Metaplastic Transformation of Pancreatic Cells to Hepatocytes

  • Dante G. Scarpelli
  • Janardan K. Reddy
  • Sambasiva M. Rao


The dogma that the differentiated state in non-neoplastic cells is stable and irreversible is clearly no longer tenable in the face of the numerous examples in the literature that document its plasticity under certain circumstances. The earliest examples of the transformation of one differentiated cell type to another, referred to as metaplasia, were encountered by pathologists during their histologic studies of human tissues affected by processes such as inflammation and neoplasia.1 While relatively common, the occurrence of metaplasia in association with these conditions is extremely variable from case to case, suggesting that its development depends on a very specific set of conditions. Although metaplasia has long been known and is well documented in both epithelial and mesenchymal cells, details of its histogenesis remain controversial. This is based largely on the issue of whether one fully differentiated cell type can indeed directly undergo transformation to another, or whether as some hold, metaplastic cells must arise from undifferentiated precursor cells that persist in the adult state and under abnormal conditions undergo atypical differentiation.


Acinar Cell Intestinal Metaplasia Pancreatic Cell Pancreatic Acinar Cell Homeotic Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. I. Willis, R. A., 1960, Pathology of Tumors, 3rd ed., Butterworths, Washington, D.C.Google Scholar
  2. 2.
    Stone, L. S., 1950, The role of retinal pigment cells in regenerating neural retinae of adult salamander eyes, J. Exp. Zool. 113: 9–31.CrossRefGoogle Scholar
  3. 3.
    Stone, L. S., 1950, Neural retina degeneration followed by regeneration from surviving retinal pigment cells in grafted adult salamander eyes, Anat. Rec. 106: 89–109.PubMedCrossRefGoogle Scholar
  4. 4.
    Stone, L. S., Regeneration of the iris and lens from retina pigment cells in adult newt eyes, J. Exp. Zool. 129: 505–533.Google Scholar
  5. 5.
    Grobstein, C., 1959, Differentiation of vertebrate cells, in: The Cell, Vol. 1 ( J. Brachet and A. E. Mirsky, eds.), pp. 437–496, Academic, New York.Google Scholar
  6. 6.
    Okada, T. S., 1980, Cellular metaplasia or transdifferentiation as a model for retinal cell differentiation, Current Top. Dev. Biol. 16: 349–390.CrossRefGoogle Scholar
  7. 7.
    Eguchi, G., Masuda, A., Karasawa, Y., Kodama, R., and Itoh, Y., 1981, Microenvironments controlling the transdifferentiation of vertebrate pigmented epithelial cells in in vitro culture, Adv. Exp. Med. Biol. 158: 209–221.Google Scholar
  8. 8.
    Yamada, T., 1982, Transdifferentiation of lens cells and its regulation, in: Cell Biology of the Eye ( D. S. McDevitt, ed.), pp. 193–242, Academic, New York.Google Scholar
  9. 9.
    McDowell, E., Becci, P., Schürch, W., and Trump, B., 1979, The respiratory epithelium. VII. Epidermoid metaplasia of hamster tracheal epithelium during regeneration following mechanical injury, J. Natl. Cancer Inst. 62: 995–1008.PubMedGoogle Scholar
  10. 10.
    Reddi, A. H., and Huggins, C. B., 1975, Formation of bone marrow in fibroblast-transformation ossicles. Proc. Natl. Acad. Sci. USA 72: 2212–2216.PubMedCrossRefGoogle Scholar
  11. 11.
    Taylor, S. M., and Jones, P. A., 1979, Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine, Cell 17: 771–779.PubMedCrossRefGoogle Scholar
  12. 12.
    Yoshida, Y., Kaneko, A., Chisaka, N., and Once, T., 1978, Appearance of intestinal type of tumor cells in hepatoma tissue induced by 3’-methyl-4-dimethylaminoazobenzene, Cancer Res. 38: 2753–2758.PubMedGoogle Scholar
  13. 13.
    Matsukara, N., Suzuki, K., Kawochi, T., Aoyagi, M., Sugimura, T., Kitaoka, H., Numajiri, H., Shirota, A., Itaboshi, M., and Hirota, T., 1980, Distribution of marker enzyme and mucin in intestinal metaplasia in human stomach and relation of complete and incomplete types of metaplasia to minute gastric carcinomas, J. Natl. Cancer Inst. 65: 231–240.Google Scholar
  14. 14.
