Oncodevelopmental Expression and Neoplasia

  • Alphonse E. Sirica


One of the earliest investigators to associate neoplasia with development was Julius Cohnheim,1 who in 1877 first proposed his embryonal rest theory of malignant neoplasia. Thirty-two years later, Adami provided one of the best known attempts to classify neoplasms on an embryologic basis.2 Although these earlier efforts are now best accepted more for their historic value than for their scientific merit, they do serve to demonstrate that the developmental approach toward attempting to understand the neoplastic process is not new. However, it has only been within the past 20 years or so that the biochemical and molecular aspects of development as related to neoplasia have come to be appreciated. In this context, it is not surprising that in recent years neoplasia has come to be referred to as being a problem in developmental biology.3–5 Perhaps even more relevant is the fact that malignant neoplasia is now frequently described as being a disease of differentiation.6,7


Hepatocellular Carcinoma Malignant Neoplasia Oncofetal Antigen Pancreatic Oncofetal Antigen Oncofetal Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cohnheim, J., 1877, Vorlesungen über allgemeine Pathologie, A. Hirschwald, Berlin.Google Scholar
  2. 2.
    Willis, R. A., 1960, Pathology of Tumors, 3rd ed., Butterworth, Washington, D. C.Google Scholar
  3. 3.
    Pitot, H. C., 1974, Neoplasia and differentiation as translational functions, in: Developmental Aspects of Carcinogenesis and Immunity. The Thirty-second Symposium of the Society for Developmental Biology ( T.J. King, ed.) pp. 79–88, Academic, New York.Google Scholar
  4. 4.
    Pierce, G. B., Shikes, R., and Fink, L. M., 1978, Cancer: A Problem of Developmental Biology, Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  5. 5.
    Rubin, H., 1985, Cancer as a dynamic developmental disorder, Cancer Res. 45: 2935–2942.PubMedGoogle Scholar
  6. 6.
    Potter, V. R., 1983, The cancer cell, in: Concepts in Cancer Medicine ( S. B. Kahn, R. R. Love, C. Sherman, and R. Chakravorty, eds.), pp. 119–125, Grune and Stratton, New York.Google Scholar
  7. 7.
    Loch-Caruso, R., and Trosko, J. E., 1986, Inhibited intercellular communication as a mechanistic link between teratogenesis and carcinogenesis, CRC Crit. Rev. Toxicol. 16: 157–183.CrossRefGoogle Scholar
  8. 8.
    Fishman, W. H., 1983, Oncodevelopmental markers, in: Oncodevelopmental Markers: Biologic, Diagnostic, and Monitoring Aspects ( W. H. Fishman, ed.), pp. 3–19, Academic, New York.Google Scholar
  9. 9.
    Abelev, G. I., 1971, Alpha-fetoprotein in ontogenesis and its association with malignant tumors, Adv. Cancer Res. 141: 295–358.CrossRefGoogle Scholar
  10. 10.
    Sell, S., Becker, F. F., Leffert, H. L., and Watabe, H., 1976, Expression of an oncodevelopmental gene product (a-fetoprotein) during fetal development and adult oncogenesis, Cancer Res. 36: 4239–4249.PubMedGoogle Scholar
  11. 11.
    Gold, P., and Freedman, S. O., 1965, Demonstration of tumor-specific antigens in human colonic carcinomata by immunological tolerance and absorption techniques, J. Exp. Med. 121: 439–462.PubMedCrossRefGoogle Scholar
  12. 12.
    Neville, A. M., and Cooper, E. H., 1976, Biochemical monitoring of cancer, Ann. Clin. Biochem. 13: 283–305.PubMedGoogle Scholar
  13. 13.
    Steel, G., Jr., and Zamcheck, N., 1985, The use of carcinoembryonic antigen in the clinical management of patients with colorectal cancer, Cancer Detection Prey. 8: 421–427.Google Scholar
  14. 14.
    Bleday, R., Song, J., Walker, E. S., Salcedo, B. F., Thomas, P., Wilson, R. E., Chen, L. B., and Steel, G., Jr., 1986, Characterization of a new monoclonal antibody to a cell surface antigen on colorectal cancer and fetal gut tissues, Cancer 57: 433–550.PubMedCrossRefGoogle Scholar
  15. 15.
    Decaens, C., Bara, J., Rosa, B., Daher, N., and Burtin, P., 1983, Early oncofetal antigenic modifications during rat colonic carcinogenesis, Cancer Res. 43: 355–362.PubMedGoogle Scholar
  16. 16.
    Bara, J., Gautier, R., Daher, N., Zaghouani, H., and Decaens, C., 1986, Monoclonal antibodies against oncofetal mucin MI antigens associated with precancerous colonic mucosae, Cancer Res. 46: 3983–3989.PubMedGoogle Scholar
  17. 17.
    Shi, Z. R., McIntyre, L. J., Knowles, B. B., Solter, D., and Kim, Y. S., 1984, Expression of a carbohydrate differentiation antigen, stage-specific embryonic antigen 1, in human colonic adenocarcinoma, Cancer Res. 44: 1142–1147.PubMedGoogle Scholar
  18. 18.
    Itzkowitz, S. H., Shi, Z. R., and Kim, Y. S., 1986, Heterogeneous expression of two oncodevelopmental antigens, CEA and SSEA-1, in colorectal cancer, Histochem. J. 18: 155–163.PubMedCrossRefGoogle Scholar
  19. 19.
