Crown Gall Neoplasms

  • Joseph V. Formica


Crown gall, a neoplastic disease of worldwide distribution, affects woody and herbaceous plants. Although this neoplasm occurs primarily in dicotyledons, it has also been found in gymnosperms and monocotyledons.1 Crown gall is characterized by the formation of tumors or galls of varying size and form which may occur on stems, roots, and leaves of plants. Plants with the disease become stunted, produce small chlorotic leaves and exhibit increased susceptibility to adverse environmental conditions, especially winter injury and suprainfection.2


Agrobacterium Tumefaciens Tumorous State Crown Gall Cellulose Fibril Tumor Morphology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    DeCleene, M., and DeLey, J., 1976, A survey of host plants for Agrobacterium tumefaciens, Bot. Rev. 42: 389–466.CrossRefGoogle Scholar
  2. 2.
    Agrios, G. N., 1978, Plant Pathology, pp. 483–488, Academic, New York.Google Scholar
  3. 3.
    Smith, E. F., and Townsend, C. O., 1907, A plant-tumor of bacterial origin, Science 25: 671–673.PubMedCrossRefGoogle Scholar
  4. 4.
    Braun, A. E., 1943, Studies on tumor inception in crown gall disease, Am. J. Bot. 30: 674–677.CrossRefGoogle Scholar
  5. 5.
    Braun, A. C., 1956, The activation of two growth substance systems accompanying the conversion of normal to tumor cells in crown gall, Cancer Res. 16: 53–56.PubMedGoogle Scholar
  6. 6.
    Zaenen, I., van Larebeke, N., Teuchy, H., van Montagu, M., and Schell, J., 1974, Supercoiled circular DNA in crown-gall inducing Agrobacterium strains, J. Mol. Biol. 86: 109–127.PubMedCrossRefGoogle Scholar
  7. 7.
    Chilton, M-D., Drummond, M. H., Merlo, D. J., Sciaky, D., Montoya, A. L., Gordon, M. P., and Nester, E. W., 1977, Stable incorporation of plasmid DNA into higher plants: The molecular basis of crown gall tumorigenesis, Cell 11: 263–271.PubMedCrossRefGoogle Scholar
  8. 8.
    van Larebeke, N., Genetello, C., Schell, J., Schilperoort, R. A., Hermans, A. K., Hernalsteens, J. P., and van Montagu, M., 1975, Acquisition of tumor-inducing ability of non-oncogenic agrobacteria as a result of plasmid transfer, Nature (Lond.) 255: 742–743.CrossRefGoogle Scholar
  9. 9.
    van Larebeke, N., Genetello, C., Hernalsteens, J. P., DePicker, A., Zaenen, I., Messens, E., van Montaju, M., and J. Schell, J., 1977, Transfer of Ti plasmids between Agrobacterium strains by mobilization with the conjugative plasmid RP4, Mol. Gen. Genet. 152: 119–124.CrossRefGoogle Scholar
  10. 10.
    Chilton, M-D., Saiki, R. K., Yadav, N., Gordon, M. P., Quetier, F., 1980, T-DNA from Agrobacterium Ti plasmid is in the nuclear fraction of crown gall tumor cells, Proc. Natl. Acad. Sci. USA 77: 4060–4064.PubMedCrossRefGoogle Scholar
  11. 11.
    Akiyoshi, D. E., Morris, R. O., Hinz, R., Mishke, B. S., Kosuge, T., Garfinkel, D. J., Gordon, M. P., and Nester, E. W., 1983, Cytokinin-auxin balance in crown gall tumors is regulated by specific loci in the T-DNA, Proc. Natl. Acad. Sci. USA 80: 407–411.PubMedCrossRefGoogle Scholar
  12. 12.
    Petit, A., Delhaye, S., Tempe, J., Morel, G., 1970, Recherches sur les guanidines des tissus de crown gall. Mise en evidence d’une rélation biochemique spécifique entre les souches d’Agrobacterium tumefaciens et les tumeurs quielles induisent, Physiol. Veg. 8: 205–213.Google Scholar
  13. 13.
    Petit, A., David, C., Dabb, G., Ellis, J. G., Casse-Delboart, F., and Tempe, J., 1983, Further extension of the opine concept: Plasmids in Agrobacterium. rhizogenes cooperate for opine degradation, Mol. Gen. Genet. 190: 204–214.CrossRefGoogle Scholar
  14. 14.
