Factors and Mechanisms
  • Patricia A. D’Amore
  • Michael Klagsbrun


Blood vessel proliferation is essential for the normal growth and development of tissue. In the adult, angiogenesis occurs infrequently. Exceptions are found in the female reproductive system, where angiogenesis occurs in the follicle during its development, in the corpus luteum during ovulation, and in the placenta during pregnancy. These periods of angiogenesis are relatively brief and tightly regulated. Normal angiogenesis also occurs as part of the body’s repair processes, such as in the healing of wounds and fractures. On the other hand, uncontrolled angiogenesis contributes to a wide variety of serious diseases. As examples, the growth of solid tumors is dependent on vascularization, and in diabetic retinopathy vascularization of the retina often leads to blindness.


Fibroblast Growth Factor Corpus Luteum Basic Fibroblast Growth Factor Capillary Endothelial Cell Wound Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ausprunk, D. H., and Folkman, J., 1977, Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis, Microvasc. Res. 14: 53–65.PubMedCrossRefGoogle Scholar
  2. 2.
    Gross, J. L., Moscatelli, D., and Rifkin, D. B., 1983, Increased capillary endothelial cell protease activity in response to angiogenic stimuli in vitro, Proc. Natl. Acad. Sci. USA 80: 2623–2627.PubMedCrossRefGoogle Scholar
  3. 3.
    Vlodaysky, I., Fuks, Z., Bar-Ner, M., Ariav, Y., and Schirrmacher, V., 1983, Lymphoma-cell mediated degradation of sulfated proteoglycans in the subendothelial cell extracellular matrix: Relationship to tumor metastasis, Cancer Res. 43: 2704–2711.Google Scholar
  4. 4.
    Folkman, J., and Haudenschild, C., 1980, Angiogenesis in vitro, Nature (Lond.) 288: 551–556.CrossRefGoogle Scholar
  5. 5.
    Crocker, D. J., Murad, T. M., and Geer, J. C., 1970, Role of the pericyte in wound healing. An ultrastructural study, Exp. Mol. Pathol. 13: 51–65.PubMedCrossRefGoogle Scholar
  6. 6.
    Virchow, R., 1863, Die Krankhaften Geschwulste, August Hirschwald, Berlin.Google Scholar
  7. 7.
    Goldman, E., 1907, The growth of malignant disease in man and the lower animals with special reference to the vascular system, Lancet 2: 1236–1237.CrossRefGoogle Scholar
  8. 8.
    Ide, A. G., Baker, N. H., and Warren, S. L., 1939, Vascularization of the Brown-Pearce rabbit epithelioma transplant as seen in the transparent ear chamber, AJR 42: 891–899.Google Scholar
  9. 9.
    Algire, G. H., and Chalkley, H. W., 1945, Vascular reactions of normal and malignant tissue in vivo. I. Vascular reactions of mice to wounds and or normal and neoplastic transplants, J. Natl. Cancer Inst. 6: 7385.Google Scholar
  10. 10.
    Urbach, F., The blood supply of tumors, in: Advances in Biology of the Skin (W. Montagna and R. A. Ellis, eds.), pp. 123–149, Pergamon, New York.Google Scholar
  11. 11.
    Algire, G. H., Legallais, F. Y., and Anderson, B. F., 1954, Vascular reactions of normal and malignant tissue in vivo. VI. The role of hypotension in the action of components of podophyllin on transplanted sarcomas, J. Natl. Cancer Inst. 14: 879–887.PubMedGoogle Scholar
  12. 12.
    Denekamp, J., 1984, Vascular endothelium as the vulnerable element in tumours, Acta Radiol. [Oncol] 23: 217–225.CrossRefGoogle Scholar
  13. 13.
    Denekamp, J., and Hobson, B., 1982, Endothelial-cell proliferation in experimental tumors, Br. J. Cancer 46: 711–720.PubMedCrossRefGoogle Scholar
  14. 14.
    Schwartz, S. M., and Benditt, E. P., 1977, Aortic endothelial cell replication I. Effects of age and hypertension in the rat, Circ. Res. 41: 248–255.PubMedGoogle Scholar
  15. 15.
    Hobson, B., and Dekamp, J., 1984, Endothelial proliferation in tumours and normal tissues: Continuous labelling studies, Br. J. Cancer 49: 405–413.PubMedCrossRefGoogle Scholar
  16. 16.
    Tannock, I. F., 1968, The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumour, Br. J. Cancer 22: 258–273.PubMedCrossRefGoogle Scholar
  17. 17.
    Algire, G. H., 1947, Growth and vascularization of transplanted mouse melanomas, in: The Biology of Melanomas, Vol. 4, pp. 159–175, New York Academy of ScienceGoogle Scholar
  18. 18.