    Higgins, P. J., Friedman, E., Lipkin, M., Hertz, R., Attiyeh, F., and Stonehill, E. H., 1983, Expression of gastric-associated antigens by human premalignant and malignant colonic epithelial cells, Oncology 40: 26–30.PubMedCrossRefGoogle Scholar
  20. 20.
    Biasco, G., Lipkin, M., Minarini, A., Higgins, P., Miglioli, M., and Barbara, L., 1984, Proliferative and antigenic properties of rectal cells in patients with chronic ulcerative colitis, Cancer Res. 44: 5450–5454.PubMedGoogle Scholar
  21. 21.
    Thor, A., Ohuchi, N., Szpak, C. A., Johnston, W. W., and Schlom, J., 1986, Distribution of oncofetal antigen tumor-associated glycoprotein-72 defined by monoclonal antibody B 72.3, Cancer Res. 46: 3118–3124.PubMedGoogle Scholar
  22. 22.
    Fritsché, R., and Mach, J.-P., 1975, Identification of a new oncofoetal antigen associated with several types of human carcinomas, Nature (Lond.) 258: 735–737.CrossRefGoogle Scholar
  23. 23.
    Kim, Y. S., and McIntyre, L. J., 1983, Markers of gastrointestinal cancer, in: Oncodevelopmental Markers: Biologic Diagnostic, and Monitoring Aspects ( W. H. Fishman, ed.), pp. 299–313, Academic, New York.Google Scholar
  24. 24.
    Banwo, O., Versey, J., and Hobbs, J. R., 1974, New oncofetal antigen for human pancreas, Lancet 1: 643–645.PubMedCrossRefGoogle Scholar
  25. 25.
    Nishida, K., Sugiura, M., Yoshikawa, T., and Kondo, M., 1985, Enzyme immunoassay of pancreatic oncofetal antigen (POA) as a marker of pancreatic cancer, Gut 26: 450–455.PubMedCrossRefGoogle Scholar
  26. 26.
    Carré-Llopis, A., and Escribano, M. J., 1986, Isolation and characterization of two oncofetal glycoproteins from hamster pancreas using concanavalin A and preparative electrophoresis, Biochem. Biophys. Acta 880: 101–107.PubMedCrossRefGoogle Scholar
  27. 27.
    Rees, W. V., Irie, R. F., and Morton, D. L., 1981, Oncofetal antigen-l:distribution in human tumors, J. Natl. Cancer Inst. 67: 557–562.PubMedGoogle Scholar
  28. 28.
    Tong, C., Stonehill, E. H., Higgins, P. J., and Bendich, A., 1978, A fetal antigen in a mouse fibrosarcoma with possible cross-reactivity with an adult mouse skin component, Eur. J. Cancer 14: 147–152.PubMedGoogle Scholar
  29. 29.
    Higgins, P. J., Tong, C., and Borenfreund, E., 1981, Presence of anti-y-FA-reactive antigens in spontaneous and carcinogen-induced malignancies of experimental animals, Oncology 38: 340–345.PubMedCrossRefGoogle Scholar
  30. 30.
    Higgins, P. J., Marcus, S., and Hawrylko, E., 1981, Progressive growth of transplanted tumors is accompanied by increasing serum concentrations of murine gamma fetal antigen, Oncodev. Biol. Med. 2: 77–87.PubMedGoogle Scholar
  31. 31.
    Higgins, P. J., Silverstone, A. E., Bueti, C., Pizzi, V. F., Melamed, M. R., Lipkin, M., and Traganos, F., 1986, Expression of murine gamma fetal antigen in adult hematopoietic tissue and during induced differentiation of Friend erythroleukemia cells, J. Natl. Cancer Inst. 76: 885–893.PubMedGoogle Scholar
  32. 32.
    Bartal, A. H., Lichtig, C., Cardo, C. C., Feit, C., Robinson, E., and Hirshaut, Y., 1986, Monoclonal antibody defining fibroblasts appearing in fetal and neoplastic tissues, J. Natl. Cancer Inst. 76: 415–421.PubMedGoogle Scholar
  33. 33.
    Kasai, M., Takashi, T., Takahashi, T., and Tokunaga, T., 1984, Two new fetal thymocyte antigens, FT-1 and FT-2, Immunol. Rev. 82: 105–115.PubMedCrossRefGoogle Scholar
  34. 34.
    Drysdale, J. W., and Alpert, E., 1975, Carcinofetal human isoferritins, Ann. NY Acad. Sci. 259: 427–434.PubMedCrossRefGoogle Scholar
  35. 35.
    Bernard, B. A.. Robinson, S. M., Semat, A., and Darmon, M., 1985, Reexpression of fetal characters in Simian Virus 40-transformed human keratinocytes, Cancer Res. 45: 1707–1716.Google Scholar
  36. 36.
    Matsuura, H., and Hakomori, S-I, 1985, The oncofetal domain of fibronectin defined by monoclonal antibody FDC-6: Its presence in fibronectins from fetal and tumor tissues and its absence in those from normal adult tissues and plasma, Proc. Natl. Acad. Sci. USA 82: 6517–6521.PubMedCrossRefGoogle Scholar
  37. 37.
    Durban, E., Roll, D., Beckner, G., and Busch, H., 1981, Purification and characterization of a nuclear DNA-binding phosphoprotein in fetal and tumor tissues, Cancer Res. 41: 537–545.PubMedGoogle Scholar
  38. 38.