    White, P. R., and Braun, A. C., 1942, A cancerous neoplasm of plants: Autonomous bacteria-free crown gall tissue, Cancer Res. 2: 597–617.Google Scholar
  15. 15.
    Buchanan, R. E., and Gibbons, N. E. (eds.), 1974, Bergey’s Mannual of Determinative Bacteriology, 8th ed., Williams & Wilkins, Baltimore.Google Scholar
  16. 16.
    Kersters, K., DeLay, J., Sneath, P. H. A., and Sackin, M., 1973, Numerical taxonomic analysis of Agrobacterium, J. Gen. Microbiol. 78: 227–239.Google Scholar
  17. 17.
    Kerr, A., and Panagopoulos, C. G., 1977, Biotypes of Agrobacterium radiobacter var. tumefaciens and their biological control, Phytopathol. Z. 90: 172–179.CrossRefGoogle Scholar
  18. 18.
    New, P. B., and Kerr, A., 1971, A selective medium for Agrobacterium radiobacter biotype 2, J. Appl. Bacteriol. 34: 233–236.PubMedCrossRefGoogle Scholar
  19. 19.
    Perry, K. L., and Kado, C. I., 1982, Characteristics of Ti plasmids from broad-host range and ecologically specific biotype 2 and 3 strains of Agrobacterium tumefaciens, J. Bacteriol. 151: 343–350.PubMedGoogle Scholar
  20. 20.
    Nester, E. W., and Kosuge, T., 1981, Plasmids specifying plant hyperplasia, Annu. Rev. Microbiol. 35: 531–565.PubMedCrossRefGoogle Scholar
  21. 21.
    Hooykaas, P. J. J., Klapwijk, P. M., Nuti, M. P., Schilperoort, R. A., and Rorsch, A., 1977, Transfer of the Agrobacterium tumefaciens Ti-plasmid to avirulent Agrobacteria and to Rhizobia ex planta. J. Gen. Microbiol. 98: 477–484.Google Scholar
  22. 22.
    Van Zarebeke, N., Engler, G., Holster, M., van den Elsacker, S., Zaenen, I., Schilperoort, R. A., and Schell, J., 1974, Large plasmid in Agrobacterium tumefaciens essential for crown gall-inducing activity, Nature (Lond.) 252: 169–170.CrossRefGoogle Scholar
  23. 23.
    Watson, B., Currier, T. C., Gordon, M. P., Chilton, M-D., and Nester, E. W., 1975, Plasmid required for virulence of Agrobacterium tumefaciens, J. Bacteriol. 123: 255–264.PubMedGoogle Scholar
  24. 24.
    Currier, T. C., and Nester, E. W., 1976, Evidence for diverse types of large plasmids in tumor-inducing strains of Agrobacterium, J. Bacteriol. 126: 157–165.PubMedGoogle Scholar
  25. 25.
    Drummond, M. H., and Chilton, M-D., 1978, Tumor-inducing (Ti) plasmids of Agrobacterium share extensive regions of DNA homology, J. Bacteriol. 136: 1178–1183.PubMedGoogle Scholar
  26. 26.
    Hille, J., Hoekema, A., Hooykaas, P., and Shilperoort, R. A., 1984, Gene organization of the Tiplasmid, in: Plant Gene Research: Genes Involved in Microbe—Plant Interactions ( D. P. S. Verma and T. Holn, eds.), pp. 287–309, Springer-Verlag, New York.CrossRefGoogle Scholar
  27. 27.
    Willmitzer, L., Simons, G., and Schell, J., 1982, The ti-DNA in octopine crown gall tumors codes for seven well defined polyadenylated transcripts, EMBO J. 1: 139–146.PubMedGoogle Scholar
  28. 28.
    Leemans, J., Deblaere, R., Willmitzer, L., DeGreve, H., Hernalsteens, J. P., Van Montagu, M., and Schell, J., 1982, Genetic identification of functions of t1-DNA transcripts in octopine crown galls, EMBO. J. 1: 147–152.PubMedGoogle Scholar
  29. 29.
    Hood, E. E., Chilton, W. S., Chilton, M-D., and Fraley, R. T., 1986, T-DNA and opine synthetic loci in tumors incited by Agrobacterium tumefaciens A281 on soybean and alfalfa plants, J. Bacteriol. 168: 1283–1290.PubMedGoogle Scholar
  30. 30.
