Advertisement

Oncogene Activation and Expression during Carcinogenesis in Liver and Pancreas

  • James D. Yager
  • Joanne Zurlo

Abstract

Knowledge of the carcinogenic process has been dramatically increased by the application of recombinant DNA technology and the discovery that mutated cellular genes capable of causing neoplastic transformation can be isolated from spontaneously appearing and carcinogen-induced human and experimental animal tumors. That single genes can cause neoplastic transformation was first demonstrated in studies conducted on acutely transforming retroviruses.1,2 Such viruses, the first being the Rous sarcoma virus, were shown to carry single genes, termed oncogenes (see Chapter 13), that were responsible for their transforming ability. It was also clearly shown that these retroviral oncogenes had homology to cellular genes and were in fact initially derived from cellular genes by retroviral transduction. The cellular homologs of the retroviral oncogenes are referred to as cellular oncogenes or proto-oncogenes. To date, about 20 retroviral oncogenes, each originating from a cellular precursor proto-oncogene, have been identified.3

Keywords

Oncogene Activation Transforming Activity Carcinogenic Process Oncogene Expression Pancreatic Carcinogenesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bishop, J. M., 1987, The molecular genetics of cancer, Science 235: 305–311.PubMedCrossRefGoogle Scholar
  2. 2.
    Bishop, J. M., 1983, Cellular oncogenes and retroviruses, Annu. Rev. Biochem. 52: 301–354.PubMedCrossRefGoogle Scholar
  3. 3.
    Bishop, J. M., 1985, Viral oncogenes, Cell 42: 23–38.PubMedCrossRefGoogle Scholar
  4. 4.
    Barbacid, M., 1986, Oncogenes and human cancer: cause or consequence?, Carcinogenesis 7: 1037–1042.PubMedCrossRefGoogle Scholar
  5. 5.
    Santos, E., Tronick, S. R., Aaronson, S. A., Pulciani, S., and Barbacid, M., 1982, T24 human bladder carcinoma oncogene is an activated form of the normal human homologue of BALB- and Harvey-MSV transforming genes, Nature (Lond.) 298: 343–347.CrossRefGoogle Scholar
  6. 6.
    Tabin, C. J., Bradley, S. M., Bargmann, C. I., Weinberg, R. A., Papageorge, A. G., Scolnick, E. M., Dhar, R., Lowy, D. R., and Chang, E. H., 1982, Mechanism of activation of a human oncogene, Nature (Lond.) 300: 143–149.CrossRefGoogle Scholar
  7. 7.
    Reddy, E. P., Reynolds, R. K., Santos, E., and Barbacid, M., 1982, A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene, Nature (Lord.) 300: 149–152.CrossRefGoogle Scholar
  8. 8.
    Bos, J. L., Fearon, E. R., Hamilton, S. R., Verlaan-de Vries, M., van Boom, J. H., van der Eb, A. J., and Vogelstein, B., 1987, Prevalence of ras gene mutations in human colorectal cancers, Nature (Loud.) 327: 293–297.CrossRefGoogle Scholar
  9. 9.
    Forrester, K., Almoguera, C., Han, K., Grizzle, W. E., and Perucho, M., 1987, Detection of high incidence of K-ras oncogenes during human colon tumorigenesis, Nature (Loud.) 327: 298–303.CrossRefGoogle Scholar
  10. 10.
    Duesberg, P. H., 1987, Cancer genes: Rare recombinants instead of activated oncogenes: A review, Proc. Natl. Acad. Sci. USA 84: 2117–2124.PubMedCrossRefGoogle Scholar
  11. 11.
    Boutwell, R. K., 1974, The function and mechanism of promoters of carcinogenesis, Crit. Rev. Toxicol. 2: 419–443.CrossRefGoogle Scholar
  12. 12.
    Slaga, T. J., 1983, Overview of tumor promotion in animals, Environ. Health Perpect. 50: 3–14.CrossRefGoogle Scholar
  13. 13.
    Land, H., Parada, L. F., and Weinberg, R. A., 1983, Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes, Nature (Lord.) 304: 596–606.CrossRefGoogle Scholar
  14. 14.
    Dotto, G. P., Parada, L. F., and Weinberg, R. A., 1985, Specific growth response of ras-transformed embryo fibroblasts to tumour promoters, Nature (Lord.) 318: 471–475.Google Scholar
  15. 15.
    Spandidos, D. A., and Wilkie, N. M., 1984, Malignant transformation of early passage rodent cells by a single mutated human oncogene, Nature (Lond.) 310: 469–475.CrossRefGoogle Scholar
  16. 16.
    Weinberg, R. A., 1985, The action of oncogenes in the cytoplasm and nucleus, Science 230: 770–776.PubMedCrossRefGoogle Scholar
  17. 17.
    Balmain, A., and Pragnell, I. B., 1983, Mouse skin carcinomas induced in vivo by chemical carcinogens have a transforming Harvey-ras oncogene, Nature (Load.) 303: 72–74.CrossRefGoogle Scholar
  18. 18.
    Balmain, A., Ramsden, M., Bowden, G. T., and Smith, J., 1984, Activation of the mouse cellular Harvey-ras gene in chemically induced benign skin papillomas, Nature (Lond.) 307: 658–660.CrossRefGoogle Scholar
  19. 19.
    Quintanilla, M., Brown, K., Ramsden, M., and Balmain, A., 1986, Carcinogen-specific mutation and amplification of Ha-ras during mouse skin carcinogenesis, Nature (Lord.) 322: 78–80.CrossRefGoogle Scholar
  20. 20.
    Bizub, D., Wood, A. W., and Skalka, A. M., 1986, Mutagenesis of the Ha-ras oncogene in mouse skin tumors induced by polycyclic aromatic hydrocarbons, Proc. Natl. Acad. Sci. USA 83: 6048–6052.PubMedCrossRefGoogle Scholar
  21. 21.
    Brown, K., Quintanilla, M., Ramsden, M., Kerr, I. B., Young, S., and Balmain, A., 1986, v-ras genes from Harvey and BALB murine sarcoma viruses can act as initiators of two-stage mouse skin carcinogenesis, Cell 46: 447–456.Google Scholar
  22. 22.
    Garte, S. J., Hood, A. T., Hochwalt, A. E., D’Eustachio, P., Snyder, C. A., Segal, A., and Albert, R. E., 1985, Carcinogenesis specificity in the activation of transforming genes by direct-acting alkylating agents, Carcinogenesis 6: 1709–1712.PubMedCrossRefGoogle Scholar
  23. 23.
    Hochwalt, A. E., and Garte, S. J., 1987, An H-ras oncogene from a beta-propriolactone-induced mouse skin tumor is activated by a specific point mutation, Proc. Am. Assoc. Cancer Res. 28: 146.Google Scholar
  24. 24.
    Sawey, M. J., Hood, A. T., Burns, F. J., and Garte, S. J., 1987, Activation of c-myc and c-K-ras oncogenes in primary rat tumors induced by ionizing radiation, Mol. Cell. Biol. 7: 932–935.PubMedGoogle Scholar
  25. 25.
    Guerrero, I., Villasante, A., D’Eustachio, P., and Pellicer, A., 1984, Isolation, characterization, and chromosome assignment of mouse N-ras gene from carcinogen-induced thymic lymphoma, Science 225: 1041–1043.PubMedCrossRefGoogle Scholar
  26. 26.
    Guerrero, I., Villasante, A., Corces, V., and Pellicer, A., 1984, Activation of a c-K-ras oncogene by somatic mutation in mouse lymphomas induced by gamma radiation, Science 225: 1159–1162.PubMedCrossRefGoogle Scholar
  27. 27.
    Guerrero, I., Villsante, A., Corces, V., and Pellicer, A., 1985, Loss of the normal N-ras allele in a mouse thymic lymphoma induced by a chemical carcinogen, Proc. Natl. Acad. Sci. USA 82: 7810–7814.PubMedCrossRefGoogle Scholar
  28. 28.
    Schechter, A. L., Stern, D. F., Vaidyanathan, L., Decker, S. J., Drebin, J. A., Greene, M. I., and Weinberg, R. A., 1984, The neu oncogene: An erb-B-related gene encoding a 185,000-M, tumour antigen, Nature (Lond.) 312: 513–516.CrossRefGoogle Scholar
  29. 29.
    Bargmann, C. I., Hung, M.-C., and Weinberg, R. A., 1986, Multiple independent activations of the neu oncogene by a point mutation altering the transmembrane domain of p185, Cell 45: 649–657.PubMedCrossRefGoogle Scholar
  30. 30.
    Sukumar, S., Notano, V., Martin-Zanca, D., and Barbacid, M., 1983, Induction of mammary carcinomas in rats by nitroso-methylurea involves malignant activation of H-ras-1 locus by single point mutation, Nature (Land.) 306: 658–661.CrossRefGoogle Scholar
  31. 31.
    Zarbl, H., Sukumar, S., Arthur, A. V., Martin-Zahca, D., and Barbacid, M., 1985, Direct mutagenesis of Ha-ras-1 oncogenes by N-nitroso-N-methylurea during initiation of mammary carcinogenesis in rats, Nature (Lond.) 315: 382–385.CrossRefGoogle Scholar
  32. 32.
    Peraino, C., Fry, R. J. M., and Staffeldt, E., 1971, Reduction and enhancement by phenobarbital of hepatocarcinogenesis induced in the rat by 2-acetylaminofluorene, Cancer Res. 31: 1506–1512.PubMedGoogle Scholar
  33. 33.
    Lombardi, B., and Shinozuka, H., 1979, Enhancement of 2-acetylaminofluorene liver carcinogenesis in rats fed a choline-devoid diet, Int. J. Cancer 23: 565–570.PubMedCrossRefGoogle Scholar
  34. 34.
    Yager, J. D., Campbell, H. A., Longnecker, D. S., Roebuck, B. D., and Benoit, M. C., 1984, Enhancement of hepatocarcinogenesis in female rats by ethinyl estradiol and mestranol but not estradiol, Cancer Res. 44: 3862–3869.PubMedGoogle Scholar
  35. 35.
    Longnecker, D. S., Roebuck, B. D., Yager, J. D., Lilja, H. S., and Siegmund, B., 1981, Pancreatic carcinoma in azaserine-treated rats: Induction, classification and dietary modulation of incidence, Cancer 47: 1562–1572.PubMedCrossRefGoogle Scholar
  36. 36.
    Longnecker, D. S., 1986, Experimental models of exocrine pancreatic tumors, in: The Exocrine Pancreas: Biology, Pathobiology and Diseases ( V. L. W. Go, J. D. Gardner, F. P. Brooks, E. Lebenthal, E. P. DiMagno, and G. A. Scheele, eds.), pp. 443–458, Raven, New York.Google Scholar
  37. 37.
    Pour, P. M., Runge, R. G., Birt, D., Gingell, R., Lawson, T., Nagel, D., Wallcave, L., and Salmasi, S. Z., 1981, Current knowledge of pancreatic carcinogenesis in the hamster and its relevance to the human disease, Cancer 47: 1573–1587.PubMedCrossRefGoogle Scholar
  38. 38.
    Roebuck, B. D., Yager, J. D., Jr., and Longnecker, D. S., 1981, Dietary modulation of azaserine-induced pancreatic carcinogenesis in the rat, Cancer Res. 41: 888–893.PubMedGoogle Scholar
  39. 39.
    Roebuck, B. D., Yager, J. D., Jr., Longnecker, D. S., and Wilpone, S. A., 1981, Promotion by unsaturated fat of azaserine-induced pancreatic carcinogenesis in the rat, Cancer Res. 41: 3961–3966.PubMedGoogle Scholar
  40. 40.
    Birt, D. F., Salmasi, S., and Pour, P. M., 1981, Enhancement of experimental pancreatic cancer in Syrian golden hamsters by dietary fat, J. Natl. Cancer Inst. 67: 1327–1332.PubMedGoogle Scholar
  41. 41.
    Woutersen, R. A., van Garderen-Hoetmer, A., and Longnecker, D. S., 1987, Characterization of a 4-month protocol for the quantitation of BOP-induced lesions in hamster pancreas and its application in studying the effect of dietary fat, Carcinogenesis 8: 833–837.PubMedCrossRefGoogle Scholar
  42. 42.
    Morgan, R. G. H., Levinson, D. A., Hopwood, D., Saunders, J. H. B., and Wormsley, K. G., 1979, Potentiation of the action of azaserine on the rat pancreas by raw soya bean flour, Cancer Lett. 3: 87–90.CrossRefGoogle Scholar
  43. 43.
    Roebuck, B. D., Kaplita, P. V., and MacMillan, D. L., 1985, Interaction of dietary fat and soybean isolate (SBI) on azaserine-induced pancreatic carcinogenesis, Qual. Plant Foods. Hu. Nutr. 35: 323–329.CrossRefGoogle Scholar
  44. 44.
    Roebuck, B. D., Kaplita, P. V., Edwards, B. R., and Praissman, M., 1987, Effects of dietary fats and soybean protein on azaserine-induced pancreatic carcinogenesis and plasma cholecystokinin in the rat, Cancer Res. 47: 1333–1338.PubMedGoogle Scholar
  45. 45.
    Longnecker, D., Lhoste, E., and Roebuck, B. D., 1987, Enhancement of growth and conversion of phenotype in azaserine induced acinar cell foci of rats fed FOY-305, Fed. Proc. 46: 586.Google Scholar
  46. 46.
    Lhoste, E. F., and Longnecker, D. S., 1987, Effect of bombesin and caerulein on early stages of carcinogenesis induced by azaserine in the rat pancreas, Cancer Res. 47: 3273–3277.PubMedGoogle Scholar
  47. 47.
    Harris, C. C., and Sun, T.-t., 1984, Multifactoral etiology of human liver cancer, Carcinogenesis 5: 697–701.PubMedCrossRefGoogle Scholar
  48. 48.
    Gu, J.-R., Hu, L.-F., Cheng, Y.-C., and Wan, D.-F., 1986, Oncogenes in human primary hepatic cancer, J. Cell. Physiol. (Suppl.) 4: 13–20.Google Scholar
  49. 49.
    Ochiya, T., Fujiyama, A., Fukushige, S., Hatada, I., and Matsubara, K., 1986, Molecular cloning of an oncogene from a human hepatocellular carcinoma. Proc. Natl. Acad. Sci. USA 83: 4993–4997.PubMedCrossRefGoogle Scholar
  50. 50.
    Notario, V., Sukumar, S., Santos, E., and Barbacid, M., 1984, A common mechanism for the malignant activation of ras oncogenes in human neoplasia and in chemically induced animal tumors, in: Cancer Cells, Oncogenes and Viral Genes ( G. F. Vande Woude, A. J. Levine, W. C. Topp, and J. D. Watson, eds.), pp. 425–432, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  51. 51.
    Huber, B. E., Dearfield, K. L., Williams, J. R., Heilman, C. A., and Thorgeirsson, S. S., 1985, Tumorigenicity and transcriptional modulation of c-myc and N-ras oncogenes in a human hepatoma cell line, Cancer Res. 45: 4322–4329.PubMedGoogle Scholar
  52. 52.
    Su, T.-S., Lin, L.-H., Lui, W.-Y., Chang, C., Chou, C.-K., Ting, L.-P., Hu, C.-P., Han, S.-H., and P’eng, F.-K., 1985, Expression of c-myc gene in human hepatoma, Biochem. Biophys. Res. Commun. 132: 264–268.PubMedCrossRefGoogle Scholar
  53. 53.
    Motoo, Y., Mahmoudi, M., Osther, K., and Bollon, A. P., 1986, Oncogene expression in human hepatoma cells PLC/PRF/5, Biochem. Biophys. Res. Commun. 135: 262–268.PubMedCrossRefGoogle Scholar
  54. 54.
    Zhang, X.-K., Huang, D.-P., Chiu, D.-K., and Chiu, J.-F., 1987, The expression of oncogenes in human developing liver and hepatomas, Biochem. Biophys. Res. Commun. 142: 932–938.PubMedCrossRefGoogle Scholar
  55. 55.
    Calabretta, B., Kaczmarek, L., Ming, P.-M. L., Au, F., and Ming, S.-C., 1985, Expression of c-myc and other cell cycle-dependent genes in human colon neoplasia, Cancer Res. 45: 6000–6004.PubMedGoogle Scholar
  56. 56.
    Mack, T. M., 1982, Pancreas, in: Cancer Epidemiology and Prevention ( D. Schottenfeld and J. F. Fraumeni, Jr., eds.), pp. 638–667, W. B. Saunders, Philadelphia.Google Scholar
  57. 57.
    Pulciani, S., Santos, E., Lauver, A. V., Long, L. K., Aaronson, S. A., and Barbacid, M., 1982, Oncogenes in solid human tumors, Nature (Lond.) 300: 539–542.CrossRefGoogle Scholar
  58. 58.
    Der, C. J., and Cooper, G. M., 1983, Altered gene products are associated with activation of cellular rasé genes in human lung and colon carcinomas, Cell 32: 201–208.PubMedCrossRefGoogle Scholar
  59. 59.
    Hirai, H., Okabe, T., Anraku, Y., Fujisawa, M., Urabe, A., and Takaku, F., 1985, Activation of the c-Kras oncogene in a human pancreas carcinoma, Biochem. Biophys. Res. Commun. 127: 168–174.PubMedCrossRefGoogle Scholar
  60. 60.
    Cooper, C. S., Blair, D. G., Oskarsson, M. K., Tainsky, M. A., Eader, L. A., and Vande Woude, G. F., 1984, Characterization of human transforming genes for chemically transformed, teratocarcinoma, and pancreatic carcinoma cell lines, Cancer Res. 44: 1–10.PubMedCrossRefGoogle Scholar
  61. 61.
    O’Hara, B. M., Oskarsson, M., Tainsky, M. A., and Blair, D. G., 1986, Mechanism of activation of human ras genes cloned from a gastric adenocarcinoma and a pancreatic carcinoma cell line, Cancer Res. 46: 4695–4700.PubMedGoogle Scholar
  62. 62.
    Yamada, H., Sakamoto, H., Taira, M., Nishimura, S., Shimosato, Y., Terada, M., and Sugimura, T., 1986, Amplifications of both c-Ki-ras with a point mutation and c-myc in a primary pancreatic cancer and its metastatic tumors in lymph nodes, Jpn. J. Cancer Res. (Gann) 77: 370–375.Google Scholar
  63. 63.
    Yamada, H., Yoshida, T., Sakamoto, H., Terada, M., and Sugimura, T., 1986, Establishment of a human pancreatic adenocarcinoma cell line (PSN-1) with amplifications of both c-myc and activated c-Ki-ras by a point mutation, Biochem. Biophys. Res. Commun. 140: 167–173.PubMedCrossRefGoogle Scholar
  64. 64.
    Hollingsworth, M. A., Rebellato, L. M., Moore, J. W., Finn, O. J., and Metzgar, R. S., 1986, Antigens expressed on NIH 3T3 cells following transformation with DNA from a human pancreatic tumor, Cancer Res. 46: 2482–2487.PubMedGoogle Scholar
  65. 65.
    Maronpot, R. R., Haseman, J. K., Boorman, G. A., Eustis, S. E., Rao, G. N., and Huff, J. E., 1987, Liver lesions in B6C3F1 mice: The National Toxicology Program, experience and position, Arch. Toxicol. (Suppl.) 10: 10–26.CrossRefGoogle Scholar
  66. 66.
    Fox, T. R., and Watanabe, P. G., 1985, Detection of a cellular oncogene in spontaneous liver tumors of B6C3F1 mice, Science 228: 596–597.PubMedCrossRefGoogle Scholar
  67. 67.
    Reynolds, S. H., Stowers, S. J., Maronpot, R. R., Anderson, M. W., and Aaronson, S. A., 1986, Detection and identification of activated oncogenes in spontaneously occurring benign and malignant hepatocellular tumors of the B6C3F1 mouse, Proc. Natl. Acad. Sci. USA 83: 33–37.PubMedCrossRefGoogle Scholar
  68. 68.
    Wiseman, R. W., Stowers, S. J., Miller, E. C., Anderson, M. W., and Miller, J. A., 1986, Activating mutations of the c-Ha-ras protooncogene in chemically induced hepatomas of the male B6C3F, mouse, Proc. Natl. Acad. Sci. USA 83: 5825–5829.PubMedCrossRefGoogle Scholar
  69. 69.
    Wiseman, R. W., Stewart, B. C., Grenier, D., Miller, E. C., and Miller, J. A., 1987, Characterization of c-Ha-ras proto-oncogene mutations in chemically induced hepatomas of the B6C3F, mouse, Proc. Am. Assoc. Cancer Res. 28: 147.Google Scholar
  70. 70.
    McMahon, G., Hanson, L., Lee, J.-J., and Wogan, G. N., 1986, Identification of an activated c-Ki-ras oncogene in rat liver tumors induced by aflatoxin B1, Proc. Natl. Acad. Sci. USA 83: 9418–9422.PubMedCrossRefGoogle Scholar
  71. 71.
    McMahon, G., Davis, E., and Wogan, G. N., 1987, Characterization of c-Ki-ras oncogene alleles by direct sequencing of enzymatically amplified DNA from carcinogen-induced tumors, Proc. Natl. Acad. Sci. USA 84: 4974–4978.PubMedCrossRefGoogle Scholar
  72. 72.
    Ishikawa, F., Takaku, F., Nagao, M., Ochiai, M., Hayashi, K., Takayama, S., and Sugimura, T., 1985, Activated oncogenes in a rat hepatocellular carcinoma induced by 2-amino-3-methylimidazo[5,4fJquinoline, Jpn. J. Cancer Res. (Gann) 76: 425–428.Google Scholar
  73. 73.
    Ishikawa, F., Takaku, F., Ochiai, M., Hayashi, K., Hirohashi, S., Terada, M., Takayama, S., Nagao, M., and Sugimura, T., 1985, Activated c-raf gene in a rat hepatocellular carcinoma induced by 2-amino-3methylimidazo[4,5-f]quinoline, Biochem. Biophys. Res. Commun. 132: 186–192.PubMedCrossRefGoogle Scholar
  74. 74.
    Ishikawa, F., Takaku, F., Hayashi, K., Nagao, M., and Sugimura, T., 1986, Activation of rat c-raf during transfection of hepatocellular carcinoma DNA, Proc. Natl. Acad. Sci. USA 83: 3209–3212.PubMedCrossRefGoogle Scholar
  75. 75.
    Ishikawa, F., Takaku, F., Nagao, M., and Sugimura, T., 1987, Rat c-raf oncogene activation by a rearrangement that produces a fused protein, Mol. Cell. Biol. 7: 1226–1232.PubMedGoogle Scholar
  76. 76.
    Yaswen, P., Goyette, M., Shank, P. R., and Fausto, N., 1985, Expression of c-Ki-ras, c-Ha-ras, and cmyc in specific cell types during hepatocarcinogenesis, Mol. Cell. Biol. 5: 780–786.PubMedGoogle Scholar
  77. 77.
    Beer, D. G., Schwarz, M., Sawada, N., and Pitot, H. C., 1986, Expression of H-ras and c-myc protooncogenes in isolated y-glutamyl transpeptidase-positive rat hepatocytes and in hepatocellular carcinomas induced by diethylnitrosamine, Cancer Res. 46: 2435–2441.PubMedGoogle Scholar
  78. 78.
    Tashiro, F., Morimura, S., Hayashi, K., Makino, R., Kawamura, H., Horikoshi, N., Nemoto, K., Ohtsubo, K., Sugimura, T., and Ueno, Y., 1986, Expression of the c-Ha-ras and c-myc genes in aflatoxin Bt-induced hepatocellular carcinomas, Biochem. Biophys. Res. Commun. 138: 858–864.PubMedCrossRefGoogle Scholar
  79. 79.
    Makino, R., Hayashi, K., Sato, S., and Sugimura, T., 1984, Expressions of the c-Ha-ras and c-myc genes in rat liver tumors, Biochem. Biophys. Res. Commun. 119: 1096–1102.CrossRefGoogle Scholar
  80. 80.
    Cote, G. J., Lastra, B. A., Cook, J. R., Huang, D.-P., and Chiu, J.-F., 1985, Oncogene expression in rat hepatomas and during hepatocarcinogenesis, Cancer Lett. 26: 121–127.PubMedCrossRefGoogle Scholar
  81. 81.
    Corcos, D., Defer, N., Raymondjean, M., Paris, B., Corral, M., Tichonicky, L., Kruh, J., Glaise, D., Saulnier, A. and Guguen-Guillouzo, C., 1984, Correlated increase of the expression of the c-ras genes in chemically induced hepatocarcinomas, Biochem. Biophys. Res. Commun. 122: 259–264.PubMedCrossRefGoogle Scholar
  82. 82.
    Hayashi, K., Makino, R., and Sugimura, T., 1984, Amplification and over-expression of the c-myc gene in Morris hepatomas, Gann 75: 475–478.PubMedGoogle Scholar
  83. 83.
    Quaife, C. J., Pinkert, C. A., Ornitz, D. M., Palmiter, R. D., and Brinster, R. L., 1987, Pancreatic neoplasia induced by expression in acinar cells of transgenic mice, Cell 48: 1023–1034.PubMedCrossRefGoogle Scholar
  84. 84.
    Goyette, M., Petropoulos, C. J., Shank, P. R., and Fausto, N., 1983, Expression of a cellular oncogene during liver regeneration, Science 219: 510–512.PubMedCrossRefGoogle Scholar
  85. 85.
    Fausto, N., and Shank, P. R., 1983, Oncogene expression in liver regeneration and hepatocarcinogenesis, Hepatology 3: 1016–1023.PubMedCrossRefGoogle Scholar
  86. 86.
    Goyette, M., Petropoulos, C. J., Shank, P. R., and Fausto, N., 1984, Regulated transcription of c-Ki-ras and c-myc during compensatory growth of rat liver, Mol. Cell. Biol. 4: 1493–1498.PubMedGoogle Scholar
  87. 87.
    Thompson, N. L., Mead, J. E., Braun, L., Goyette, M., Shank, P. R., and Fausto, N., 1986, Sequential protooncogene expression during rat liver regeneration, Cancer Res. 46: 3111–3117.PubMedGoogle Scholar
  88. 88.
    Silverman, J. A., Zurlo, J., and Yager, J. D., 1988, Mechanisms of regulation of a-raf-1, c-raf-1, c-myc, and c-H-ras during regenerative growth of the rat liver (submitted).Google Scholar
  89. 89.
    Kruijer, W., Skelly, H., Botteri, F., van der Putten, H., Barber, J. R., Verma, I. M., and Leffert, H. L., 1986, Proto-oncogene expression in regenerating liver is simulated in cultures of primary adult rat hepatocytes, J. Biol. Chem. 261: 7929–7933.PubMedGoogle Scholar
  90. 90.
    Zurlo, J., and Yager, J. D., 1985, Oncogene expression during pancreatic regeneration and in chemically induced pancreatic and liver carcinomas in the rat, Fed. Proc. 44: 1943.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • James D. Yager
    • 1
  • Joanne Zurlo
    • 2
  1. 1.Department of AnatomyDartmouth Medical SchoolHanoverUSA
  2. 2.Department of Pharmacology and ToxicologyDartmouth Medical SchoolHanoverUSA

Personalised recommendations