    Wattenberg, L. W., 1959, Histochemical study of aminopeptidase in metaplasia and carcinoma of the stomach, Arch. Pathol. Lab. Med. 67: 281–286.Google Scholar
  15. 15.
    Scarpelli, D. G., and Rao, M. S., 1981, Differentiation of regenerating pancreatic cells into hepatocyte-like cells, Proc. Natl. Acad. Sci. USA 78: 2577–2581.PubMedCrossRefGoogle Scholar
  16. 16.
    Melmed, R. N., Benitez, C. J., and Holt, S. J., 1972, Intermediate cells of the pancreas. I. Ultrastructural characterization, J. Cell Sci. 11: 449–475.PubMedGoogle Scholar
  17. 17.
    Lalwani, N. D., Reddy, M. K., Qureshi, S. A., and Reddy, J. K., 1981, Development of hepatocellular carcinomas and increased peroxisomal fatty acid 3-oxidation in rats fed [4-chloro-6-(2,3-xylidino)-2pyrimidinylthiolacetic acid (Wy-14,643) in the semipurified diet, Carcinogenesis 7: 645–650.CrossRefGoogle Scholar
  18. 18.
    Scarpelli, D. G., and Rao, M. S., 1981, Early changes in regenerating hamster pancreas following a single dose of N-nitrosobis(2-oxopropyl)amine (NBOP) administered at the peak of DNA synthesis, Cancer 47: 1552–1561.PubMedCrossRefGoogle Scholar
  19. 19.
    Pour, P., Mohr, U., Althoff, J., Cardesa, A., and Kmoch, N., 1976, Spontaneous tumors and common diseases in two colonies of Syrian hamsters. III. Urogenital system and endocrine glands, J. Natl. Cancer Inst. 56: 949–961.PubMedGoogle Scholar
  20. 20.
    Takahashi, M., and Pour, P., 1978, Spontaneous alterations in the pancreas of the aging Syrian hamster, J. Natl. Cancer Inst. 60: 355–364.PubMedGoogle Scholar
  21. 21.
    Murgatroyd, L. B., and Tucker, M. J., 1981, Pancreatic islet cell hypertrophy in the Syrian hamster, J. Comp. Pathol. 91: 455–459.PubMedCrossRefGoogle Scholar
  22. 22.
    Reddy, J. K., Rao, M. S., Qureshi, S. A., Reddy, M. K., Scarpelli, D. G., and Lalwani, N. D., 1984, Induction and origin of hepatocytes in rat pancreas, J. Cell Biol. 98: 2082–2090.PubMedCrossRefGoogle Scholar
  23. 23.
    Rao, M. S., Subbarao, V., Scarpelli, D. G., and Reddy, J. K., 1985, Pancreatic hepatocytes in rats, Toxicologist 5: 160a.Google Scholar
  24. 24.
    Rao, M. S., Subbarao, V., and Reddy, J. K., 1986, Induction of hepatocytes in the pancreas of copper depleted rats following copper repletion, Cell Diff. 18: 109–117.CrossRefGoogle Scholar
  25. 25.
    Hoover, K. L., and Poirer, L. L., 1986, Hepatocyte-like cells within the pancreas of rats fed methyl-deficient diets, J. Nutr. 116: 1569–1575.PubMedGoogle Scholar
  26. 26.
    Chiu, T., 1987, Focal eosinophilic hypertrophic cells of the rat pancreas, Toxicol. Pathol. 15: 1–6.PubMedCrossRefGoogle Scholar
  27. 27.
    O’Leary, T. J., Costa, J., and Roth, J., 1982, Oncocytic nodules of the pancreas, Lab. Invest. 46: 63a.Google Scholar
  28. 28.
    Rao, M. S., Reddy, M. K., Reddy, J. K., and Scarpelli, D. G., 1982, Response of chemically induced hepatocyte-like cells in hamster pancreas to methyl clofenapate, a peroxisome proliferator, J. Cell Biol. 95: 50–56.PubMedCrossRefGoogle Scholar
  29. 29.
