Biochemical Marker Alterations in Hepatic Preneoplasia and Neoplasia

  • Snorri S. Thorgeirsson
  • Peter J. Wirth


Beginning with the first demonstration of chemically induced hepatocarcinogenesis in 1935,1 the liver has been, and continues to be, a major focus of investigation for many experimental oncologists. Although early studies in chemical hepatocarcinogenesis provided only indirect evidence for the multistage process involved in the neoplastic development in this organ, recent work by Peraino and others has now clearly established the existence of the initiation—promotion—progression phenomenon in the liver.23 Since numerous and voluminous reviews have been written in recent years discussing the histology, time course, markers, and the putative characteristics of the different stages of hepatocarcinogenesis, we make no attempt to deal comprehensively with all the markers associated with chemically induced tumors in the rat liver. Rather, we focus our discussion on the relevance of new markers recently identified during early stages of hepatocarcinogenesis in the authors’ laboratory and provide references to more extensive reviews whenever appropriate. Furthermore, the issue of the occurrence of stage-specific markers during hepatocarcinogenesis is addressed.


Neoplastic Development Neoplastic Nodule Preneoplastic Liver Hepatocyte Nodule Nongenotoxic Carcinogen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sasaki, T., and Yoshida, T., 1935, Experimentelle erzeugung des lebercarcinoma durch futterung mit oamidoazotoluol, Arch. Pathol. Anat. Physiol. 295: 175–181.CrossRefGoogle Scholar
  2. 2.
    Peraino, C., Richards, W. L., and Stevens, F. J., 1984, Multistage hepatocarcinogenesis, in: Mechanisms of Tumor Promotion: Tumor Promotion in the Internal Organs ( T. J. Slaga, ed.), pp. 1–53, CRC Press, Boca Raton, Florida.Google Scholar
  3. 3.
    Pitot, H. C., and Sirica, A. E., 1980, The stages of initiation and promotion in hepatocarcinogenesis, Biochim. Biophys. Acta 605: 191–215.PubMedGoogle Scholar
  4. 4.
    Farber, E., and Sarma, D. S. R., 1987, Biology of disease. Hepatocarcinogenesis: A dynamic cellular perspective., Lab. Invest. 56: 1–22.Google Scholar
  5. 5.
    Schulte-Herman, R., 1985, Tumor promotion in the liver, Arch. Toxicol. 57: 147–158.CrossRefGoogle Scholar
  6. 6.
    Farber, E., and Cameron, R., 1980, The sequential analysis of cancer development. Adv. Cancer Res. 31: 125–226.PubMedCrossRefGoogle Scholar
  7. 7.
    Solt, D., and Farber, E., 1976, New principles for the analysis of chemical carcinogenesis, Nature (Lond.) 263: 701–703.CrossRefGoogle Scholar
  8. 8.
    Haddow, A., 1938, Cellular inhibition and origin of cancer, Acta Unio Int. Contra Cancrum 3: 342–353.Google Scholar
  9. 9.
    Scherer, E., and Emmelot, P., 1980, The first relevant cell stage in rat liver carcinogenesis: A quantitative approach, Biochim. Biophys. Acta 605: 247–304.PubMedGoogle Scholar
  10. 10.
    Scherer, E., Hoffmann, M., Emmelot, P., and Friedrich-Freska, H., 1972, Quantitative study of foci of altered liver cells induced in the rat by a single dose of diethylnitrosamine and partial hepatectomy, J. Natl. Cancer Inst. 49: 93–106.PubMedGoogle Scholar
  11. 11.
    Ibsen, K. H., and Fishman, W. H., 1979, Developmental gene expression in cancer, Biochim. Biophys. Acta 560: 243–280.PubMedGoogle Scholar
  12. 12.
    Uriel, J., 1976, Cancer, retrodifferentiation and the myth of Faust, Cancer Res. 36: 4269–4275.PubMedGoogle Scholar
  13. 13.
    Sell, S., and Leffert, H. L., 1982, An evaluation of cellular lineages in the pathogenesis of experimental hepatocellular carcinoma, Hepatology 2: 74–86.Google Scholar
  14. 14.