    Hanigan, M. H., and Pitot, H. C., 1985, Gamma-glutamyl transpeptidase—Its role in hepatocarcinogenesis, Carcinogenesis 6: 165–172.PubMedCrossRefGoogle Scholar
  39. 39.
    Gerber, M. A., and Thung, S. N., 1980, Enzyme patterns in human hepatocellular carcinoma, Am. J. Pathol. 98: 395–400.PubMedGoogle Scholar
  40. 40.
    Schapira, F., Reuber, M. D., and Hatzfeld, A., 1970, Resurgence of two fetal-type of aldolases (A and C) in some fast-growing hepatomas, Biochem. Biophys. Res. Commun. 40: 321–327.PubMedCrossRefGoogle Scholar
  41. 41.
    Weinhouse, S., Shatton, J. B., Criss, W. E., Farina, F. A., and Morris, H. P., 1972, Isozymes in relation to differentiation in transplantable rat hepatomas, GANN Monog. Cancer Res. 13: 1–37.Google Scholar
  42. 42.
    Schwartz, M. K., 1973, Enzymes in cancer, Clin. Chem. 19: 10–22.PubMedGoogle Scholar
  43. 43.
    Stefanini, M., 1985, Enzymes, isozymes, and enzyme variants in the diagnosis of cancer—A short review, Cancer 55: 1931–1936.PubMedCrossRefGoogle Scholar
  44. 44.
    Walker, P. R., and Potter, V. R., 1972, Isozymes studies on adult, regenerating, precancerous and developing liver in relation to findings in hepatomas, in: Advances in Enzyme Regulation, Vol. 10 ( G. Weber, ed.), pp. 339–364, Pergamon, Oxford.Google Scholar
  45. 45.
    Farina, F. A., Shatton, J. B., Morris, H. P., and Weinhouse, S., 1974, Enzymes of pyruvate kinase in liver and hepatomas of the rat, Cancer Res. 34: 1439–1446.PubMedGoogle Scholar
  46. 46.
    Ibsen, K. H., Basabe, J. R., and Lopez, T. P., 1975, Extraction of a factor from Ehrlich acites tumor cells that increases the activity of the fetal isozyme of pyruvate kinase in mouse liver, Cancer Res. 35: 180–188.PubMedGoogle Scholar
  47. 47.
    Goldfarb, S., and Pitot, H. C., 1976, Enzymology of highly differentiated hepatocellular carcinomas, in: Frontiers of Gastrointestinal Research, Vol. 2 ( L. van der Reis, ed.), pp. 194–242, S. Karger AG, Basel.Google Scholar
  48. 48.
    Sato, K., Takaya, S., Imai, F., Hatayama, I., and Ito, N., 1978, Different deviation patterns of carbohydrate-metabolizing enzymes in primary rat hepatomas induced by different chemical carcinogens, Cancer Res. 38: 3086–3093.PubMedGoogle Scholar
  49. 49.
    Shatton, J. B., Morris, H. P. and Weinhouse, S., 1969, Kinetic, electrophoretic, and chromatographic studies on glucose-ATP phosphotransferases in rat hepatomas, Cancer Res. 29: 1161–1172.PubMedGoogle Scholar
  50. 50.
    Sato, S., Matsushima, T., and Sugimura, T., 1969, Hexokinase isozyme patterns of experimental hepatomas of rats, Cancer Res. 29: 1437–1446.PubMedGoogle Scholar
  51. 51.
    Ogawa, K., and Ichihara, A., 1972, Isozymes patterns of branched-chain amino acid transaminase in various rat hepatomas, Cancer Res. 32: 1257–1263.PubMedGoogle Scholar
  52. 52.
    Ichihara, A., 1975, Isozyme patterns of branched-chain amino acid transaminase during cellular differentiation and carcinogenesis, Ann. NY Acad. Sci. 259: 347–354.PubMedCrossRefGoogle Scholar
  53. 53.
    Katunuma, N., Kuroda, Y., Yoshida, T., Sanada, Y., and Morris, H. P., 1972, Relationship between degree of differentiation and growth rate of minimal deviation hepatomas and kidney cortex tumors studied with glutaminase isozymes, GANN Monog. Cancer Res. 13: 143–151.Google Scholar
  54. 54.
    Yin, Z., Sato, K., Tsuda, H., and Ito, N., 1982, Changes in activities of uridine diphosphate-glucuronyltransferases during chemical hepatocarcinogenesis, Gann 73: 239–248.PubMedGoogle Scholar
  55. 55.
    Sato, K., Kitahara, A., Yin, Z., Ebina, T., Satoh, K., Tsuda, H., Ito, N., and Dempo, K., 1983, Molecular forms of glutathione S-transferase and UDP-glucuronyltransferase as hepatic preneoplastic marker enzymes, Ann. NY Acad. Sci. 417: 213–223.PubMedCrossRefGoogle Scholar
  56. 56.
    Kitahara, A., Satoh, K., Nishimura, K., Ishikawa, T., Ruike, K., Sato, K., Tsuda, H., and Ito, N., 1984, Changes in molecular forms of rat hepatic glutathione S-transferase during chemical hepatocarcinogenesis, Cancer Res. 44: 2698–2703.PubMedGoogle Scholar
  57. 57.
    Bull, D. L., Taylor, A. T., Austin, D. M., and Jones, O. W., 1974, Stimulation of fetal thymidine kinase in cultured human fibroblasts transformed by SV40 virus, Virology 57: 279–284.PubMedCrossRefGoogle Scholar
  58. 58.