    DeGreve, H., Dhaese, P., Seruinck, J. Lemmers, M., Van Montagu, M., and Schell, J., 1983, Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene, J. Mol. Appl. Genet. 1: 499–511.Google Scholar
  31. 31.
    Komro, C. T., Dirita, V. G., Gelvin, S. B., and Kemp, J. D., 1985, Site-specific mutagenesis in the Tr-DNA region of octopine-type Ti-plasmids, Plant Mol. Biol. 4: 253–263.CrossRefGoogle Scholar
  32. 32.
    Lemmers, M., Debeuckeleer, M., Holsters, M., Zambryski, P., Depicker, A., Hernalsteens, J. P., Van Montagu, M., and Schell, J., 1980, Internal organization, boundaries and integration of Ti plasmid DNA in nopaline crown gall tumors, J. Mol. Biol. 144: 353–376.PubMedCrossRefGoogle Scholar
  33. 33.
    Depicker, A., Stachel, S., Dhaese, P., Zambryski, P., and Goodman, H. M., 1982, Nopaline synthase: Transcript mapping and DNA sequence, J. Mol. Appl. Genet. 1: 561–573.PubMedGoogle Scholar
  34. 34.
    Zambryski, P., Depicker, A., Kruger, K., and Goodman, H., 1982, Tumor induction by Agrobacterium tumefaciens: Analysis of the boundaries of T-DNA, J. Mol. Appl. Genet. 1: 361–370.PubMedGoogle Scholar
  35. 35.
    Yadav, N. S., Vanderleyden, J., Bennet, D. R., Barnes, W. M., and Chilton, M-D., 1982, Short direct repeats flank the T-DNA on a nopaline Ti plasmid, Proc. Natl. Acad. Sci. USA 79: 6322–6326.PubMedCrossRefGoogle Scholar
  36. 36.
    Simpson, R. B., O’Hara, P. J., Kwok, W., Montaya, A. L., Lickenstein, C., Gordon, M. P., and Nester, E. W., 1982, DNA from the A6S/2 crown gall tumor contains scrambled Ti-plasmid sequences near its junctions with plant DNA, Cell 29: 1005–1014.PubMedCrossRefGoogle Scholar
  37. 37.
    Holsters, M., Villarroel, R., Gielen, J., Seruenck, J., DeGreve, H., Van Montagu, M., and Schell, J., 1983, An analysis of the boundaries of the octopine TL-DNA in tumors induced by Agrobacterium tumefaciens, Mol. Gen. Genet. 190: 35–41.CrossRefGoogle Scholar
  38. 38.
    Joos, H., Inze, D., Caplan, A., Sormann, M., Van Montagu, M., and Schell, J., 1983, Genetic analysis of T-DNA transcripts in nopaline crown galls, Cell 32: 1057–1067.PubMedCrossRefGoogle Scholar
  39. 39.
    Shaw, C. H., Watson, M-D., Carter, G. H., and Shaw, C. H., 1984, The right hand copy of the nopaline Ti-plasmid 25 bp repeat is required for tumor formation, Nucleic Acid Res. 12: 6031–6041.PubMedCrossRefGoogle Scholar
  40. 40.
    Wang, K., Herrera-Estella, L., Van Montagu, M., and Zambryski, P., 1984, Right 25 bp terminus sequences of the opaline T-DNA is essential for and determines direction for DNA transfer from Agrobacterium to the plant cell, Cell 38: 455–462.PubMedCrossRefGoogle Scholar
  41. 41.
    Peralta, E. G., and Ream, L. W., 1985, T-DNA border sequences required for crown gall tumorigenesis, Proc. Natl. Acad. Sci. USA 82: 5112–5116.PubMedCrossRefGoogle Scholar
  42. 42.
    Gardner, R. C., and Knauf, V. C., 1986, Transfer of Agrobacterium DNA to plants requires a T-DNA border but not the vir E locus, Science 231: 725–727.PubMedCrossRefGoogle Scholar
  43. 43.
    Matthyses, A. G., 1983, The role of bacterial cellulose fibrils in infections by Agrobacterium tumefaciens, J. Bacteriol. 154: 906–915.Google Scholar
  44. 44.
    Lippincott, B. B., and Lippincott, J. A., 1969, Bacterial attachment to a specific wound site as an essential stage in tumor initiation by Agrobacterium tumefaciens, J. Bacteriol. 97: 620–628.PubMedGoogle Scholar
  45. 45.
    Whatley, M. H., Boudin, J. S., Lippincott, B. B., and Lippincott, J. A., 1976, Role for Agrobacterium cell envelope lipopolysaccharide in infection site attachment, Infect. Immun. 13: 1080–1083.PubMedGoogle Scholar
  46. 46.
    Lippincott, J. A., and Lippincott, B. B., 1978, Cell walls of crown-gall tumors and embryonic plant tissues lack Agrobacterium adherence sites, Science 199: 1075–1078.PubMedCrossRefGoogle Scholar
  47. 47.
    Douglas, C. J., Halperin, W., and Nester, E. W., 1982, Agrobacterium tumefaciens mutants affected in attachment to plant cells, J. Bacteriol. 152: 1265–1275.Google Scholar
  48. 48.
    Matthysse, A. G., 1987, Characterization of nonattaching mutants of Agrobacterium tumefaciens, J. Bacteriol. 169: 313–323.PubMedGoogle Scholar
  49. 49.
    Matthysse, A. G., 1986, Initial interactions of Agrobacterium tumefaciens with plant host cells, CRC Crit. Rev. Microbiol. 13: 281–307.CrossRefGoogle Scholar
  50. 50.
    Matthysse, A. G., Holmes, K. V., and Gurlitz, R. H. G., 1981, Elaboration of cellulose fibrils by Agrobacterium tumefaciens during attachment to carrot cells, J. Bacteriol. 145: 583–589.PubMedGoogle Scholar
  51. 51.
    Lippincott, J. A., and Lippincott, B. B., 1976, Nature and specificity of the bacterium-host attachment in Agrobacterium infection, in: Cell Wall Biochemistry Related to Specificity in Host—Plant Pathogens Interactions ( B. Solkeim and J. Raa, eds.), pp. 439–451, Universitets-Forlaget, Tromso, Norway.Google Scholar
  52. 52.
    Matthysse, A. G., Wyman, P. M., and Holmes, K. V., 1978, Plasmid dependent attachment of Agrobacterium tumefaciens to plant tissue culture cells, Infect. Immun. 22: 516–522.PubMedGoogle Scholar
  53. 53.
    Douglas, C. J., Staneloni, R. J., Rubin, R. A., and Nester, E. W., 1985, A. tumefaciens chromosomal virulence region. J. Bacteriol. 161: 850–860.Google Scholar
  54. 54.
    Stachel, S. E., Messens, E., Van Montagu, M., and Zambryski, P., 1985, Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens, Nature (Lond.) 318: 624–629.CrossRefGoogle Scholar
  55. 55.
    Dylan, T., Ielpi, L., Stanfield, S., Kashyap, L., Douglas, C., Yanofsky, M., Nester, E., Helinski, D. R., and Ditta, G., 1986, Rhizobium meliloti genes required for nodule development are related to chromosomal virulence genes in Agrobacterium tumefaciens, Proc. Natl. Acad. Sci. USA 83: 4403–4407.Google Scholar
  56. 56.
    Engstrom, P., Zambryski, P., Vannontagu, M., and Stachel, S. E., 1987, Characterization of Agrobacterium tumefaciens virulence proteins induced by the plant factor acetosyringone, J. Molec. Biol. 197: 635–646.PubMedCrossRefGoogle Scholar
  57. 57.
    Jayaswal, R. K., Veluthambi, K., Gelvin, S. B., and Slightom, J. L., 1987, Double-stained cleavage of T-DNA and generation of single-stranded T-DNA molecules in Escherichia coli by a vir D-encoded border-specific endonuclease from Agrobacterium tumefaciens, J. Bacteriol. 169: 5035–5045.PubMedGoogle Scholar
  58. 58.
    Wang, K., Stachel, S. E., Timmerman, B., Van Montagu, M., and Zambryski, P. C., 1987, Site-specific nick in the T-DNA border sequence as a result of Agrobacterium vir gene expression, Science 235: 587–591.PubMedCrossRefGoogle Scholar
  59. 59.
    Yamamoto, A., Iwahashi, M., Yanofsky, M. F., Nester, E. W., Takebe, I., and Machida, Y., 1987, The promoter proximal region in the virD locus of Agrobacterium tumefaciens is necessary for the plant-inducible circularization of T-DNA, Mol. Gen. Genet. 206: 174–177.PubMedCrossRefGoogle Scholar
  60. 60.