    Gimbrone, M. A., Leapman, S. B., Cotran, R. S., and Folkman, J., 1972, Tumor dormancy in vivo by prevention of neovascularization, J. Exp. Med. 136: 261–276.PubMedCrossRefGoogle Scholar
  19. 19.
    Greene, H. S. N., 1941, Heterologous transplantation of mammalian tumors, J. Exp. Med. 73: 461–473.PubMedCrossRefGoogle Scholar
  20. 20.
    Greenblatt, M., and Shubik, P., 1968, Tumor angiogenesis: transfilter diffusion studies in the hamster by transparent chamber techniques, J. Natl. Cancer Inst. 41: 111–124.PubMedGoogle Scholar
  21. 21.
    Cavallo, T., Sade, R., Folkman, J., and Cotran, R. S., 1972, Tumor angiogenesis: Rapid induction of endothelial mitosis demonstrated by autoradiography, J. Cell Biol. 54: 408–420.PubMedCrossRefGoogle Scholar
  22. 22.
    Tuan, D., Smith, S., Folkman, J, and Merler, E., 1973, Isolation of the non-histone proteins of rat Walker carcinoma 256: Their association with tumor angiogenesis, Biochem. 12: 3159–3165.CrossRefGoogle Scholar
  23. 23.
    Phillips, P., Steward, J. K., and Kumar, S., 1976, Tumour angiogenesis factor (TAF) in human and animal tumours, Int. J. Cancer 17: 549–558.PubMedCrossRefGoogle Scholar
  24. 24.
    McAuslan, B. R., and Hoffman, H., 1979, Endothelium stimulating factor from Walker carcinoma cells, Exp. Cell Res. 119: 181–190.PubMedCrossRefGoogle Scholar
  25. 25.
    Fenselau, A., Watt, S., and Mello, R. J., 1981, Tumor angiogenic factor: Purification from the Walker 256 rat tumor, J. Biol. Chem. 256: 9605–9611.PubMedGoogle Scholar
  26. 26.
    Folkman, J., and Klagsbrun, M., 1987, Angiogenic factors, Science 235: 442–447.PubMedCrossRefGoogle Scholar
  27. 27.
    D’Amore, P. A., and Braunhut, S., 1988, The role of growth factors in endothelial cell growth control, in: Endothelial Cells ( U. Ryan, ed.), pp. 13–36, CRC Press, Boca Raton, Florida.Google Scholar
  28. 28.
    Zetter, B. R., 1980, Migration of capillary endothelial cells is stimulated by tumour-derived factors, Nature (Lond.) 285: 41–43.CrossRefGoogle Scholar
  29. 29.
    Azizkhan, J., Sullivan, R., Azizkhan, R., Zetter, B., and Klagsbrun, M., 1983, Stimulation of increased capillary endothelial cell motility by chondrosarcoma-cell-derived growth factors, Cancer Res. 43: 3281–3286.PubMedGoogle Scholar
  30. 30.
    Glaser, B. M., D’Amore, P. A., Seppa, H., Seppa, S., and Schiffman, E., 1980, Adult tissues contain chemoattractants for vascular endothelial cells, Nature (Lond.) 288: 483–484.CrossRefGoogle Scholar
  31. 31.
    Ausprunk, D. H., Knighton, D. R., and Folkman, J., 1974, Differentiation of vascular endothelium in the chick chorioallantois: A structural and autoradiographic study, Dev. Biol. 38: 237–248.PubMedCrossRefGoogle Scholar
  32. 32.
    Shing, Y., Folkman, J., Haudenschild, C., Lund, D., Crum, R., and Klagsbrun, M., 1985, Angiogenesis is stimulated by a tumor-derived endothelial cell growth factor, J. Cell. Biochem. 29: 275–287.PubMedCrossRefGoogle Scholar
  33. 33.
    Gimbrone, M. A., Jr., Cotran, R. S., Leapman, S. B., and Folkman, J., 1974, Tumor growth and neovascularization: An experimental model using the rabbit cornea, J. Natl. Cancer Inst. 52: 413–427.PubMedGoogle Scholar
  34. 34.
    Fournier, G. A., Lutty, G. A., Watt, S., Fenselau, A., and Patz, A., 1981, A comeal micropocket assay for angiogenesis in the rat eye, Invest. Ophthalmol. Vis. Sci. 21: 351–354.PubMedGoogle Scholar
  35. 35.
    Banda, M. J., Knighton, D. R., Hunt, T. K., and Werb, Z., 1982, Isolation of a nonmitogenic angiogenesis factor from wound fluid, Proc. Natl. Acad. Sci. USA 79: 7773–7777.PubMedCrossRefGoogle Scholar
  36. 36.
    Knighton, D. R., Hunt, T. K., Scheuenstuhl, H., Halliday, B. J., Werb, Z., and Banda, M. J., 1983, Oxygen tension regulates the expression of angiogenesis factor by macrophages, Science 221: 1283–1285.PubMedCrossRefGoogle Scholar
  37. 37.