    Rao, M. S., Subbarao, V., Luetteke, N., and Scarpelli, D. G., 1983, Further characterization of carcinogen-induced hepatocyte-like cells in hamster pancreas, Am. J. Pathol. 110: 89–94.PubMedGoogle Scholar
  30. 30.
    Rao, M. S., Bendayan, M., and Reddy, J. K., 1985, Localization of carbamyl phosphate synthetase (ammonia) (CPS) in pancreatic hepatocytes of rat, Fed. Proc. 44: 740a.Google Scholar
  31. 31.
    Rao, M. S., Scarpelli, D. G., and Reddy, J. K., 1986, Transdifferentiated hepatocytes in rat pancreas, Current Top. Dev. Biol. 20: 63–77.Google Scholar
  32. 32.
    Leblond, C. P., 1964, Classification of cell populations on the basis of their proliferative behavior, Natl. Cancer Inst. Monog. 14: 119–150.Google Scholar
  33. 33.
    Fitzgerald, P. J., 1960, The problem of the precursor cell of regenerating pancreatic acinar epithelium, Lab. Invest. 9: 67–84.Google Scholar
  34. 34.
    Fitzgerald, P. J., Herman, L., Carol, B., Roque, A., Marsh, W. H., Rosenstock, L., Richardson, C., and Perl, D., 1968, Am. J. Pathol. 52: 983–1011.PubMedGoogle Scholar
  35. 35.
    Scarpelli, D. G., Rao, M. S., Subbarao, V., and Beversluis, M., 1981, Regeneration of Syrian golden hamster pancreas and covalent binding of N-nitroso-2,6-[3H]dimethylmorpholine, Cancer Res. 41: 1051–1057.PubMedGoogle Scholar
  36. 36.
    Laguesse, E., 1895, Recherches sur l’histogénie due pancreas chez le mouton, J. Anat. Physiol. (Paris) 31: 475–504.Google Scholar
  37. 37.
    Mankowski, A., 1902, Ueber die mikroskopischen Veränderungen des Pankreas nach Unterbindung einzelner Theile and über einige mickrochemische Besonderheiten des Langerhan ‘schen inseln, Arch. Mikrosk, Anat. Entwicklungsmech. 59: 286–294.Google Scholar
  38. 38.
    Laguesse, M. E., 1905, Ilots endocrines et formes de transition dans le lobule pancréatique (homme), C. R. Soc. Biol. (Paris) 58: 542–544.Google Scholar
  39. 39.
    Herman, L., Sato, T., and Fitzgerald, P. J., 1963, Electron microscopy of acinar-islet cells in the rat pancreas, Fed. Proc. 22: 603.Google Scholar
  40. 40.
    Melmed, R. N., Benitz, C. J., and Holt, S. J., 1972, Intermediate cells of the pancreas. I. Ultrastructural characterization, J. Cell Sci. 11: 449–475.PubMedGoogle Scholar
  41. 41.
    Melmed, R. N., 1979, Intermediate cells of the pancreas. An appraisal, Gastroenterology 76: 196–201.PubMedGoogle Scholar
  42. 42.
    Kimbrough, R., 1973, Brief communication: Pancreatic-type tissue in livers of rats fed polychlorinated biphenyls, J. Natl. Cancer Inst. 51: 679–681.PubMedGoogle Scholar
  43. 43.
    Rao, M. S., Bendayan, R. D., Kimbrough, R. D., and Reddy, J. K., 1986, Characterization of pancreatic-type tissue in the liver of rat induced by polychlorinated biphenyls, J. Histochem. Cytochem. 34: 197–201.PubMedCrossRefGoogle Scholar
  44. 44.
    Sasaki, T., and Yoshida, T., 1935, Experimentelle Erzeugung des Lebercarcima durch Futterung mit OAmidoazotoluol, Virchows Arch. (Pathol. Anat. Physiol. KIM. Med.) 295: 175–200.CrossRefGoogle Scholar
  45. 45.
    Edwards, J. E., and White, J., 1941, Pathologic changes with special reference to pigmentation and classification of hepatic tumors in rats fed p-dimethylaminoazobenzene (butter yellow), J. Natl. Cancer Inst. 2: 157–183.Google Scholar
  46. 46.
    Yaswen, P., Hayner, N. T., and Fausto, N., 1984, Isolation of oval cells by centrifugal elutriation and comparison with other cell types purified from normal and neoplastic livers, Cancer Res. 44: 324–331.PubMedGoogle Scholar
  47. 47.
    Hayner, N. T., Braun, L., Yaswen, P., Brooks, M., and Fausto, N., 1984, Isozyme profiles of oval cells, parenchymal cells and biliary cells isolated by centrifugal elutriation from normal and preneoplastic livers, Cancer Res. 44: 332–338.PubMedGoogle Scholar
  48. 48.
    Tatematsu, M., Kaku, T., Medline, A., and Farber, E., 1985, Intestinal metaplasia as a common option of oval cells in relation to cholangiofibrosis in liver of rats exposed to 2-acetylaminofluorene, Lab. Invest. 52: 354–362.PubMedGoogle Scholar
  49. 49.
    Hendricks, T. R., Meyers, T. R., and Shelton, D. W., 1984, Histologic progression of hepatic neoplasia in rainbow trout (Salmo gairdneri), in: Use of Small Fish Species in Carcinogenicity Testing, Journal of the National Cancer Institute Monographs, Vol. 65 ( K. L. Hoover, ed.), pp. 321–336, National Cancer Institute, Bethesda.Google Scholar
  50. 50.
    Scarpelli, D. G., 1974, Mitogenic activity of sterculic acid, a cyclopropenoid fatty acid, Science 185: 958–960.PubMedCrossRefGoogle Scholar
  51. 51.
    Magnus, H. A., 1937, Observations on the presence of intestinal epithelium in the gastric mucosa, J. Pathol. 44: 389–398.CrossRefGoogle Scholar
  52. 52.
    Warren, S., and Meissner, W. A., 1944, Chronic gastritis and carcinoma of the stomach, Gastroenterology 3: 251–256.Google Scholar
  53. 53.
    Morson, B. C., 1956, Intestinal metaplasia of the gastric mucosa, Gastroenterologia (Basel) 86: 353–355.Google Scholar
  54. 54.
    Wattenberg, L. W., 1959, Histochemical study of aminopeptidase in metaplasia and carcinoma of the stomach, AMA Arch. Pathol. 67: 281–286.PubMedGoogle Scholar
  55. 55.
    Matsukura, N., Suzuki, K., Kawachi, T., Aoyagi, M., Sugimura, T., Kitaoka, H., Numajiri, H., Shirota, A., Itaboshi, M., and Hirota, T., 1980, Distribution of marker enzymes and mucin in intestinal metaplasia in human stomach and relation of complete and incomplete types of intestinal metaplasia to minute gastric carcinomas, J. Natl. Cancer Inst. 65: 231–240.PubMedGoogle Scholar
  56. 56.
    Albores-Saavedra, J., Nadji, M., and Henson, D. E., 1986, Intestinal-type adenocarcinoma of the gallbladder. A clinicopathologic and immunocytochemical study of seven cases, Am. J. Surg. Pathol. 10: 19–25.PubMedCrossRefGoogle Scholar
  57. 57.
    Okita, K., Noda, K., and Kodama, T., 1977, Carcino-fetal proteins and gastric cancer: the site of alphafetoprotein synthesis in gastric cancer, Gastroenterol. Jpn. 12: 400–406.PubMedGoogle Scholar
  58. 58.
    Kodama, T., Kameya, T., and Hirota, T., 1981, Production of alpha-fetoprotein, normal serum proteins, and human chorionic gonadotropin in stomach cancer: Histologic and immunohistochemical analyses of 35 cases, Cancer 48: 1647–1655.PubMedCrossRefGoogle Scholar
  59. 59.
    Ishikura, H., Fukasawa, Y., Ogasawara, K., Natori, T., Tsukada, Y., and Aizawa, M., 1985, An AFP-producing gastric carcinoma with features of hepatic carcinoma, Cancer 56: 840–848.PubMedCrossRefGoogle Scholar
  60. 60.
    Walters, M. N-I., 1965, Goblet-cell metaplasia in ductules and acini of the exocrine pancreas, J. Pathol. 89: 569–572.CrossRefGoogle Scholar
  61. 61.
    Roberts, P. F., 1974, Pyloric gland metaplasia of the human pancreas. A comparative histochemical study, Arch. Pathol. Lab. Med. 97: 92–95.Google Scholar
  62. 62.
    Scarpelli, D. G., 1985, Multipotent developmental capacity of cells in the adult animal, Lab. Invest. 52: 331–333.PubMedGoogle Scholar
  63. 63.
    McGinnis, W., Levine, M. S., Hafen, E., Kuroiwa, A., and Gehring, W. J., 1984, A conserved DNA sequence in homeotic genes of the Drosophila antennapedia and bithorax complexes, Nature (Lond.) 308: 428–433.CrossRefGoogle Scholar
  64. 64.
    Fjose, A., McGinnis, W. J., and Gehring, W. J., 1985, Isolation of a homeobox-containing gene from the engrailed region of Drosophila and the spatial distribution of its transcripts, Nature (Lond.) 313: 284–289.CrossRefGoogle Scholar
  65. 65.
    Shepard, J. C. W., McGinnis, W., Carrasco, A. J., De Robertis, E. M., and Gehring, W. J., 1984, Fly and frog homeo domains show homologies with yeast mating type regulatory proteins, Nature (Lond.) 310: 70–71.CrossRefGoogle Scholar
  66. 66.
    McGinnis, W., Garber, R. L., Wirz, J., Kuroiwa, A., and Gehring, W. J., 1984, A homologous protein-coding sequence in drosophila homeotic genes and its conservation in other metazoans, Cell 37: 403–408.PubMedCrossRefGoogle Scholar
  67. 67.
    Manley, J. L., and Levine, M. S., 1985, The homeo box and mammalian development, Cell 43: 1–2.PubMedCrossRefGoogle Scholar
  68. 68.
    Gehring, W. J., 1987, Homeoboxes in the study of development, Science 236: 1245–1252.PubMedCrossRefGoogle Scholar
  69. 69.
    Miller, J. H., and Reznikoff, W. S. (eds.), 1978, The Operon, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  70. 70.
    Ptashne, M., 1980, How the lambda repressor and cro work, Cell 19: 1–11.PubMedCrossRefGoogle Scholar
  71. 71.
    Gierer, A., 1974, Molecular models and combinatorial principles in cell differentiation and morphogenesis, Cold Spring Harbor Symp. Quant. Biol. 38: 951–961.CrossRefGoogle Scholar
  72. 72.
    Holtzer, H., Weintraub, H., Mayne, R., and Mochen, R., 1972, The cell cycle, cell lineages, and cell differentiation, Curr. Top. Dev. Biol. 7: 229–256.PubMedCrossRefGoogle Scholar
  73. 73.
    Ogden, S., Haggerty, D., Stoner, C. M., Kolodrubetz, D., and Schleif, R., 1980, The E. coli L-arabinose operon binding sites of the regulatory proteins and a mechanism of positive and negative regulation, Proc. Natl. Acad. Sci. USA 77: 3346–3550.PubMedCrossRefGoogle Scholar
  74. 74.
    Weintraub, H., and Groudine, M., 1976, Chromosomal subunits in active genes have an altered conformation, Science 193: 848–856.PubMedCrossRefGoogle Scholar
  75. 75.
    Blau, H. M., Plavath, G. K., Hardeman, E. C., Chiu, C-P., Silberstein, L., Webster, S. G., Miller, S. C., and Webster, C., 1985, Plasticity of the differentiated state, Science 230: 758–766.PubMedCrossRefGoogle Scholar
  76. 76.
    Razin, A., and Riggs, A. D., 1980, DNA methylation and gene function, Science 210: 604–610.PubMedCrossRefGoogle Scholar
  77. 77.
    Navath-Many, T., and Cedar, H., 1981, Active gene sequences are undermethylated, Proc. Natl. Acad. Sci. USA 78: 4246–4250.CrossRefGoogle Scholar
  78. 78.
    Riggs, A. D., and Jones, P. A., 1983, 5-Methylcytosine, gene regulation, and cancer, Adv. Cancer Res. 40: 1–29.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Dante G. Scarpelli
    • 1
  • Janardan K. Reddy
    • 1
  • Sambasiva M. Rao
    • 1
  1. 1.Department of PathologyNorthwestern University Medical SchoolChicagoUSA

Personalised recommendations