    Gietl, C., Koukolikova-Nicola, Z., and Han, B., 1987, Mobilization of T-DNA from Agrobacterium to plant cells involves a protein that binds single-stranded DNA, Proc. Natl. Acad. Sci. USA 84: 9006–9010.PubMedCrossRefGoogle Scholar
  61. 61.
    Beaty, J. S., Powell, G. K., Lica, L., Regier, D. A., MacDonald, E. M. S., Hommes, N. G., and Morris, R. 0., 1986, Tzs, a nopaline Ti plasmid gene from Agrobacterium tumefaciens associated with transzeatin biosynthesis, Mol. Gen. Genet. 203: 274–280.CrossRefGoogle Scholar
  62. 62.
    Miller, C. 0., 1974, Ribosyl-trans-zeatin, a major cytokinin produced by crown gall tumor tissue, Proc. Natl. Acad. Sci. USA 71: 334–338.PubMedCrossRefGoogle Scholar
  63. 63.
    Scott, I. M., Browning, G., and Eagles, J., 1980, Ribosylzeatin and zeatin in tobacco crown gall tumor tissue, Planta 147: 269–273.CrossRefGoogle Scholar
  64. 64.
    Weiler, E. W., and Spanier, K., 1981, Phytohormones in the formation of crown gall tumor, Planta 153: 326–337.CrossRefGoogle Scholar
  65. 65.
    Ooms, G., Hooykaas, P. J. J., Moolenaar, G., and Schilperoort, R. A., 1981, Crown gall plant tumors of abnormal morphology induced by Agrobacterium tumefaciens carrying mutated octopine Ti plasmids: Analysis of T-DNA functions, Gene 14: 33–50.PubMedCrossRefGoogle Scholar
  66. 66.
    Barry, G. F., Rogers, S. G., Fraley, R. T., and Brand, L., 1984, Identification of a cloned cytokinin biosynthetic gene, Proc. Natl. Acad. Sci. USA 81: 4776–4780.PubMedCrossRefGoogle Scholar
  67. 67.
    Skoog, F., and Miller, C. 0., 1957, Chemical regulation of growth and organ formation in plant tissues cultured in vitro, Symp. Soc. Exp. Biol. 11: 118–131.PubMedGoogle Scholar
  68. 68.
    Garfinkel, D. J., Simpson, R. B., Ream, L. W., White, F. F., Gordon, M. P., and Nester, E. W., 1981, Genetic analysis of crown gall: Fine structure map of the T-DNA by site-directed mutagenesis, Cell 27: 143–153.PubMedCrossRefGoogle Scholar
  69. 69.
    Willmitzer, L., Sanchez-Serrano, J., Buschfeld, E., and Schell, J., 1982, DNA from Agrobacterium rhizogenes is transferred to and expressed in axenic hairy root plant tissue, Mol. Gen. Genet. 186: 16–32.CrossRefGoogle Scholar
  70. 70.
    Goutheret, R. J., 1947, Action de l’acide indole-acétique sur le dévelopement des tissus normaux et de tissus de crown gall de topinambour cultives in vitro, C. R. Acad. Sci. 224: 1728–1730.Google Scholar
  71. 71.
    Liu, S. T., and Kado, C. I., 1979, Indole acetic acid production: A plasmid function of Agrobacterium tumefaciens, Biochem. Biopphys. Res. Commun. 90: 171–178.CrossRefGoogle Scholar
  72. 72.
    Liu, S. T., Perry, K. L., Shcardl, C. L., and Kado, C. I., 1982, Agrobacterium Ti plasmid indole acetic acid gene is required for crown gall oncogenesis, Proc. Natl. Acad. Sci. USA 79: 2812–2816.Google Scholar
  73. 73.
    Inze, D., Follin, A., Van Lijsebettens, M., Simoens, C., Genetello, C., Van Montagu, M., and Schell, J., 1983, Genetic analysis of the individual T-DNA genes of Agrobacterium tumefaciens: Further evidence that two genes are involved in indole-3-acetic acid synthesis, Mol. Gen. Genet. 194: 265–274.CrossRefGoogle Scholar
  74. 74.
    Akiyoski, D. E., Klee, H., Amasino, R. M., Nester, E. W., and Gordon, M. P., 1984, T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis, Proc. Natl. Acad. Sci. USA 81: 5994–5998.CrossRefGoogle Scholar
  75. 75.