    Jensen, J. A., Hunt, T. K., Scheuenstuhl, H., and Banda, M., 1986, Effect of lactate, pyruvate, and PH on secretion of angiogenesis and mitogenesis factors by macrophages, Lab. Invest. 54: 574–578.PubMedGoogle Scholar
  38. 38.
    Castellot, J. J., Jr., Karnovsky, M. J., and Spiegelman, B. M., 1982, Differentiation-dependent stimulation of neovascularization and endothelial cell chemotaxis by 3T3 adipocytes, Proc. Natl. Acad. Aci. USA 79: 5597–5601.CrossRefGoogle Scholar
  39. 39.
    Dobson, D. E., Castellot, J. J., and Spiegelman, B. M., 1985, Angiogenesis stimulated by 3T3adipocytes is mediated by prostanoid lipids, J. Cell Biol. 101: 109a.Google Scholar
  40. 40.
    Castellot, J. J., Jr., Karnovsky, M. J., and Spiegelman, B. M., 1980, Potent stimulation of vascular endothelial cell growth by differentiated 3T3 adipocytes, Proc. Natl. Acad. Sci. USA 77: 6007–6011.PubMedCrossRefGoogle Scholar
  41. 41.
    Ben Ezra, D., 1978, Neovasculogenic ability of prostaglandins, growth factors and synthetic chemoattractants, Am. J. Ophthalmol. 86: 455–461.Google Scholar
  42. 42.
    Ziche, M., Jones, J., and Gullino, P., 1982, Role of prostaglandin El and copper in angiogenesis, J. Natl. Cancer Inst. 69: 475–482.PubMedGoogle Scholar
  43. 43.
    Form, D. M., and Auerbach, R., 1983, PGE2 and angiogenesis, Proc. Soc. Exptl. Biol. Med. 172: 214–218.Google Scholar
  44. 44.
    Goldsmith, H. S., Griffith, A. L., Kupferman, A., and Catsimpoolas, N., 1984, Lipid angiogenic factor from omentum, JAMA 252: 2034–2036.PubMedCrossRefGoogle Scholar
  45. 45.
    Brown, R. A., Weiss, J. B., Tomlinson, I. W., Phillips, P., and Kumar, S., 1980, Angiogenic factor from synovial fluid resembling that from tumours, Lancet 29: 682–685.Google Scholar
  46. 46.
    Kull, F. C., Jr., Brent, D. A., Parikh, I., and Cuatrecasas, P., 1987, Chemical identification of a tumor-derived angiogenic factor, Science 236: 843–845.PubMedCrossRefGoogle Scholar
  47. 47.
    Fett, J. W., Strydom, D. J., Lobb, R. R., Alderman, E. M., Bethune, J. L., Riordan, J. F., and Vallee, B. L., 1985, Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells, Biochemistry 24: 5480–5486.PubMedCrossRefGoogle Scholar
  48. 48.
    Strydom, D. J., Fett, J. W., Lobb, R. R., Alderman, E. M., Bethune, J. L., Riordan, J. F., and Vallee, B. L., 1985, Amino acid sequence of human tumor derived angiogenin, Biochemistry 24: 5486–5494.PubMedCrossRefGoogle Scholar
  49. 49.
    Kurachi, K., Davie, E. W., Strydom, D. J., Riordan, J. F., and Vallee, B. L., 1985, Sequence of the cDNA and gene for angiogenin, a human angiogenesis factor, Biochemistry 24: 5494–5499.PubMedCrossRefGoogle Scholar
  50. 50.
    Shapiro, R., Riordan, J. F., and Vallee, B. L., 1986, Characteristic ribonucleolytic activity of human angiogenin, Biochemistry 25: 3527–3532.PubMedCrossRefGoogle Scholar
  51. 51.
    Jaye, M., Howk, R., Burgess, W., Ricca, G. A., Chiu, I.-M., Rayera, M. W., O’Brien, S. J., Modi, W. S., Maciag, T., and Drohan, W. N., 1986, Human endothelial cell growth factor: Cloning, nucleotide sequence, and chromosome localization, Science 233: 541–545.PubMedCrossRefGoogle Scholar
  52. 52.
    Abraham, J. A., Mergia, A., Whang, J. L., Tumolo, A., Friedman, J., Hjerrild, K. A., Gospodarowicz, D., and Fiddes, J. C., 1986, Nucleotide sequence of a bovine clone encoding the angiogenic protein, basic fibroblast growth factor, Science 233: 545–548.PubMedCrossRefGoogle Scholar
  53. 53.
    Vlodaysky, I., Fridman, R., Sullivan, R., Sasse, J., and Klagsbrun, M., 1987, Aortic endothelial cells synthesize basic fibroblast growth factor which remains cell associated and platelet-derived growth factor-like protein which is secreted, J. Cell. Physiol. 131: 402–408.CrossRefGoogle Scholar
  54. 54.