    Salser, J. S., and Balis, M. E., 1976, Foetal thymidine kinase in tumours and colonic flat mucosa of man, Nature (Loud.) 260: 261–262.CrossRefGoogle Scholar
  59. 59.
    Javre, J.-L., Hannouche, N., Samperez, S., and Jouan, P., 1986, Mise en évidence de la thymidine kinase de type foetal dans les cancers du sein, Bull. Cancer (Paris) 73: 8–16.Google Scholar
  60. 60.
    Hall, M., Silverman, L., Wenger, A. S., and Mickey, D. D., 1985, Oncodevelopmental enzymes of the Dunning rat prostatic adenocarcinoma, Cancer Res. 45: 4053–4059.PubMedGoogle Scholar
  61. 61.
    Fishman, W. H., Inglis, N. I., Stolbach, L. L., and Krant, M. J., 1968, A serum alkaline phosphatase isoenzyme of human neoplastic cell origin, Cancer Res. 28: 150–154.PubMedGoogle Scholar
  62. 62.
    Herz, F., 1985, Alkaline phosphatase isozymes in cultured human cancer cells, Experientia 41: 1357–1361.PubMedCrossRefGoogle Scholar
  63. 63.
    Sato, K., Kitahara, A., Satoh, K., Ishikawa, T., Tatematsu, M., and Ito, N., 1984, The placental form of glutathione S-transferase as a new marker protein for preneoplasia in rat chemical hepatocarcinogenesis, Gann 75: 199–202.PubMedGoogle Scholar
  64. 64.
    Kodate, C., Fukushi, A., Narita, T., Kudo, H., Soma, Y. and Sato, K., 1986, Human placental form of glutathione S-transrerase (GST-n) as a new immunohistochemical marker for human colonic carcinoma, Jpn. J. Cancer Res. (Gann) 77: 226–229.Google Scholar
  65. 65.
    Bates, S. E., and Logo, 1985, Tumor markers: value and limitations in the management of cancer patients, Cancer Treatm. Rev. 12: 163–207.CrossRefGoogle Scholar
  66. 66.
    Braunstein, G. D., 1983, hCG expression in trophoblastic and nontrophoblastic tumors, in: Oncodevelopmental Markers: Biologic, Diagnostic, and Monitoring Aspects (W. H. Fishman, ed.), pp. 351–371, Academic, New York.Google Scholar
  67. 67.
    Bohn, H., 1983, Systematic identification of specific oncoplacental proteins, in: Oncodevelopmental Markers: Biologic, Diagnostic, and Monitoring Aspects ( W. H. Fishman, ed.), pp. 69–86, Academic, New York.Google Scholar
  68. 68.
    Nakajima, T., Okazaki, N., Morinaga, S., Tsumuraya, M., Shimosato, Y., and Saiki, S., 1985, A case of alpha-fetoprotein-producing rectal carcinoma, Jpn. J. Clin. Oncol. 15: 679–685.PubMedGoogle Scholar
  69. 69.
    Zamcheck, N., 1983, Colorectal cancer markers: Clinical value of CEA, in: Oncodevelopmental Markers: Biologic, Diagnostic, and Monitoring Aspects ( W. H. Fishman, ed.), pp. 333–349, Academic, New York.Google Scholar
  70. 70.
    Busch, H., Chan, P., Takahashi, K., Busch, R. K., Kelsey, D., Spohn, W.,H., and Son, M., 1983, Human tumor nucleolar antigens, in: Oncodevelopmental Markers: Biologic, Diagnostic, and Monitoring Aspects ( W. H. Fishman, ed). pp. 37–67, Academic, New York.Google Scholar
  71. 71.
    Soma, G.-I., Kitahara, N., and Andoh, T., 1984, Molecular cloning and characterization of a cDNA clone for a protein specifically expressed in embryo as well as in a chemically induced pancreatic 13 cell tumor of rat, Biochem. Biophys. Res. Commun. 124: 164–171.PubMedCrossRefGoogle Scholar
  72. 72.
    Sato, K., Kitahara, A., Yin, Z., Waragai, F., Nishimura, K., Hatayama, I., Ebina, T., Yamazaki, T., Tsuda, H., and Ito, N., 1984, Induction by butylated hydroxyanisole of specific molecular forms of glutathione S-transferase and UDP-glucuronyltransferase and inhibition of development of y-glutamyl transpeptidase-positive foci in rat liver, Carcinogenesis 5: 473–477.PubMedCrossRefGoogle Scholar
  73. 73.
    Decaens, C., Gautier, R., Bara, J., Daher, N., Le Pendu, J., and Burtin, P., 1988, A new mucinassociated oncofetal antigen, a marker of early carcinogenesis in rat colon, Cancer Res. 48: 1571–1577.PubMedGoogle Scholar
  74. 74.
    Hanausek-Walaszek, M., Walaszek, Z., Lang, R. W., and Webb, T. E., 1984, Characterization of a 60,000-dalton oncofetal protein from the plasma of tumor-bearing rats, Cancer Invest. 2: 433–441.PubMedCrossRefGoogle Scholar
  75. 75.
    Hanausek-Walaszek, M., Walaszek, Z., and Webb, T. E., 1985, Chemical carcinogens as specific inducers of a 60-kilodalton oncofetal protein in rats, Carcinogenesis 6: 1725–1730.PubMedCrossRefGoogle Scholar
  76. 76.
    Webb, T. E., Hanausek-Walaszek, M., and Walaszek, Z., 1986, Persistence of the hepatocarcinogeninduced 60 kd oncofetal protein in rat liver and blood plasma, Proc. Am. Assoc. Cancer Res. 27: 81.Google Scholar
  77. 77.
    Sell, S., and Becker, F. F., 1978, Alpha-fetoprotein, J. Natl. Cancer Inst. 60: 19–26.PubMedGoogle Scholar
  78. 78.
    Hirai, H., 1982, Alpha fetoprotein, in: Biochemical Markers for Cancer ( T. Ming Chu, ed.), pp. 25–59, Dekker, New York.Google Scholar
  79. 79.
    Koen, H., Pugh, T. D., Nychka, D., and Goldfarb, S., 1983, Presence of a-fetoprotein-positive cells in hepatocellular foci and microcarcinomas induced by single injections of diethylnitrosamine in infant mice, Cancer Res. 43: 702–708.PubMedGoogle Scholar
  80. 80.
    Jalanko, H., and Rouslahti, E., 1979, Differential expression of et-fetoprotein and y-glutamyl transpeptidase in chemical and spontaneous hepatocarcinogenesis, Cancer Res. 39: 3495–3501.PubMedGoogle Scholar
  81. 81.
    Sakakibara, K., and Tsukada, Y., 1980, Lack of correlation among -y-glutamyltranspeptidase activity, production of a-fetoprotein, and transplantability in rat liver epithelial-like cell cultures, Gann 71: 679–685.PubMedGoogle Scholar
  82. 82.
    Sato, K., Hatayama, I., Hoshino, K., Imai, F., Tsuchida, S., Sato, T., Nishimura, K., Tatematsu, M., and Ito, N., 1981, Enzyme deviation patterns in primary rat hepatomas induced by sequential administration of two chemically different carcinogens, Cancer Res. 41: 4147–4153.PubMedGoogle Scholar
  83. 83.
    Daimon, M., Tsutsumi, K., Sato, J., Tsutsumi, R., and Ishikawa, K., 1984, Changes of aldolase A and B messenger RNA levels in rat liver during azo-dye-induced hepatocarcinogenesis, Biochem. Biophys. Res. Commun. 124: 337–343.PubMedCrossRefGoogle Scholar
  84. 84.
    Cameron, R., Kellen, J., Kolin, A., Malkin, A., and Farber, E., 1978, -y-Glutamyltransferase in putative premalignant liver cell populations during hepatocarcinogenesis, Cancer Res. 38: 823–829.Google Scholar
  85. 85.
    Sell, S., 1978, Distribution of a-fetoprotein-and albumin-containing cells in the livers of Fischer rats fed four cycles of N-2-fluorenylacetamide, Cancer Res. 38: 3107–3113.PubMedGoogle Scholar
  86. 86.
    Peraino, C., Richards, W. L., and Stevens, F. J., 1983, Multistage hepatocarcinogenesis, in: Mechanisms of Tumor Promotion Vol. I: Tumor Promotion in Internal Organs ( T. J. Slaga, ed.), pp. 1–53, CRC Press, Boca Raton, Florida.Google Scholar
  87. 87.
    Wirth, P. J., Benjamin, T., Schwartz, D. M., and Thorgeirsson, S. S., 1986, Sequential analysis of chemically induced hepatoma development in rats by two dimensional electrophoresis, Cancer Res. 46: 400–413.PubMedGoogle Scholar
  88. 88.
    Roomi, M. W., Ho, R. K., Sarma, D. S. R., and Farber, E., 1985, A common biochemical pattern in preneoplastic hepatocyte nodules generated in four different models in the rat, Cancer Res. 45: 564–571.PubMedGoogle Scholar
  89. 89.
    Rao, M. S., Tatematsu, M., Subbarao, V., Ito, N., and Reddy, J. K., 1986, Analysis of peroxisome proliferator-induced preneoplastic and neoplastic lesions of rat liver for placental form of glutathione Stransferase and y-glutamyltranspeptidase, Cancer Res. 46: 5287–5290.PubMedGoogle Scholar
  90. 90.
    Pierce, G. B., 1970, Differentiation of normal and malignant cells, Fed. Proc. 29: 1248–1254.PubMedGoogle Scholar
  91. 91.
    Buick, R. N., and Pollak, M. N., 1984, Perspectives on clonogenic tumor cells, stem cells, and oncogenes, Cancer Res. 44: 4909–4918.PubMedGoogle Scholar
  92. 92.
    Katenkamp, D., and Raikhlin, N. T., 1985, Stem cell concept and heterogeneity of malignant soft tissue tumor—A challenge to reconsider diagnostics and therapy?, Exp. Pathol. 28: 3–11.PubMedCrossRefGoogle Scholar
  93. 93.
    Potter, V., 1969, Recent trends in cancer biochemistry: The importance of studies on fetal tissue, Can. Cancer Conf. 8: 9–30.PubMedGoogle Scholar
  94. 94.
    Potter, V., 1978, Phenotypic diversity in experimental hepatomas: The concept of partially blocked ontogeny, Br. J. Cancer 38: 1–23.PubMedCrossRefGoogle Scholar
  95. 95.
    Uriel, J., 1976, Cancer, retrodifferentiation, and the myth of Faust, Cancer Res. 36: 4269–4275.PubMedGoogle Scholar
  96. 96.
    Uriel, J., 1979, Retrodifferentiation and the fetal patterns of gene expression in cancer, Adv. Cancer Res. 29: 127–174.PubMedCrossRefGoogle Scholar
  97. 97.