    Buick, R. N., and Pollak, M. N., 1984, Perspectives on clonogenic tumor cells, stem cells, and oncogenes, Cancer Res. 44: 4909–4918.PubMedGoogle Scholar
  15. 15.
    Pierce, G. B., and Cox, W. F., 1978, Neoplasms as caricatures of tissue renewal, in: Cell Differentiation and Neoplasia ( G. F. Saunders, ed.), pp. 57–66, Raven, New York.Google Scholar
  16. 16.
    O’Farrell, P. H., 1975, High resolution two-dimensional electrophoresis of proteins, J. Biol. Chem. 250: 4007–4021.PubMedGoogle Scholar
  17. 17.
    Vo, K. P., Miller, M. J., Geiduschek, E. P., Nielson, C., Olson, A. D., and Xuong, N. H., 1981, Computer analysis of two-dimensional gels, Anal. Biochem. 112: 258–271.PubMedCrossRefGoogle Scholar
  18. 18.
    Miller, M. J., Olson, A. D., and Thorgeirsson, S. S., 1984, Computer analysis of two-dimensional gels: Automatic matching, Electrophoresis 5: 297–303.CrossRefGoogle Scholar
  19. 19.
    Miller, M. J., 1986, Quantitative analysis of two-dimensional gel electrophoretograms: Strategies and requirements for computerized analysis, in: Experimental Biology and Medicine ( A. Wolsky, ed.), pp. 235–260, S. Karger, Basel.Google Scholar
  20. 20.
    Wirth, P. J., Doniger, J., Thorgeirsson, S. S., and DiPaolo, J. A., 1986, Altered gene expression after neoplastic transformation of Syrian hamster cells by bisulfite (NaHSO3), Cancer Res. 46: 390–399.PubMedGoogle Scholar
  21. 21.
    Wirth, P. J., Benjamin, T., Schwartz, D. M., and Thorgeirsson, S. S., 1986, Sequential analysis of chemically induced hepatoma development by two-dimensional electrophoresis, Cancer Res. 46: 400–413.PubMedGoogle Scholar
  22. 22.
    Wirth, P. J., Rao, M. S., and Evarts, R. P., 1987, Coordinate polypeptide expression during hepatocarcinogenesis: Comparison of the Solt—Farber and Reddy models, Cancer Res. 47: 2839–2851.PubMedGoogle Scholar
  23. 23.
    Wirth, P. J., Yuspa, S. J., Thorgeirsson, S. S., and Hennings, H., 1987, Induction of common patterns of polypeptide synthesis and phosphorylation by calcium and 12-O-tetradecanoylphorbol-13-acetate in mouse epidermal cell culture, Cancer Res. 47: 2831–2838.PubMedGoogle Scholar
  24. 24.
    Duncan, R., and McConkey, E. H., 1982, How many proteins are there in a typical mammalian cell?, Clin. Chem. 28: 749–755.PubMedGoogle Scholar
  25. 25.
    O’Brien, S. J., 1973, On estimating functional gene number in eukaryotes, Nature New Biol. 242: 52–54.PubMedGoogle Scholar
  26. 26.
    Bishop, J. O., 1974, The numbers game, Cell 2: 81–86.PubMedCrossRefGoogle Scholar
  27. 27.
    Scheele, G. A., 1975, Two-dimensional gel analysis of soluble proteins, J. Biol. Chem. 250: 5375–5385.PubMedGoogle Scholar
  28. 28.
    Solt, D. B., Medline, A., and Farber, E., 1977, Rapid emergence of carcinogen induced hyperplastic lesions in a new model for the sequential analysis of liver carcinogenesis, Am. J. Pathol. 88: 595–618.PubMedGoogle Scholar
  29. 29.
    Morrissey, J. H., 1981, Silver stain for proteins in polyacrylamide gels: A modified procedure with enhanced uniform sensitivity, Anal. Biochem. 117: 307–310.PubMedCrossRefGoogle Scholar
  30. 30.
    Cone, J. L., Glowinski, I. B., Wirth, P. J., Grantham, P. H., and Roller, P. P., 1986, Structural studies and two-dimensional gel electrophoresis of y-glutamyl transpeptidase, Arch. Biochem. Biophys. 247: 165–170.PubMedCrossRefGoogle Scholar
  31. 31.
    Rahimi-Pour, A., Wellman-Bednawska, M., Galteau, M-M., and Siest, G., 1986, Identification of gamma-glutamyltranspeptidase in rat liver plasma membranes after two-dimensional electrophoresis, Electrophoresis 7: 83–88.CrossRefGoogle Scholar
  32. 32.
    Ramagli, L. S., Capetillo, S., Becker, F. F., and Rodriguez, L. V., 1985, Alterations in nonhistone chromatin proteins during hepatocarcinogenesis induced by diverse acting carcinogens, Carcinogenesis 6: 367–375.PubMedCrossRefGoogle Scholar
  33. 33.
    Kitahara, A., Satoh, K., Nichimura, K., Ishikawa, T., Ruike, K., Sato, K., Tsuda, H., and Ito, N., 1984, Changes in molecular forms of rat hepatic glutathione-S-transferase during chemical hepatocarcinogenesis, Cancer Res. 44: 2698–2703.PubMedGoogle Scholar
  34. 34.
    Satoh, K., Kitahara, A., Soma, Y., Inaba, Y., Hatayama, I., and Sato, K., 1985, Purification, induction, and distribution of placental glutathione transferase: A new marker enzyme for preneoplastic cells in the rat chemical hepatocarcinogenesis, Proc. Natl. Acad. Sci. USA 82: 3964–3968.PubMedCrossRefGoogle Scholar
  35. 35.
    Sugioka, Y., Fujii-Kuriyama, Y., Kitagawa, T., and Muramatsu, M., 1985, Changes in polypeptide pattern of rat liver cells during chemical hepatocarcinogenesis, Cancer Res. 45: 365–378.PubMedGoogle Scholar
  36. 36.
    Vlasuk, G. P., and Walz, F. G., 1980, Liver endoplasmic reticulum polypeptides resolved by two-dimensional gel electrophoresis, Anal. Biochem. 105: 112–120.PubMedCrossRefGoogle Scholar
  37. 37.
    Franke, W. W., Mayer, D., Schmid, E., Denk, H., and Borenfreund, E., 1981, Differences of expression of cytoskeleton proteins in cultured rat hepatocytes and hepatoma cells, Exp. Cell Res. 134: 345–365.PubMedCrossRefGoogle Scholar
  38. 38.
    Fiala, S., Mohindru, A., Kettering, W. G., Fiala, A. E., and Morris, H. P., 1976, Glutathione and gamma glutamyltranspeptidase in rat liver during chemical carcinogenesis, J. Natl. Cancer Inst. 57: 591–599.PubMedGoogle Scholar
  39. 39.
    Hanigan, M. H., and Pitot, H. C., 1985, Gamma-glutamyl transpeptidase-its role in hepatocarcinogenesis, Carcinogenesis 6: 165–172.PubMedCrossRefGoogle Scholar
  40. 40.
    Cameron, R., Kellen, J., Kolin, A., Malkin, A., and Farber, E., 1978, y-glutamyltranspeptidase in putative premalignant liver cell populations during hepatocarcinogenesis, Cancer Res. 38: 823–829.Google Scholar
  41. 41.
    Tatematsu, M. N., Mera, Y., Ito, N., Satoh, K., and Sato, K., 1985, Relative merits of immunohistochemical demonstrations of placental, A, B, and C forms of glutathione-S-transferase and histochemical demonstrations of -y-glutamyltransferase as markers of altered foci during liver carcinogenesis in rats, Carcinogenesis 6: 1621–1626.PubMedCrossRefGoogle Scholar
  42. 42.
    O’Farrell, P. Z., Goodman, H. M., and Farrell, P. H., 1977, High resolution two-dimensional electrophoresis of basic as well as acidic proteins, Cell 12: 1133–1142.PubMedCrossRefGoogle Scholar
  43. 43.
    Sato, K., Kitahara, A., Satoh, K., Ishikawa, T., Tatematsu, M., and Ito, N., 1984, The placental form of glutathione-S-transferase as a new marker protein for preneoplasia in rat chemical hepatocarcinogenesis, Gann 75: 199–202.PubMedGoogle Scholar
  44. 44.
    Schor, N., Ogawa, K., Lee, G., and Farber, E., 1978, The use of the D-T diaphorase for the detection of foci of early neoplastic transformation in rat liver, Cancer Lett. 5: 167–171.PubMedCrossRefGoogle Scholar
  45. 45.
    Pickett, C. B., Williams, J. B., Lu, A. Y. H., and Cameron, R. G., 1984, Regulation of glutathione transferase and DT-diaphorase mRNAs in persistent hepatocyte nodules during chemical hepatocarcinogenesis, Proc. Natl. Acad. Sci. USA 81: 5091–5095.PubMedCrossRefGoogle Scholar
  46. 46.
    Farber, E., 1984, The biochemistry of preneoplastic liver: A common metabolic pattern in hepatocyte nodules, Can. J. Biochem. Cell Biol. 62: 486–494.PubMedCrossRefGoogle Scholar
  47. 47.
    Farber, E., 1984, Cellular biochemistry of the stepwise development of cancer with chemicals: G. H. A. Clowes Memorial Lecture, Cancer Res. 44: 5463–5474.PubMedGoogle Scholar
  48. 48.
    Roomi, M. W., Ho, R. K., Sarma, D. S. R., and Farber, E., 1985, A common biochemical pattern in preneoplastic hepatocyte nodules generated in four different models in the rat, Cancer Res. 45: 564–571.PubMedGoogle Scholar
  49. 49.
    Reddy, J. K., Azarnoff, D. L. and Hignite, C. E., 1980, Hypolipidaemic hepatic peroxisome proliferators form a novel class of chemical carcinogens, Nature (Lond.) 283: 397–398.CrossRefGoogle Scholar
  50. 50.
    Reddy, J. K., and Lalwani, N. D., 1983, Carcinogenesis by hepatic peroxisome proliferators: Evaluation of the risk of hypolipidemic drugs and industrial plasticizers to humans, CRC Crit. Rev. Toxicol. 12: 1–58.CrossRefGoogle Scholar
  51. 51.
    Eriksson, L. C., Sharma, R. N., Roomi, M. W., Ho, R. K., Farber, E., and Murray, R. K., 1983, A characteristic electrophoretic pattern of cytosolic polypeptides from hepatocyte nodules generated during liver carcinogenesis in several models, Biochem. Biophy. Res. Commun. 117: 740–745.CrossRefGoogle Scholar
  52. 52.
    Tulpule, A., Batist, G., Sinha, B., Katki, A., Myers, C. E., and Cowan, K. H., 1986, Similar biochemical changes associated with pleotropic drug resistance (PDR) in human MCF-7 breast cancer cells and xenobiotic resistance induced by carcinogens, Proc. Am. Assoc. Cancer Res. 27: 271.Google Scholar
  53. 53.
    Batist, G., de Muys, J-M., Cowan, K. H. and Meyers, C. E., 1986, Purification and characterization of a novel glutathione-S-transferase (GST) in multi-drug resistant (MDR) human breast cancer cells, Proc. Am. Assoc. Cancer Res. 27: 270.Google Scholar
  54. 54.
    Rao, M. S., Takematsu, M., Subbarao, V., Ito, N., and Reddy, J. K., 1986, Analysis of peroxisomal proliferator induced preneoplastic and neoplastic lesions of rat liver for placental form of glutathione-Stransferase and -y-glutamyltranspeptidase, Cancer Res. 46: 5287–5290.PubMedGoogle Scholar
  55. 55.
    Glauert, H. P., Beer, D., Rao, M. S., Schwarz, M., Xu, Y-D., Goldsworthy, T. L., Coloma, J., and Pitot, H. C., 1986, Induction of altered hepatic foci in rats by the administration of hypolipidemic peroxisome proliferators alone or following a single dose of diethylnitrosamine, Cancer Res. 46: 4601–4606.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Snorri S. Thorgeirsson
    • 1
  • Peter J. Wirth
    • 1
  1. 1.Laboratory of Experimental Carcinogenesis, National Cancer InstituteNational Institutes of HealthBethesdaUSA

Personalised recommendations