    Weiner, H. L., Weiner, L. H., and Swain, J., 1987, The tissue distribution and developmental expression of the messenger RNA encoding angiogenin, Science 237: 280–282.PubMedCrossRefGoogle Scholar
  55. 55.
    DeLarco, J. E., and Todaro, G. J., 1980, Sarcoma growth factor (SGF): Specific binding to epidermal growth factor (EGF) membrane receptors. J. Cell. Physiol. 102: 267–277.CrossRefGoogle Scholar
  56. 56.
    Marquadt, H., Hunkapiller, M. W., Hood, L. E., and Todaro, G. J., 1984, Rat transforming growth factor type I: Structure and relationship to epidermal growth factor, Science 223: 1079–1082.CrossRefGoogle Scholar
  57. 57.
    Derynck, R., Roberts, A. B., Eaton, D. H., Winkler, M. E., and Geodel, D. V., 1985, Human transforming growth factor-alpha: Precursor sequence, gene structure and heterologous expression, in: Cancer Cells. Vol. 3: Growth Factors and Transformation ( J. Feramisco, B. Ozanne, and C. Stiles, eds.), pp. 7986, Cold Spring Harbor Laboratory, New York.Google Scholar
  58. 58.
    Schreiber, A. B., Winkler, M. E., and Dernyck, R., 1986, Transforming growth factor-alpha: A more potent angiogenic mediator than epidermal growth factor, Science 232: 1250–1253.PubMedCrossRefGoogle Scholar
  59. 59.
    Derynck, R., Jarrett, J. A., Chen, E. Y., Eaton, D. H., Bell, J. R., Assoian, R. K., Roberts, A. B., Sporn, M. B., and Goeddel, D., 1985, Human transforming growth factor-beta cDNA sequence and expression in normal and transfected cells, Nature (Load.) 316: 701–705.CrossRefGoogle Scholar
  60. 60.
    Childs, C. B., Proper, J. A., Tucker, R. F., and Moses, H. L., 1982, Serum contains a platelet-derived transforming growth factor, Proc. Natl. Acad. Sci. USA 79: 5312–5316.PubMedCrossRefGoogle Scholar
  61. 61.
    Assoian, R. K., Komoriya, A., Meyers, C. A., Miller, D. M., and Sporn, M. B., 1983, Transforming growth factor-beta in human platelets. Identification of a major storage site, purification, and characterization, J. Biol. Chem. 258: 7155–7160.PubMedGoogle Scholar
  62. 62.
    Roberts, A. B., Sporn, M. B., Assoian, R. K., Smith, J. M., Roche, N. S., Wakefield, L. M., Heine, U. I., Liotta, L. A., Falanga, V., Kehrl, J. H., and Fauci, A. S., 1986, Transforming growth factor type beta: Rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro, Proc. Natl. Acad. Sci. USA 83: 4167–4171.PubMedCrossRefGoogle Scholar
  63. 63.
    Baird, A., and Durkin, T., 1986, Inhibition of endothelial cell proliferation by type beta-transforming growth factor: Interactions with acidic and basic fibroblast growth factors, Biochem. Biophys. Res. Commun. 138: 476–481.PubMedCrossRefGoogle Scholar
  64. 64.
    Heimark, R. L., Twardzik, D. R., and Schwartz, S. M., 1986, Inhibition of endothelial regeneration by type-beta transforming growth factor from platelets, Science 233: 1078–1080.PubMedCrossRefGoogle Scholar
  65. 65.
    Gospodarowicz, D., Bialecki, H., and Greenburg, G., 1978, Purification of the fibroblast growth factor activity from bovine brain, J. Biol. Chem. 253: 3736–3743.PubMedGoogle Scholar
  66. 66.
    Maciag, T., Cerundolo, J., Ilsey, S., Kelley, P. R., and Forand, R., 1979, An endothelial cell growth factor from bovine hypothalamus: Identification and partial characterization, Proc. Natl. Acad. Sci. USA 76: 5674–5678.PubMedCrossRefGoogle Scholar
  67. 67.
    Gospodarowicz, D., 1975, Purification of a fibroblast growth factor from bovine pituitary, J. Biol. Chem. 250: 2515–2520.PubMedGoogle Scholar
  68. 68.
    Gospodarowicz, D., Mescher, A. L., and Birdwell, C., 1977, Stimulation of corneal endothelial cell proliferation in vitro by fibroblast and epidermal growth factors, Exp. Eye Res. 25: 75–89.PubMedCrossRefGoogle Scholar
  69. 69.
    Gospodarowicz, D., Bialecki, H., and Thakral, T. K., 1979, The angiogenic activity of the fibroblast and epidermal growth factor, Exp. Eye Res. 28: 501–514.PubMedCrossRefGoogle Scholar
  70. 70.
    Lemmon, S. K., Riley, M. C., Thomas, K. A., Hoover, G. A., Maciag, T., and Bradshaw, R. A., 1982, Bovine fibroblast growth factor: Comparison of brain and pituitary preparations. J. Cell Biol. 95: 162–169.PubMedCrossRefGoogle Scholar
  71. 71.
    Maciag, T., Hoover, G. A., and Weinstein, R., 1982, High and low molecular weight forms of endothelial cell growth factor, J. Biol. Chem. 257: 5333–5336.PubMedGoogle Scholar
  72. 72.
    D’Amore, P. A., Glaser, B. M., Brunson, S. K., and Fenselau, A. H., 1981, Angiogenic activity from bovine retina: Partial purification and characterization, Proc. Natl. Acad. Sci. USA 78: 3068–3072.PubMedCrossRefGoogle Scholar
  73. 73.
    Barritault, D., Arruti, C., and Courtois, Y., 1981, Is there a ubiquitous growth factor in the eye?, Differentiation 18: 29–42.PubMedCrossRefGoogle Scholar
  74. 74.
    Klagsbrun, M., and Smith, S., 1980, Purification of a cartilage-derived growth factor, J. Biol. Chem. 255: 10859–10866.PubMedGoogle Scholar
  75. 75.
    Shing, Y., Folkman, J., Sullivan, R., Butterfield, C., Murray, J., and Klagsbrun, M., 1984, Heparin affinity: Purification of a tumor-derived capillary endothelial cell growth factor, Science 223: 1296–1298.PubMedCrossRefGoogle Scholar
  76. 76.
    Klagsbrun, M., and Shing, Y., 1985, Heparin affinity of anionic and cationic capillary endothelial cell growth factors: Analysis of hypothalamus-derived growth factors and fibroblast growth factors, Proc. Natl. Acad. Sci. USA 82: 805–809.PubMedCrossRefGoogle Scholar
  77. 77.
    Sullivan, R., and Klagsbrun, M., 1985, Purification of cartilage-derived growth factor by heparin affinity chromatography, J. Biol. Chem. 260: 2399–2403.PubMedGoogle Scholar
  78. 78.
    D’Amore, P. A., and Klagsbrun, M., 1984, Endothelial cell mitogens derived from retina and hypothalamus: Biochemical and biological similarities, J. Cell Biol. 99: 1545–1549.PubMedCrossRefGoogle Scholar
  79. 79.
    Gospodarowicz, D., Cheng, J., Liu, G.-M., Baird, A., and Bohlen, P., 1984, Isolation of brain fibroblast growth factor by heparin-Sepharose affinity chromatography: Identity with pituitary fibroblast growth factor, Proc. Natl. Acad. Sci. USA 81: 6963–6967.PubMedCrossRefGoogle Scholar
  80. 80.
    Lobb, R. R., and Fett, J. W., 1984, Purification of two distinct growth factors from bovine neural tissue by heparin affinity chromatography, Biochemistry 23: 6295–6299.PubMedCrossRefGoogle Scholar
  81. 81.
    Maciag, T., Mehlman, T., Friesel, R., and Schrieber, A., 1984, Heparin binds endothelial cell growth factor, the principal mitogen in the bovine brain, Science 225: 932–935.PubMedCrossRefGoogle Scholar
  82. 82.
    Conn, G., and Hatcher, V. B., 1984, The isolation and purification of two anionic endothelial cell growth factors from human brain, Biochem. Biophys. Res. Commun. 124: 262–268.PubMedCrossRefGoogle Scholar
  83. 83.
    Baird, A., Esch, F., Gospodarowicz, D., and Guillemin, R., 1986, Retina and eye derived endothelial cell growth factors: Partial molecular characterization and identity with acidic and basic fibroblast growth factors, Biochemistry 24: 7855–7860.CrossRefGoogle Scholar
  84. 84.
    Courty, J., Loret, C., Moenner, M., Chevallier, B., Lagente, Y., Courtois, Y., and Barritault, D., 1985, Bovine retina contains three growth factor activities with different affinity to heparin: Eye derived growth factor I, II, III, Biochim. 67: 265–269.CrossRefGoogle Scholar
  85. 85.
    Lobb, R., Sasse, J., Sullivan, R., Shing, Y., D’Amore, P., Jacobs, J., and Klagsbrun, M., 1986, Purification and characterization of heparin-binding endothelial cell growth factors, J. Biol. Chem. 261: 1924–1928.PubMedGoogle Scholar
  86. 86.
    Schreiber, A. B., Kenney, J., Kowalski, J., Thomas, K. A., Gimenez-Gallego, G., Rios-Candelore, M., DiSalvo, J., Barritault, D., Courty, J., Courtois, Y., Moenner, M., Loret, C., Burgess, W. H., Mehlman, T., Friesel, R., Johnson, W., and Maciag, T., 1985, A unique family of endothelial cell polypeptide mitogens: The antigenic and receptor cross-reactivity of bovine endothelial cell growth factor, brain-derived acidic fibroblast growth factor, and eye-derived growth factor II, J. Cell Biol. 101: 1623–1626.PubMedCrossRefGoogle Scholar
  87. 87.
    Esch, F., Baird, A., Ling, N., Ueno, N., Hill, F., Denoroy, L., Klepper, R., Gospodarowicz, D., Bohlen, P., and Guillemin, R., 1985, Primary structure of bovine pituitary basic fibroblast growth factor (FGF) and comparison with the amino-terminal sequence of bovine brain acidic FGF, Proc. Natl. Acad. Sci. USA 82: 6507–6511.PubMedCrossRefGoogle Scholar
  88. 88.
    Gimenez-Gallego, G., Rodkey, J., Bennett, C., Rios-Candelore, M., DiSalvo, J., and Thomas, K., 1985, Brain-derived acidic fibroblast growth factor: Complete amino acid sequence and homologies, Science 230: 1385–1388.PubMedCrossRefGoogle Scholar
  89. 89.
    Esch, F., Ueno, N., Baird, A., Hill, F., Denroy, L., Ling, N., Gospodarowicz, D., and Guillemin, R., 1985, Primary structure of bovine brain acidic fibroblast growth factor, Biochem. Biophys. Res. Commun. 133: 554–562.PubMedCrossRefGoogle Scholar
  90. 90.
    Thomas, K. A., Rios-Candelore, M., Gimenez-Gallego, G., DiSalvo, J., Bennett, C., Rodkey, J., and Fitzpatrick, S., 1985. Pure brain-derived acidic growth factor is a potent angiogenic vascular endothelial cell mitogen with sequence homology to interleukin I, Proc. Natl. Acad. Sci. USA 82: 6409–6413.PubMedCrossRefGoogle Scholar
  91. 91.
    Burgess, W. H., Mehlman, T., Freisel, R., Johnson, W. V., and Maciag, T., 1985, Multiple forms of endothelial cell growth factor, J. Biol. Chem. 260: 11389–11392.PubMedGoogle Scholar
  92. 92.
    Pettmann, B., Weibel, M., Sensenbrenner, M., and Labourdette, G., 1985, Purification of two astroglial growth factors from bovine brain, FEBS Lett. 189: 102–108.PubMedCrossRefGoogle Scholar
  93. 93.
    Hauschka, P., Mavarakos, A. E., Iafrati, M. D., Doleman, S. E., and Klagsbrun, M., 1986, Growth factors in bone matrix, J. Biol. Chem. 261: 12665–12674.PubMedGoogle Scholar
  94. 94.
    Bohlen, P., Baird, A., Esch, F., Ling, N., and Gospodarowicz, D., 1984, Isolation and partial molecular characterization of pituitary fibroblast growth factor, Proc. Natl. Acad. Sci. USA 81: 5364–5368.PubMedCrossRefGoogle Scholar
  95. 95.
    Gospodarowicz, D., Cheng, J., Lui, G. M., Esch, F., and Bohlen, P., 1985, Corpus luteum angiogenic factor is related to fibroblast growth factor, Endocrinology 117: 2382–2391.CrossRefGoogle Scholar
  96. 96.
    Gospodarowicz, D., Baird, A., Cheng, J., Lui, F., Esch, F., and Bohlen, P., 1986, Isolation of fibroblast growth factor from bovine adrenal gland: Physicochemical and biological characterization, Endocrinology 118: 82–90.PubMedCrossRefGoogle Scholar
  97. 97.
    Baird, A., Esch, F., Bohlen, P., Ling, N., and Gospodarowicz, D., 1985, Isolation and partial characterization of an endothelial cell growth factor from the bovine kidney: Homology with basic fibroblast growth factor, Regul. Peptides 12: 201–213.CrossRefGoogle Scholar
  98. 98.
    Moscatelli, D., Presta, M., and Rifkin, D. B., 1986, Purification of a factor from human placenta that stimulates capillary endothelial cell protease production, DNA synthesis, and migration, Proc. Natl. Acad. Sci. USA 83: 2091–2095.PubMedCrossRefGoogle Scholar
  99. 99.
    Baird, A., Mormede, P., and Bohlen, P., 1985, Immunoreactive fibroblast growth factor in cells of peritoneal exudate suggests its identity with macrophage-derived growth factor, Biochem. Biophys. Res. Commun. 126: 358–364.PubMedCrossRefGoogle Scholar
  100. 100.
    Klagsbrun, M., Sasse, J., Sullivan, R., and Smith, J. A., 1986, Human tumor cells synthesize an endothelial cell growth factor that is structurally related to basic fibroblast growth factor, Proc. Natl. Acad. Sci. USA 83: 2448–2452.PubMedCrossRefGoogle Scholar
  101. 101.
    Schweigerer, L., Neufeld, G., Friedman, J., Abraham, J. A., Fiddes, J. C., and Gospodarowicz, D., 1987, Capillary endothelial cells express basic fibroblast growth factor, a mitogen that promotes their own growth, Nature (Lond.) 325: 257–259.CrossRefGoogle Scholar
  102. 102.
    Risau, W., 1986, Developing brain produces an angiogenesis factor, Proc. Natl. Acad. Sci. USA 83: 3855–3859.PubMedCrossRefGoogle Scholar
  103. 103.
    Klagsbrun, M., Sasse, J., Smith, S., and Sullivan, R., 1987, Processing of brain and tumor-derived fibroblast growth factors by acid-activated proteases, Proc. Natl. Acad. Sci. USA 84: 1839–1843.PubMedCrossRefGoogle Scholar
  104. 104.
    Burgess, W. H., Mehlman, T., Marshak, D. R., Fraser, B. A., and Maciag, T., 1986, Structural evidence that endothelial cell growth factor-beta is the precursor of both endothelial cell growth factor-alpha and acidic fibroblast growth factor, Proc. Natl. Acad. Sci. USA 83: 7216–7220.PubMedCrossRefGoogle Scholar
  105. 105.
    Ueno, N., Baird, A., Esch, F., Ling, N., and Guillemin, R., 1986, Isolation of an amino terminal extended form of basic fibroblast growth factor, Biochem. Biophys. Res. Commun. 138: 580–588.PubMedCrossRefGoogle Scholar
  106. 106.
    Friesel, R., Burgess, W. H., Mehlman, T., and Maciag, T., 1986, The characterization of the receptor for endothelial cell growth factor by covalent ligand attachment, J. Biol. Chem. 261: 7581–7584.PubMedGoogle Scholar
  107. 107.
    Neufeld, G., and Gospodarowicz, D., 1985, The identification and partial characterization of the fibroblast growth factor receptor of baby hamster kidney cells, J. Biol. Chem. 260: 13860–13868.PubMedGoogle Scholar
  108. 108.
    Moenner, M., Chevallier, B., Badet, J., and Barritault, D., 1986, Evidence and characterization of the receptor to eye-derived growth factor I, the retinal form of basic fibroblast growth factor, on bovine epithelial lens cells, Proc. Natl. Acad. Sci. USA 83: 5024–5028.PubMedCrossRefGoogle Scholar
  109. 109.
    Olwin, B. B., and Hauschka, S. D., 1986, Identification of the fibroblast growth factor receptor of Swiss 3T3 cells and mouse skeletal muscle myoblasts, Biochemistry 25: 3487–3492.PubMedCrossRefGoogle Scholar
  110. 110.
    Huang, S. S., and Huang, J. S., 1986, Association of bovine brain-derived growth factor receptor with protein kinase activity, J. Biol. Chem. 261: 9568–9571.PubMedGoogle Scholar
  111. 111.
    Moscatelli, D., 1987, High and low affinity binding sites for basic fibroblast growth factor on cultured cells: Absence of a role for low affinity binding in the stimulation of plasminogen activator production by bovine capillary endothelial cells, J. Cell. Physiol. 131: 123–130.PubMedCrossRefGoogle Scholar
  112. 112.
    Montesano, R., Vassalli, J-D., Baird, A., Guillemin, R., and Orci, L., 1986, Basic fibroblast growth factor induces angiogenesis in vitro, Proc. Natl. Acad. Sci. USA 83: 7297–7301.PubMedCrossRefGoogle Scholar
  113. 113.
    Herman, I. M., and D’Amore, P. A., 1984, Capillary endothelial cell migration: Loss of stress fibres in response to retina-derived growth factor, J. Muscle. Res. Cell. Motil. 5: 697–709.PubMedCrossRefGoogle Scholar
  114. 114.
    Senior, R. M., Huang, S. S., Griffin, G. L., and Huang, J. S., 1986, Brain-derived growth factor is a chemoattractant for fibroblasts and astroglial cells, Biochem. Biophys. Res. Commun. 141: 67–72.PubMedCrossRefGoogle Scholar
  115. 115.
    Halaban, R., and Baird, A., 1987, bFGF is the putative natural growth factor for human melanocytes, In Vitro Cell Del. Biol. 23:47–52.Google Scholar
  116. 116.
    Phadke, K., 1987, Fibroblast growth factor enhances the interleukin-l -mediated chondrocytic protease release, Biochem. Biophys. Res. Commun. 142: 448–453.PubMedCrossRefGoogle Scholar
  117. 117.
    Schweigerer, L., Neufeld, G., Mergia, A., Abraham, J. A., Fiddes, J. C., and Gospodarowicz, D., 1987, Basic fibroblast growth factor in human rhabdomyosarcoma cells: Implications for the proliferation and neovascularization of myoblast-derived tumors, Proc. Natl. Acad. Sci. USA 84: 842–846.PubMedCrossRefGoogle Scholar
  118. 118.
    Wagner, J. A., and D’Amore, P. A., 1986, Neurite outgrowth induced by an endothelial cell mitogen isolated from retina, J. Cell Biol. 103: 1363–1367.PubMedCrossRefGoogle Scholar
  119. 119.
    Togari, A., Dickens, G., Kuzuya, H., and Guroff, G., 1985, The effect of fibroblast growth factor on PC12 cells, J. Neurosci. 5: 307–316.PubMedGoogle Scholar
  120. 120.
    Lipton, S. A., Wanger, J. A., Madison, R. D., and D’Amore, P. A., 1988, Acidic fibroblast growth factor enhances regeneration of processes by postnatal mammalian retinal ganglion cells in culture, Proc. Natl. Acad. Sci. USA 85: 2388–2392.PubMedCrossRefGoogle Scholar
  121. 121.
    Morrison, R. S., Sharma, A., de Vellis, J., and Bradshaw, J., 1986, Basic fibroblast growth factor supports the survival of cerebral cortical neurons in primary culture, Proc. Natl. Acad. Sci. USA 83: 7537–7541.Google Scholar
  122. 122.
    Walicke, P., Cowan, W. M., Ueno, N., Baird, A., and Guillemin, R., 1986, Fibroblast growth factor promotes survival of dissociated hippocampal neurons and enhances neurite extension, Proc. Natl. Acad. Sci. USA 83: 3012–3016.PubMedCrossRefGoogle Scholar
  123. 123.
    Wice, B., Milbrandt, J., and Glaser, L., 1987, Control of muscle differentiation in BC3H1 cells by fibroblast growth factor and vanadate, J. Biol. Chem. 262: 1810–1817.PubMedGoogle Scholar
  124. 124.
    Lobb, R. R., Alderman, E. M., and Fett, J. W., 1985, Induction of angiogenesis by bovine brain derived class 1 heparin-binding growth factor, Biochemistry 24: 4869–4873.Google Scholar
  125. 125.
    Davidson, J. M., Klagsbrun, M., Hill, K. E., Buckley, A., Sullivan, R., Brewer, P. S., and Woodward, S. C., 1985, Accelerated wound repair, cell proliferation, and collagen accumulation are produced by a cartilage-derived growth factor, J. Cell Biol. 100: 1219–1227.PubMedCrossRefGoogle Scholar
  126. 126.
    Buntrock, P., Buntrock, M., Marx, I., Kranz, D., Jentzch, K. D., and Heder, G., 1984, Stimulation of wound healing, using brain extract with fibroblast growth factor (FGF) activity, Exp. Pathol. 26: 247–254.PubMedCrossRefGoogle Scholar
  127. 127.
    Cuny, R., Jeanny, J-C., and Courtous, Y., 1986, Lens regeneration from cultured newt irises stimulated by retina-derived growth factors (EDGF’s), Differentiation 32: 221–229.PubMedCrossRefGoogle Scholar
  128. 128.
    Slack, J. M. W., Darlington, B. G., Heath, J. K., and Godsave, S. F., 1987, Mesoderm induction in early Xenopus embryos by heparin-binding growth factors, Nature (Lond.) 326: 197–200.CrossRefGoogle Scholar
  129. 129.
    Polverini, P. J., and Leibovich, S. J., 1985, Induction of neovascularization and nonlymphoid mesenchymal cell proliferation by macrophage cell lines, J. Leukocyte. Biol. 37: 279–288.PubMedGoogle Scholar
  130. 130.
    Vlodaysky, I., Folkman, J., Sullivan, R., Fridman, R., Ishai-Michaeli, R., Sasse, J., and Klagsbrun, M., 1987, Endothelial cell-derived basic fibroblast growth factor: Synthesis and deposition in subendothelial extracellular matrix, Proc. Natl. Acad. Sci. USA 84: 2292–2296.CrossRefGoogle Scholar
  131. 131.
    Folkman, J., Klagsbrun, M., Sasse, J., Wadzinski, M., Ingber, D., and Vlodaysky, I., 1988, A heparin-binding angiogenic protein—basic fibroblast growth factor—is stored within basement membrane, Am. J. Pathol. 130: 393–400.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Patricia A. D’Amore
    • 1
  • Michael Klagsbrun
    • 2
  1. 1.Laboratory of Surgical Research and Department of PathologyChildren’s Hospital and Harvard Medical SchoolBostonUSA
  2. 2.Laboratory of Surgical Research and Department of Biological ChemistryChildren’s Hospital and Harvard Medical SchoolBostonUSA

Personalised recommendations