    Drexler, H. G., Gaedicke, G., and Minowada, J., 1985, Biochemical enzyme analysis in acute leukaemia, J. Clin. Pathol. 38: 117–127.PubMedCrossRefGoogle Scholar
  98. 98.
    Walker, P. R., and Potter, V. R., 1972, Isozyme studies on adult, regenerating, precancerous and developing liver in relation to findings in hepatomas, in: Advances in Enzyme Regulation, Vol. 10 ( G. Weber, ed.), pp. 339–364, Pergamon, Oxford.Google Scholar
  99. 99.
    Curtin, N. J., and Snell, K., 1983, Enzymic retrodifferentiation during hepatocarcinogenesis and liver regeneration in rats in vivo, Br. J. Cancer 48: 495–505.PubMedCrossRefGoogle Scholar
  100. 100.
    Farber, E., 1984, Cellular biochemistry of the stepwise development of cancer with chemicals: G. H. A. Clowes Memorial Lecture, Cancer Res. 44: 5463–5474.PubMedGoogle Scholar
  101. 101.
    Grisham, J. W., 1980, Cell types in long-term propagable culture of rat liver, Ann. NY Acad. Sci. 349: 128–137.PubMedCrossRefGoogle Scholar
  102. 102.
    Hayner, N. T., Braun, L., Yaswen, P., Brooks, M., and Fausto, N., 1984, Isozyme profiles of oval cells, parenchymal cells, and biliary cells isolated by centrifugal elutriation from normal and preneoplastic livers, Cancer Res. 44: 332–338.PubMedGoogle Scholar
  103. 103.
    Pitot, H. C., and Sirica, A. E., 1980, Hepatocarcinogenesis as a problem in developmental biology, in: Differentiation and Neoplasia ( R. G. McKinnell, M. A. DiBerardino, M. Blumenfeld, and R. D. Bergad, eds.), pp. 241–250, Springer-Verlag, Berlin.Google Scholar
  104. 104.
    Holyoke, E. D., Evans, J. T., Mittleman, A., and Chu, T. M., 1982, Carcinoembryonic antigen as a tumor marker, in: Biochemical Markers for Cancer ( T. Ming Chu, ed.), pp. 61–80, Dekker, New York.Google Scholar
  105. 105.
    Burtin, P., and Escribano, M. J., 1983, The carcinoembryonic antigen and its cross-reacting antigens, in: Oncodevelopmental Markers: Biologic, Diagnostic, and Monitoring Aspects ( W. H. Fishman, ed.), pp. 315–332, Academic, New York.Google Scholar
  106. 106.
    Yamada, S., Wilson, J. S., and Lieber, C. S., 1985, The effects of ethanol and diet on hepatic and serum y-glutamyl transpeptidase activities in rats, J. Nutr. 115: 1285–1290.PubMedGoogle Scholar
  107. 107.
    Colombo, J. P., and Gigon, P. L., 1979, y-Glutamyltranspeptidase (GGTP) and cytochrome P-450 after portacaval shunt in the rat, Experientia 35: 1005–1006.Google Scholar
  108. 108.
    Ogawa, K., Onoé, T., and Takeuchi, M., 1981, Spontaneous occurrence of y-glutamyl transpeptidase positive hepatocytic foci in 105-week-old Wistar and 72-week-old Fisher 344 Male rats, J. Natl. Cancer Inst. 67: 407–412.PubMedGoogle Scholar
  109. 109.
    Bone, S. N. III, Michalopoulos, G., and Jirtle, R. L., 1985, Ability of partial hepatectomy to induce -yglutamyl transpeptidase in regenerated and transplanted hepatocytes of Fisher 344 and Wistar-Furth rats, Cancer Res. 45: 1222–1228.PubMedGoogle Scholar
  110. 110.
    Galteau, M. M., Siest, G., and Ratanasavanh, D., 1980, Effect of phenobarbital on the distribution of gamma-glutamyltransferase between hepatocytes and nonparenchymal cells in the rat, Cell. Mol. Biol. 26: 267–273.Google Scholar
  111. 111.
    Barouki, R., Chobert, M. N., Finidori, J., Billon, M. C., and Hanoune, J., 1983, The hormonal induction of gamma glutamyltransferase in rat liver and in a hepatoma cell line, Mol. Cell. Biochem. 53: 77–78.CrossRefGoogle Scholar
  112. 112.
    Garcia, B. M., and Mourelle, M. 1984, Gamma-glutamyl transpeptidase: A sensitive marker in DDT and toxaphene exposure, J. Appl. Toxicol. 4: 246–248.PubMedCrossRefGoogle Scholar
  113. 113.
    Sato, K., Tsuchida, S., Waragai, F., Yin, Z., and Ebina, T., 1983, Properties of molecular forms of -yglutamyl transpeptidase and uridine diphosphate-glucuronyltransferase as hepatic preneoplastic marker enzymes, Gann Monog. Cancer Res. 29: 23–31.Google Scholar
  114. 114.
    Yamashita, K., Hitoi, A., Taniguchi, N., Yokosawa, H., Tsukada, Y., and Kobata, A., 1983, Comparative study of the sugar chains of y-glutamyltranspeptidase purified from rat liver and rat AH-66 hepatoma cells, Cancer Res. 43: 5059–5063.PubMedGoogle Scholar
  115. 115.
    Nemesânszky, E., and Lott, J. A., 1985, Gamma-glutamyltransferase and its isoenzymes: Progress and problems, Clin. Chem. 31 (6): 787–803.Google Scholar
  116. 116.