    Kado, C. I., 1984, Phytohormone-mediated tumorigenesis by plant pathogenic bacteria, in: Plant Gene Research. Genes Involved in Microbe—Plant Interactions (D. P. S. Verna and T. Holn, eds.), pp. 311336, Springer-Verlag, New York.Google Scholar
  76. 76.
    Ménagé, A., and Morel, M. G., 1964, Sur la presence d’octopine dans les tissus de crown gall, C.R. Acad. Sci. 259: 4795–4796.Google Scholar
  77. 77.
    Goldman, A., Thomas, D. W., and Morel, G., 1969, Sur la structure de la nopaline, metabolite anormal de certaines tumeurs de crown gall, C.R. Acad. Sci. 268: 852–854.Google Scholar
  78. 78.
    Firmin, J. L., and Fenwick, G. R., 1978, Agropine. A major new plasmid determined metabolite in crown gall tumors, Nature (Lond.) 276: 842–844.CrossRefGoogle Scholar
  79. 79.
    Kemp, J. D., 1982, Plant pathogens that engineer their hosts, in: Phytopathogenic Prokaryotes, Vol. 1 ( M. S. Mount and G. H. Lacy, eds.), pp. 443–457, Academic, Orlando, Florida.Google Scholar
  80. 80.
    Amasino, R. M., and Miller, C. O., 1982, Hormonal control of tobacco tumor morphology, Plant Physiol. 69: 389–392.PubMedCrossRefGoogle Scholar
  81. 81.
    Bomhoff, G. H., Klapwijk, P. M., Kester, H. C. M., Schilperoort, R. A., Hernalsteens, J. P., and Schell, J., 1976, Octopine and nopaline synthesis and breakdown genetically controlled by a plasmid of Agrobacterium tumefaciens, Mol. Gen. Genet. 145: 177–181.PubMedCrossRefGoogle Scholar
  82. 82.
    Kerr, A., Manigault, P., Tempé, J., 1977, Transfer of virulence in vivo and in vitro in Agrobacterium, Nature (Lond.) 265: 560–561.CrossRefGoogle Scholar
  83. 83.
    Montoya, A. J., Chilton, M-D., Gordon, M. P., Sciaky, D., and Nester, E. W., 1977, Octopine and nopaline metabolism in Agrobacterium tumefaciens and crown gall tumor cells: Role of plasmid genes, J. Bacteriol. 129: 101–107.PubMedGoogle Scholar
  84. 84.
    Guyon, P., Chilton, M-D., Petit, A., and Tempé, J., 1980, Agropine in “null type” crown gall tumors: Evidence for the generality of the opine concept, Proc. Natl. Acad. Sci. USA 77: 2693–2697.PubMedCrossRefGoogle Scholar
  85. 85.
    Limasset, P., and Gautheret, R., 1950, Sur le caractère tumoral des tissus de tabac ayant subi le phénomène d’accoutumance aux hétero-auxines, C.R. Acad. Sci. Paris 230: 2043–2045.Google Scholar
  86. 86.
    Binns, A., and Meins, F., Jr., 1973, Habituation of tobacco pith cells for factors promoting cell division is heritable and potentially reversible, Proc. Natl. Acad. Sci. USA 70: 2660–2662.PubMedCrossRefGoogle Scholar
  87. 87.
    Braun, A. C., 1974, Epigenetic changes, in: The Biology of Cancer, pp. 105–109, Addison-Wesley, Reading, Massachusetts.Google Scholar
  88. 88.
    Braun, A. C., 1953, Bacterial and host factors concerned in determining tumor morphology in crown gall, Botan. Gaz. 114: 363–371.CrossRefGoogle Scholar
  89. 89.
    Braun, A. C., 1959, A demonstration of the recovery of the crown-gall tumor cell with the use of complex tumors of single-cell origin, Proc. Natl. Acad. Sci. USA 45: 932–938.PubMedCrossRefGoogle Scholar
  90. 90.
    Braun, A. C., and Wood, H., 1976, Suppression of the neoplastic state with the acquisition of specialized functions in cells, tissues and organs of crown gall teratomas of tobacco, Proc. Natl. Acad. Sci. USA 73: 496–500.PubMedCrossRefGoogle Scholar
  91. 91.
    Turgeon, R., Wood, H. N., and Braun, A. C., 1976, Studies on the recovery of crown gall tumor cells, Proc. Natl. Acad. Sci. USA 73: 3562–3564.PubMedCrossRefGoogle Scholar
  92. 92.
    Binns, A., Wood, H. N., and Braun, A. C., 1981, Suppression of the tumorous state in crown gall teratomas of tobacco: A clonal analysis, Differentiation 19: 97–102.CrossRefGoogle Scholar
  93. 93.
    Wood, H. N., Binns, A. N., and Braun, A. C., 1978, Differential expression of oncogenicity and nopaline synthesis in intact leaves derived from crown gall teratoma of tobacco, Differentiation 11: 175–180.CrossRefGoogle Scholar
  94. 94.
    Williams, G. J., Molendijk, L., Ooms, G., and Schelperoort, R., 1981, Differential expression of crown gall tumor markers in transformants obtained after in vitro Agrobacterium tumefaciens induced transformation of cell wall regenerating protoplasts derived from Nicotiana tabacum, Proc. Natl. Acad. Sci. USA 78: 4344–4348.CrossRefGoogle Scholar
  95. 95.
    Sacristan, M. D., and Melchers, G., 1977, Regeneration of plants from “habituated” and Agrobacterium transformed single-cell clones of tobacco, Mol. Gen. Genet. 152: 111–117.CrossRefGoogle Scholar
  96. 96.
    Yang, F-M., and Simpson, R. B., 1981, Revertant seedlings from crown gall tumors retain a portion of the bacterial Ti plasmid sequences, Proc. Natl. Acad. Sci. USA 78: 4151–4155.PubMedCrossRefGoogle Scholar
  97. 97.
    Williams, G. J., Molndijk, L., Ooms, G., and Schelperoort, R. A., 1981, Retention of tumor markers in F-1 progeny plants from in vitro induced octopine and nopaline tumor tissue, Cell 24: 719–727.CrossRefGoogle Scholar
  98. 98.
    Wostemeyer, A., Otten, L., DeGreve, H., Hernalsteens, J. P., and Leemans, J., 1982, Regeneration of plants from crown gall cells, in: Genetic Engineering in Eucaryotes ( P. F. Lurquin and A. Kleinhofs, eds.), pp. 137–151, Plenum, New York.Google Scholar
  99. 99.
    Yang, F-M, Montoya, A. L., Merlo, D. J., Drummond, M. H., and Chilton, M-D, 1980, Foreign DNA sequences in crown gall teratomas and their fate during the loss of the tumorous traits, Mol. Gen. Genet. 177: 704–714.CrossRefGoogle Scholar
  100. 100.
    DeGreve, H., Leemans, J., Hernalsteens, J. P., Thia-Toong, L., and DeBeuckeleer, M., 1982, Regeneration of normal and fertile plants that express octopine synthase from tobacco crown galls after deletion of tumor-controlling functions, Nature (Lond.) 300: 752–754.CrossRefGoogle Scholar
  101. 101.
    Barton, K. A., Binns, A. N., Matzke, A. J. M., and Chilton, M-D., 1983, Regeneration of intact tobacco plants containing full length copies of genetically engineered T-DNA and transmission of T-DNA to R1 progeny, Cell 32: 1033–1043.PubMedCrossRefGoogle Scholar
  102. 102.
    Kerr, A., and Htay, K., 1974, Biological control of crown gall through bacteriocin production, Physiol. Plant Pathol. 4: 37–44.CrossRefGoogle Scholar
  103. 103.
    Ellis, J. G., Kerr, A., Van Montagu, M., and Schell, J., 1979, Agrobacterium: Genetic studies in Agrocin 84 production and the biological control of crown gall, Physiol. Plant Pathol. 15: 311–319.Google Scholar
  104. 104.
    Slots, J. E., and Farrand, S. K., 1982, Genetic isolation and physical characterization of pAgK84, the plasmid responsible for Agrocin 84 production, Plasmid 8: 175–186.CrossRefGoogle Scholar
  105. 105.
    Roberts, W. P., Tate, M. E., and Kerr, A., 1977, Agrocin 84 is a 6-N-phosphoramidate of an adenine nucleotide analogue, Nature (Lond.) 265: 379–381.CrossRefGoogle Scholar
  106. 106.
    Engler, G., Holsters, M., Van Montagu, M., Schell, J., Hernalsteens, J. P., and Schelperoort, R., 1975, Agrocin 84 sensitivity: A plasmid determined property in Agrobacterium tumefaciens, Mol. Gen. Genet. 138: 345–349.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Joseph V. Formica
    • 1
  1. 1.Department of Microbiology and Immunology, School of Basic Health SciencesVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations