metastatic colonies. Tumors generally lack a well-formed lymphatic network. Therefore, communication of tumor cells with lymphatic channels occurs only at the tumor periphery and not within the tumor mass. Tumor cells entering the lymphatic drainage are carried to regional lymph nodes where they arrest in the subcapsular sinus. Within 10–60 min after initial arrest in the lymph node, a significant fraction of the tumor cells detach and enter the efferent lymphatics. These tumor cells eventually end up in the regional or systemic venous drainage due to the existence of numerous lymphatic—hematogenous communications. Thus, the regional lymph node does not function as a true mechanical barrier to tumor dissemination. Lymphatic and hematogenous dissemination occurs in parallel (see also Chapter 28).


Basement Membrane Circulate Tumor Cell Pertussis Toxin Human Melanoma Cell Metastatic Phenotype 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nicolson, G. L., and Milas, L. (eds.), 1984, Cancer Invasion and Metastasis: Biological and Therapeutic Aspects, Raven Press, New York.Google Scholar
  2. 2.
    Liotta, L. A., 1984, Tumor invasion and metastasis: Role of the basement membrane—Warner–Lambert Parke–Davis Award Lecture, Am. J. Pathol. 117: 339–348.PubMedGoogle Scholar
  3. 3.
    Schirrmacher, V., 1985, Cancer metastasis: Experimental approaches, theoretical concepts, and impacts for treatment strategies, Adv. Cancer Res. 43: 1–73.PubMedCrossRefGoogle Scholar
  4. 4.
    Liotta, L. A., 1986, Tumor invasion and metastases—Role of the extracellular matrix: Rhoads Memorial Award Lecture, Cancer Res. 46: 1–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Nicolson, G. L., 1987, Tumor cell instability, diversification, and progression to the metastatic phenotype: From oncogene to oncofetal expression, Cancer Res. 47: 1473–1486.PubMedGoogle Scholar
  6. 6.
    Furcht, L. T., 1986, Editorial: Critical factors controlling angiogenesis: Cell products, cell matrix, and growth factors, Lab. Invest. 55: 505–506.PubMedGoogle Scholar
  7. 7.
    Sugarbaker, E. V., 1981, Patterns of metastasis in human malignancies, Cancer Biol. Rev. 2: 235–245.Google Scholar
  8. 8.
    Weiss, L., and Gilbert, H. A., 1981, Bone Metastases, GK Hall, Boston.Google Scholar
  9. 9.
    Lam, W. C., Delikatny, J. E., Orr, F. W., Wass, J., Varani, J., and Ward, P. A., 1981, The chemotactic response of tumor cells: A model for cancer metastasis, Am. J. Pathol. 104: 69–76.PubMedGoogle Scholar
  10. 10.
    McCarthy, J. B., Basara, M. L., Palm, S. L., Sas, D. F., Furcht, L. T., 1985, Stimulation of haptotaxis and migration of tumor cells by serum spreading factor, Cancer Metast. Rev. 4: 125–152.CrossRefGoogle Scholar
  11. 11.
    Anzano, M. A., Roberts, A. B., Smith, J. M., Sporn, M. B., and De Larco, J. E., 1983, Sarcoma growth factors from conditioned media of virally transformed cells composed of both type a and type 3 growth factors, Proc. Natl. Acad. Sci. SA 80: 6264–6268.CrossRefGoogle Scholar
  12. 12.
    Liotta, L. A., Mandler, R., Murano, G., Katz, D. A., Gordon, R. K., Chiang, P. K., and Schiffmann, E., 1986, Tumor cell autocrine motility factor, Proc. Natl. Acad. Sci. USA 83: 3302–3306.PubMedCrossRefGoogle Scholar
  13. 13.
    Zigmond, S. H., and Hirsch, J. G., 1973, Leukocyte locomotion and chemotaxis. New methods for evaluation and demonstration of cell-derived chemotactic factor, J. Exp. Med. 137: 387–410.PubMedCrossRefGoogle Scholar
  14. 14.
    Bokoch, G. M., and Gilman, A. G., 1984, Inhibition of receptor-mediated release of arachidonic acid by pertussis toxin, Cell 39: 301–308.PubMedCrossRefGoogle Scholar
  15. 15.
    Smith, C. D., Cox, C. C., and Snyderman, R., 1986, Receptor-coupled activation of phosphoinositidespecific phospholipase C by an N protein, Science 232: 97–100.Google Scholar
  16. 16.
    Stracke, M. L., Guirguis, R., Liotta, L. A., and Schiffmann, E., 1987, Pertussis toxin inhibits stimulated motility independently of the adenylate cyclase pathway in human melanoma cells, Biochem. Biophys. Res. Commun. 146: 339–345.PubMedCrossRefGoogle Scholar
  17. 17.
    Katada, T., and Ui, M., 1982, Direct modification of the membrane adenylate cyclase system by islet-activating protein due to ADP-ribosylation of a membrane protein, Proc. Natl. Acad. Sci. USA 79: 3129–3133.PubMedCrossRefGoogle Scholar
  18. 18.
    Guirguis, R., Margolies, I., Taraboletti, G., Schiffmann, E., and Liotta, L., 1987, Cytokine-induced pseudopodial protrusion is coupled to tumor cell migration, Nature 329: 261–263.PubMedCrossRefGoogle Scholar
  19. 19.
    Stracke, M. L., Guirguis, R., Liotta, L., and Schiffmann, E., 1987, Pertussis toxin inhibits stimulated motility independently of the adenylate cyclase pathway in human melanoma cells, Biochem. Biophys. Res. Commun. 146: 339–345.PubMedCrossRefGoogle Scholar
  20. 20.
    Okajima, F., and Ui, M., 1984, ADP-ribosylation of the specific membrane protein by islet-activating protein, pertussis toxin, associated with inhibition of a chemotactic peptide-induced arachidonate release in neutrophils. A possible role of the toxin substrate in Ca2 + -mobilizing biosignaling, J. Biol. Chem. 259: 13863–13871.PubMedGoogle Scholar
  21. 21.
    Kikuchi, A., Kozawa, O., Kaibuchi, K., Katada, T., Ui, M., and Takai, Y., 1986, Direct evidence for involvement of a guanine nucleotide-binding protein in chemotactic peptide-stimulated formation of inositol bisphosphate and trisphosphate in differentiated human leukemia (HL-60) cells. Reconstitution with Gi or Go of the plasma membranes ADP-ribosylated by pertussis toxin, J. Biol. Chem. 261: 11558–11562.PubMedGoogle Scholar
  22. 22.
    Hescheler, J., Rosenthal, W., Trautwein, W., and Schultz, G., 1987, The GTP-binding protein, Go, regulates neuronal calcium channels, Nature (Lond.) 325: 445–447.CrossRefGoogle Scholar
  23. 23.
    Molski, T. F., Naccache, P. H., Marsh, M. L., Kermode, J., Becker, E. L., and Sha’afi, R. I., 1984, Pertussis toxin inhibits the rise in the intracellular concentration of free calcium that is induced by chemotactic factors in rabbit neutrophils: possible role of the “G proteins” in calcium mobilization, Biochem. Biophys. Res. Commun. 124: 644–650.PubMedCrossRefGoogle Scholar
  24. 24.
    Lad, P. M., Olson, C. V., Grewal, I. S., and Scott, S. J., 1985, A pertussis toxin-sensitive GTP-binding protein in the human neutrophil regulates multiple receptors, calcium mobilization, and lectin-induced capping, Proc. Natl. Acad. Sci. USA 82: 8643–8647.PubMedCrossRefGoogle Scholar
  25. 25.
    Guranowski, A., Montgomery, J. A., Cantoni, G. L., and Chiang, P. K., 1981, Adenosine analogues as substrates and inhibitors of S-adenosylhomocysteine hydrolase, Biochemistry 20: 110–115.PubMedCrossRefGoogle Scholar
  26. 26.
    Boike, G. M., Sloane, B. F., Deppe, G., Stracke, M., Schiffmann, E., Liotta, L. A., and Honn, K. V., 1987, The role of calcium and arachidonic acid metabolism in the chemotaxis of a new murine tumor line, Proc. Am. Assoc. Cancer Res. 28: 82.Google Scholar
  27. 27.
    He, X. M., Fligiel, S. E., and Varani, J., 1986, Modulation of tumor cell motility by prostaglandins and inhibitors of prostaglandin synthesis, Exp. Cell Biol. 54: 128–137.PubMedGoogle Scholar
  28. 28.
    Guirguis, R., Margulies, I. M. K., Taraboletti, G., Schiffmann, E., and Liotta, L. A., 1987, Cytokine-induced pseudopodial protrusion is coupled to tumour cell migration, Nature (Lond.) 329: 261–263.CrossRefGoogle Scholar
  29. 29.
    Wewer, U. M., Liotta, L. A., Jaye, M., Ricca, G. A., Drohan, W. N., Claysmith, A. P., Rao, C. N., Wirth, P., Coligan, J. E., Albrechtsen, R., Mudryj, M., and Sobel, M. E., 1986, Altered levels of laminin receptor mRNA in various human carcinoma cells that have different abilities to bind laminin, Proc. Natl. Acad. Sci. USA 83: 7137–7141.PubMedCrossRefGoogle Scholar
  30. 30.
    Hynes, R. 0., 1987, Integrins: A family of cell surface receptors, Cell 48: 549–552.PubMedCrossRefGoogle Scholar
  31. 31.
    Garbisa, S., Pozzatti, R., Muschel, R. J., Saffiotti, U., Ballin, M., Goldfarb, R. H., Khoury, G., and Liotta, L. A., 1987, Secretion of type IV collagenolytic protease and metastatic phenotype: Induction by transfection with c-Ha-ras but not c-Ha-ras plus Ad2-Ela, Cancer Res 47: 1523–1528.PubMedGoogle Scholar
  32. 32.
    Thorgeirsson, U. P., Turpeenniemi-Hujanen, T., Williams, J. E., Westin, E. H., Heilman, C. A., Talmadge, J. E., and Liotta, L. A., 1985, NIH/3T3 cells transfected with human tumor DNA containing activated ras oncogenes express the metastatic phenotype in nude mice, Mol. Cell. Biol. 5: 259–262.PubMedGoogle Scholar
  33. 33.
    Slamon, D. J., Clark, G. M., Wong, S. G. et al., 1987, Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene, Science 235: 177–180.PubMedCrossRefGoogle Scholar
  34. 34.
    Pozzatti, R. P., Muschel, R. J., Williams, J. R., Howard, B., Liotta, L. A., and Khoury, G., 1986, Primary rat embryo cells transformed by one or two oncogenes show different metastatic potentials, Science 232: 223–227.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Lance A. Liotta
    • 1
  • Mary L. Stracke
    • 1
  • Ulla M. Wewer
    • 1
  • Elliott Schiffmann
    • 1
  1. 1.Laboratory of Pathology, National Cancer InstituteNational Institutes of HealthBethesdaUSA

Personalised recommendations