    Taniguchi, N., House, S., Kuzumaki, N., Yokosawa, N., Yamagiwa, S., Iizuka, S., Makita, A., and Sekiya, C., 1985, A monoclonal antibody against -y-glutamyltransferase from human primary hepatoma: Its use in enzyme-linked immunosorbent assay of sera of cancer patients, J. Natl. Cancer Inst. 75: 841–847.PubMedGoogle Scholar
  117. 117.
    Petropoulos, C. J., Lemire, J. M., Goldman, D., and Fausto, N., 1985, Homology between rat liver RNA populations during development, regeneration, and neoplasia, Cancer Res. 45: 5114–5121.PubMedGoogle Scholar
  118. 118.
    Huber, B. E., Heilman, C. A., Wirth, P. J., Miller, M. J., and Thorgeirsson, S. S., 1986, Studies of gene transcription and translation in regenerating rat liver, Hepatology 6: 209–219.PubMedCrossRefGoogle Scholar
  119. 119.
    Ting, C.-C., Sandford, K. K., and Price, F. M., 1978, Expression of fetal antigens in fetal and adult cells during long-term culture, In Vitro 14: 207–211.Google Scholar
  120. 120.
    Ruddon, R. W., Marker expression by cultured cancer cells, in: Oncodevelopmental Markers: Biologic, Diagnostic, and Monitoring Aspects (W. H. Fishman, ed.), pp. 87–108, Academic, New York.Google Scholar
  121. 121.
    Chou, J. Y., and Savitz, A. J., 1986, Alpha-fetoprotein synthesis in transformed fetal rat liver cells, Biochem. Biophys. Res. Commun. 135: 844–851.CrossRefGoogle Scholar
  122. 122.
    Leffert, H., Moran, T., Sell, S., Skelly, H., Ibsen, K., Mueller, M., and Arias, I., 1978, Growth state-dependent phenotypes of adult hepatocytes in primary monolayer culture, Proc. Natl. Acad. Sci. USA 75: 1834–1837.PubMedCrossRefGoogle Scholar
  123. 123.
    Sirica, A. E., Richards, W., Tsukada, Y., Sattler, C. A., and Pitot, H. C., 1979, Fetal phenotypic expression by adult rat hepatocytes on collagen gel/nylon meshes, Proc. Natl. Acad. Sci. USA 76: 283–287.PubMedCrossRefGoogle Scholar
  124. 124.
    Spence, J. T., and Pitot, H. C., 1980, Maintenance of glucokinase acitivty in primary hepatocyte cultures, J. Cell. Physiol. 103: 173–178.PubMedCrossRefGoogle Scholar
  125. 125.
    Althaus, F. R., Lawrence, S. D., He, Y-Z., Sattler, G. L., Tsukada, Y., and Pitot, H. C., 1982, Effects of altered [ADP-ribose]„ metabolism on expression of fetal functions by adult hepatocytes, Nature (Loud.) 300: 366–368.CrossRefGoogle Scholar
  126. 126.
    Colbert, R. A., Amatruda, J. M., and Young, D. A., 1984, Changes in the expression of hepatocyte protein gene-products associated with adaption of cells to primary culture, Clin. Chem. 30 (12): 2053–2058.PubMedGoogle Scholar
  127. 127.
    Farber, E., 1984, The multistep nature of cancer development, Cancer Res. 44: 4217–4223.PubMedGoogle Scholar
  128. 128.
    Nowell, P. C., 1986, Mechanisms of tumor progression, Cancer Res. 46: 2203–2207.PubMedGoogle Scholar
  129. 129.
    Sasaki, K., Murakami, T., Kawasaki, S., Okita, K., Tukemoto, T., and Takahashi, M., 1985, Change of a-fetoprotein content during cell cycle of human hepatoma cells in vitro: Flow cytometric analysis, Tumor Biol. 6: 483–489.Google Scholar
  130. 130.
    Friend, C., Scher, W., Holland, J. G., and Sato, T., 1971, Hemoglobin synthesis in murine virus-induced leukemic cells in vitro: Stimulation of erythroid differentiation by dimethyl sulfoxide, Proc. Nail. Acad. Sci. USA 68: 378–382.Google Scholar
  131. 131.
    Collins, S. J., Ruscetti, F. W., Gallagher, R. E., and Gallo, R. C., 1978, Terminal differentiation of human promyelocytic cells induced by dimethyl sulfoxide and other polar compounds, Proc. Natl. Acad. Sci. USA 75: 2458–2462.PubMedCrossRefGoogle Scholar
  132. 132.
    Rifkind, R. A., Sheffery, M., and Marks, P. A., 1984, Induced differentiation of murine erythroleukemia cells: Cellular and molecular mechanisms, Adv. Cancer Res. 42: 149–166.PubMedCrossRefGoogle Scholar
  133. 133.
    Yun, K., and Sugihara, H., 1986, Cell differentiation and cell cycle effects on human promyelocytic leukemia cells induced by 12-O-tetradecanoylphorbol-13-acetate, Lab. Invest. 54: 336–344.PubMedGoogle Scholar
  134. 134.
    Tatematsu, M.. Nagamine, Y., and Farber, E., 1983, Redifferentiation as a basis for remodeling of carcinogen-induced hepatocyte nodules to normal appearing liver, Cancer Res. 43: 5049–5058.Google Scholar
  135. 135.
    Wier, M. L., and Scott, R. E., 1986, Regulation of the terminal event in cellular differentiation: Biological mechanisms of the loss of proliferative potential, J. Cell Biol. 102: 1955–1964.PubMedCrossRefGoogle Scholar
  136. 136.
    Sparks, R. L., Seibel-Ross, E. I., Wier, M. L., and Scott, R. E., 1986, Differentiation, dedifferentiation, and transdifferentiation of BALB/c 3T3 T mesenchymal stem cells: Potential significance in metaplasia and neoplasia, Cancer Res. 46: 5312–5319.PubMedGoogle Scholar
  137. 137.
    Nahon, J. L., Gal, A., Frain, M., Sell, S., and Sala-Trepat, J. M., 1982, No evidence for post-transcriptional control of albumin and a-fetoprotein gene expression in developing rat liver and neoplasia, Nucleic Acad. Res. 10: 1895–1911.CrossRefGoogle Scholar
  138. 138.
    Muglia, L., and Locker, J., 1984, Developmental regulation of albumin and a-fetoprotein gene expression in the rat, Nucleic Acid Res. 12: 6751–6762.PubMedCrossRefGoogle Scholar
  139. 139.
    Poliard, A. M., Bernuau, D., Tournier, I., Legrès, L. G., Schoevaert, D., Feldmann, G., and SalaTrepat, J. M., 1986, Cellular analysis by in situ hybridization and immunoperoxidase of alpha-fetoprotein and albumin gene expression in rat liver during the perinatal period, J. Cell Biol. 103: 777–786.PubMedCrossRefGoogle Scholar
  140. 140.
    Klavins, J. V., 1985, Tumor Markers: Clinical and Laboratory Studies, pp. 4–5, Liss, New York.Google Scholar
  141. 141.
    Bayard, B., Debray, H., Kerckaert, J.-P., and Biserte, G., 1977, Rat alpha-fetoprotein heterogeneity, FEBS Lett. 80: 35–40.PubMedCrossRefGoogle Scholar
  142. 142.
    Ishiguro, T., Sakaguchi, H., Fukui, M., and Sugitachi, I., 1986, Serum alpha-fetoprotein subfractions in hepatic malignancies identified by different reactivities with concanavalin A, lentil lectin, or phytohemagglutinin-E, Jpn. J. Surg. 16: 16–21.PubMedCrossRefGoogle Scholar
  143. 143.
    Muchmore, E. A., Varki, N. M., Fukuda, M., and Varki, A., 1987, Developmental regulation of sialic acid modifications in rat and human colon, FASEB J. 1: 229–235.PubMedGoogle Scholar
  144. 144.
    Kleinman, H. K., Cannon, F. B., Laurie, G. W., Hassell, J. R., Aumailley, M., Terranova, V. P., Martin, G. R., and DuBois-Dalcq, M., 1985, Biological activities of laminin, J. Cell. Biochem. 27: 317–325.PubMedCrossRefGoogle Scholar
  145. 145.
    Kratochwil, K., 1986, The stroma and the control of cell growth, J. Pathol. 149: 23–24.PubMedCrossRefGoogle Scholar
  146. 146.
    Jones, P. A., 1986, DNA methylation and cancer, Cancer Res. 46: 461–466.PubMedGoogle Scholar
  147. 147.
    Farzaneh, F., Zalin, R., Brill, D., and Shall, S., 1982, DNA strand breaks and ADP-ribosyl transferase activation during cell differentiation, Nature (Lond.) 300: 362–366.CrossRefGoogle Scholar
  148. 148.
    Fontana, J. A., Reppucci, A., Durham, J. P., and Miranda, D., 1986, Correlation between the induction of leukemic cell differentiation by various retinoids and modulation of protein kinases, Cancer Res. 46: 2468–2473.PubMedGoogle Scholar
  149. 149.
    Greengard, 0., 1970, The developmental formation of enzymes in rat liver, in: Biochemical Actions of Hormones, Vol. 1 ( G. Litwack, ed.), pp. 53–87, Academic, New York.Google Scholar
  150. 150.
    Lachman, H. M., and Skoultchi, A. I., 1984, Expression of c-myc changes during differentiation of mouse erythroleukaemia cells, Nature (Lond.) 310: 592–594.CrossRefGoogle Scholar
  151. 151.
    Kaczmarek, L., 1986, Biology of disease: Protooncogene expression during the cell cycle, Lab. Invest. 54: 365–376.PubMedGoogle Scholar
  152. 152.
    Lebovitz, R. M., 1986, Oncogenes as mediators of cell growth and differentiation, Lab Invest. 55: 249–251.PubMedGoogle Scholar
  153. 153.
    Zimmerman, K. A., Yancopoulos, G. D., Collum, R. G., Smith, R. K., Kohl, N. E., Denis, K. A., Nau, M. M., Witte, O. N., Toran-Allerand, D., Gee, C. E., Minna, J. D., and Alt, F. W., 1986, Differential expression of myc family genes during mutine development, Nature (Lond.) 319: 780–783.CrossRefGoogle Scholar
  154. 154.
    Coppola, J A., and Cole, M. D., 1986, Constitutive c-myc oncogene expression blocks mouse erythroleukaemia cell differentiation but not commitment, Nature (Lond.) 320:760–763.Google Scholar
  155. 155.
    Huber, B. E., Heilman, C. A., and Thorgeirsson, S. S., 1986, Gene expression in the progressive development of hepatocellular carcinoma (HCC) in the rat, Proc. Annu. Meeting Am. Assoc. Cancer Res. 27: 7.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Alphonse E. Sirica
    • 1
  1. 1.Department of Pathology, Medical College of VirginiaVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations