Advertisement

Membrane Alterations in Neoplasia

  • D. James Morré

Abstract

Since the 1960s, considerable attention has been paid to alterations of cellular membranes associated with cell transformation and malignancy. Many studies have been directed at a search for significant alterations particularly at the cell surface* and, more specifically, in the plasma membrane. However, during malignancy, membrane alterations are not limited to the plasma membrane. They have also been demonstrated in intracellular membranes. Nevertheless, since the plasma membrane plays a key role in cellular growth control, differentiation, invasion, and metastasis, it continues to be the focus of much attention in cancer research.

Keywords

Endoplasmic Reticulum Sialic Acid Golgi Apparatus Focal Adhesion Nuclear Envelope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Morré, D. J., and Ovtracht, L., 1977, Dynamics of Golgi apparatus: Membrane differentiation and membrane flow, Int. Rev. Cytol. Suppl. 5: 61–188.PubMedGoogle Scholar
  2. 2.
    Frost, J. K., 1969, The Cell in Health and Disease, Williams & Wilkins, Baltimore.Google Scholar
  3. 3.
    David, H., 1977, Quantitative Ultrastructural Data of Animal and Human Cells, Gustav Fischer Verlag, Stuttgart.Google Scholar
  4. 4.
    David, H., 1978, Cellular pathology, in: Electron Microscopy in Human Medicine, Vol. 2: Cellular Pathology, Metabolic and Storage Diseases (J. V. Johannessen, ed.), pt. I, pp. 1–148, McGraw—Hill, New York.Google Scholar
  5. 5.
    Ghadially, F. N., 1985, Diagnostic Electron Microscopy of Tumors, 2nd ed., Butterworths, London.Google Scholar
  6. 6.
    Unuma, T., Moms, H. P., and Busch, H., 1967, Comparative studies of the nucleoli of Morris hepatomas, embryonic liver, and aflatoxin B1–treated liver of rats, Cancer Res. 27: 2221–2233.PubMedGoogle Scholar
  7. 7.
    Harris, J. R., Price, M. R., and Willison, M., 1974, A comparative study on rat liver and hepatoma nuclear membranes, J. Ultrastruct. Res. 48: 17–32.PubMedCrossRefGoogle Scholar
  8. 8.
    Dalton, A. J., 1964, An electron microscopic study of a series of chemically induced hepatomas, in: Cellular Control Mechanisms and Cancer ( P. Emmelot and O. Muhlbock, eds.), pp. 211–225, Elsevier, Amsterdam.Google Scholar
  9. 9.
    Hruban, Z., Swift, H., and Rechcigl, M., Jr., 1965, Fine structure of transplantable hepatomas of the rat, J. Natl. Cancer Inst. 35: 459–495.PubMedGoogle Scholar
  10. 10.
    Morré, D. J., Kartenbeck, J., and Franke, W. W., 1979, Membrane flow and interconversions among endomembranes, Biochim. Biophys. Acta 559: 71–152.PubMedGoogle Scholar
  11. 11.
    Farquhar, M. G., and Palade, G. F., 1981, The Golgi apparatus (complex)–1954–1981: From artefact to center stage, J. Cell Biol. 91: 77s–103s.PubMedCrossRefGoogle Scholar
  12. 12.
    Farquhar, M. G., 1985, Progress in unraveling pathways of Golgi traffic, Annu. Rev. Cell Biol. 1: 447–488.PubMedCrossRefGoogle Scholar
  13. 13.
    Kornfeld, R., and Kornfeld, S., 1985, Assembly of asparagine–linked oligosaccharides, Annu. Rev. Biochem. 54: 631–664.PubMedCrossRefGoogle Scholar
  14. 14.
    Dunphy, W. G., and Rothman, J. E., 1985, Compartmental organization of the Golgi stack, Cell 42: 1321CrossRefGoogle Scholar
  15. 15.
    Creek, K. E., and Sly, W. S., 1984, The role of the phosphomannosyl receptor in the transport of acid hydrolases to lysosomes, in: Lysosomes in Biology and Pathology ( J. T. Dingle, R. T. Dean, and W. Sly, eds.), pp. 63–82, Elsevier/North–Holland, New York.Google Scholar
  16. 16.
    Reutter, W., and Bauer, C., 1978, Terminal sugars in glycoconjugates: Metabolism of free and protein—bound r.—fucose, N—acetylneuraminic acid and D–galactose in liver and Morris hepatomas, in: Morris Hepatomas. Mechanisms of Regulation ( H. P. Morris and W. E. Criss, eds.), pp. 405–437, Plenum, New York.Google Scholar
  17. 17.
    Reutter, W., Tauber, R., Vischer, P., Harms, E., Grunholz, H.–J., and Bauer, C., 1978, Turnover of proteins and glycoproteins of plasma membranes in liver, regenerating liver and Morris hepatoma, in: Protein Turnover and Lysosome Function ( H. L. Segal and D. J. Doyle, eds.), pp. 779–790, Academic, New York.Google Scholar
  18. 18.
    Nicolson, G. L., 1984, Cell surface molecules and tumor metastasis, Exp. Cell Res. 150: 3–22.PubMedCrossRefGoogle Scholar
  19. 19.
    McCarthy, P., Richardson, C. L., Merritt, W. D., Morré, D. J., and Mollenhauer, H. H., 1974, Altered Golgi apparatus architecture in animal and plant tumors, Proc. Ind. Acad. Sci. 84: 179–185.Google Scholar
  20. 20.
    Hruban, Z., Mochizuki, Y., Slesers, A., and Morris, H. P., 1972a, A comparative study of cellular organelles of Morris hepatomas, Cancer Res. 32: 853–867.PubMedGoogle Scholar
  21. 21.
    Hruban, Z., 1979, Ultrastructure of hepatocellular tumors, in: Liver Carcinogenesis ( K. Lapis and J. V. Johannessen, eds.), pp. 403–431, McGraw–Hill, New York.Google Scholar
  22. 22.
    Redman, C. M., Yu, S., Bannerjee, D., and Morris, H. P., 1979, In vitro synthesis and secretion of albumin by Morris hepatoma 5123C and 7800, Cancer Res. 39: 101–111.PubMedGoogle Scholar
  23. 23.
    Hudgin, R. L., Murray, R. K., Pinteric, L., Morris, H.P., and Schachter, H., 1971, The use of nucleotide–sugar: Glycoprotein glycosyl–transferases to assess Golgi apparatus function in Morris hepatomas, Can. J. Biochem. 49: 61–70.PubMedCrossRefGoogle Scholar
  24. 24.
    Schwartz, A. L., Strous, G. J. A. M., Slot, J. W., and Geuze, H. J., 1985, Immunoelectron microscopic localization of acidic intracellular compartments in hepatoma cells, EMBO J. 4: 899–204.PubMedGoogle Scholar
  25. 25.
    Leighton, F., and Morré, D. M., 1982, Lysosomes of tumors: Function, properties and isolation, in: Cancer–Cell Organelles ( E. Reid, G. Cook, and D. J. Morré, eds.), pp. 239–248, Wiley, New York.Google Scholar
  26. 26.
    Maniferme, F., Wattiaux, R., and Von Figura, K., 1985, Synthesis, transport and processing of cathespin C in Morris hepatoma 7777 cells and rat hepatocytes. Eur. J. Biochem. 153: 211–216.CrossRefGoogle Scholar
  27. 27.
    Pedersen, P. L., 1978, Tumor mitochondria and the bioenergetics of cancer cells, in: Progress in Experimental Research, Vol. 22 (F. Homburger, ed.), pp. 190–274, S. Karger, Basel.Google Scholar
  28. 28.
    Trump, B. F., Jesudason, M. L., and Jones, R. T., 1978, Ultrastructural features of diseased cells, in: Diagnostic Electron Microscopy, Vol. 1 ( B. L. Trump and R. T. Jones, eds.), pp. 1–88, Wiley, New York.Google Scholar
  29. 29.
    Chen, L. B., Summerhayes, I. C., Nadakavukaren, K. K., Lampidis, T. J., Bernal, S. D., and Shepard, E. L., 1984, Mitochondria in tumor cells: Effects of cytoskeleton on distribution and as targets for selective killing. in: Cancer Cells, Vol. 1: The Transformed Phenotype ( A. J. Levine, G. G. Van de Woude, W. C. Topp, and J. D. Watson, eds.), pp. 75–86, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  30. 30.
    Leighton, F., 1982, Peroxisomes of cancer cells, in: Cancer–Cell Organelles ( E. Reid, G. Cook, and D. J. Morré, eds.), pp. 257–259, Wiley, New York.Google Scholar
  31. 31.
    Hruban, Z., and Rechcigl, M., 1969. Microbodies in neoplastic cells, Int. Rev. Cytol. (Suppl.) 1: 122–125.Google Scholar
  32. 32.
    Reddy, J. K., and Svoboda, D., 1972, Microbodies in Leydig cell tumors of rat testis, J. Histochem. Cytochem. 20: 793–803.PubMedCrossRefGoogle Scholar
  33. 33.
    Novikoff, A. B., Novikoff, P. M., Davis, C., and Quintana, N., 1973, Studies on microperoxisomes. V. Are microperoxisomes ubiquitous in mammalian cells? J. Histochem. Cytochem. 21: 737–755.PubMedCrossRefGoogle Scholar
  34. 34.
    Rechcigl, M., Jr., Hruban, Z., and Morris, H. P., 1969, The roles of synthesis and degradation in the regulation of catalase levels in the neoplastic tissues, Enzymol. Biol. Clin. 10: 161–180.Google Scholar
  35. 35.
    Weber, G., 1983, Biochemical strategy of cancer cells and the design of chemotherapy: G. H. A. Clowes Memorial Lecture, Cancer Res. 43: 3466–3492.PubMedGoogle Scholar
  36. 36.
    Mochizuki, Y., Hruban, Z., Morris, H. P., Slegers, A., and Vigil, E. L., 1971, Microbodies of Morris hepatomas, Cancer Res. 31: 763–773.PubMedGoogle Scholar
  37. 37.
    Itabashi, M., Mochizuki, K., and Tsukada, H., 1975, Peroxisomes in liver tumors of rats induced by 3’methyl 4 (dimethylamino)azobenzene, Gann 66: 463–472.PubMedGoogle Scholar
  38. 38.
    Malick, L. E., 1972, Ultrastructure of transplantable mouse hepatomas with different growth rates, J. Natl. Cancer Inst. 49: 1039–1055.PubMedGoogle Scholar
  39. 39.
    Tsukada, H., Mochizuki, Y., Habashi, M., Gotoh, M., and Morris, H. P., 1975, Response of micro–bodies in Morris hepatoma 9618A to chlofibrate, J. Natl. Cancer Inst. 55: 153–158.PubMedGoogle Scholar
  40. 40.
    Staehelin, L. A., 1974, Structure and function of intracellular junctions, Im’. Rev. Cytol. 39: 191–278.CrossRefGoogle Scholar
  41. 41.
    Fisher, E. R., McCoy, M. M., and Wechsler, H. L., 1972, Analysis of histopathologic and electron microscopic determinants of keratoacanthoma and squamous cell carcinoma, Cancer 29: 1387–1397.PubMedCrossRefGoogle Scholar
  42. 42.
    Takaki, Y., Masuiani, M., Kawada, A., 1971, Electron microscopic study of keratoacanthoma, Arch. Derm. (Stockh) 51: 21–31.Google Scholar
  43. 43.
    Weinstein, R. S., Merk, F. B., and Alroy, J., 1976, The structure and function of intercellular junctions in cancer, Adv. Cancer Res. 23: 23–79.PubMedCrossRefGoogle Scholar
  44. 44.
    Franke, W. W., Moll, R., Mueller, H., Schmid, E., Kuha, C., Krepler, B., Artlieb, U., and Dowk, H., 1983, Immunocytochemical identification of epithelium–derived human tumors with antibodies to desmosomal plague proteins, Proc. Natl. Acad. Sci. USA 80: 543–547.PubMedCrossRefGoogle Scholar
  45. 45.
    Moll, R., Cowin, P., Kapprell, H.–P., and Franke, W. W., 1986, Desmosomal proteins: New markers for identification and classification of tumors. Lab. Invest. 54: 4–25.PubMedGoogle Scholar
  46. 46.
    Becker, F. F., 1970, The normal hepatocyte in division: regeneration of the mammalian liver, in: Progress in Liver Diseases, Vol. III ( H. Popper and F. Schaffner, eds.), pp. 60–78, Grune & Stratton, New York.Google Scholar
  47. 47.
    Yeo, K., Partent, J. B., Yeo, T.–K., and Olden, K., 1985, Variability in transport rates of secretory glycoproteins through the endoplasmic reticulum and Golgi in human hepatoma cells, J. Biol. Chem. 260: 7896–7902.PubMedGoogle Scholar
  48. 48.
    Hruban, Z., Mochizuki, Y., Slesers, A., and Moms, H. P., 1972, Endoplasmic reticulum, lipid and glycogen of Morris hepatomas, Lab. Invest. 26: 86–99.Google Scholar
  49. 49.
    Kemp, R. B., 1968, Effects of the removal of cell surface sialic acids on cell aggregation in vitro, Nature (Lond.) 218: 1255–1256.CrossRefGoogle Scholar
  50. 50.
    Roth, S., McGuire, E. J., and Roseman, S., 1971, Evidence for cell–surface glycosyltransferases. Their potential role in cellular recognition, J. Cell Biol. 51: 536–547.PubMedCrossRefGoogle Scholar
  51. 51.
    Wallach, D. F. H., 1979, Plasma membranes and Disease, Academic, New York.Google Scholar
  52. 52.
    Nicolson, G. L., 1976, Trans–membrane control of the receptors on normal and tumor cells, II. Surface changes associated with transformation and malignancy, Biochim. Biophys. Acta 458: 1–72.PubMedGoogle Scholar
  53. 53.
    Hynes, R. O., 1976, Cell surface proteins and malignant transformation, Biochim. Biophys. Acta 458: 73–107.PubMedGoogle Scholar
  54. 54.
    Hynes, R. O., 1979, Surfaces of Normal and Malignant Cells, Wiley, New York.Google Scholar
  55. 55.
    Lodish, H. F., Kong, N., Snider, M., and Strous, J. A. M., 1983, Hepatoma secretory proteins migrate from rough endoplasmic reticulum to Golgi at characteristic rates, Nature (Lund.) 304: 80–83.CrossRefGoogle Scholar
  56. 56.
    Bostrom, K., Wettesten, M., Boren, J., Bondjuers, G., Wiklund, O., and Olofsson, 5.–O, 1986, Pulse–chase studies of the synthesis and intracellular transport of apolipoprotein B–100 in Hep–G–2 cells, J. Biol. Chem. 261: 13800–13804.PubMedGoogle Scholar
  57. 57.
    Ikehara, Y., and Takahashi, K., 1983, Glycosyltransferases of the Golgi complex in relation to cell surface changes in rat hepatoma, Gann Monog. Cancer Res. 29: 221–229.Google Scholar
  58. 58.
    Bosmann, H. B., 1969, Glycolipid biosynthesis: Biosynthesis of mannose and fucose–containing glycolipids of HeLa cells, Biochim. Biophys. Acta 187: 122–132.PubMedGoogle Scholar
  59. 59.
    Steiner, S., Brennan, P. J., and Melnick, J. L., 1973, Fucosylglycolipid metabolism in oncoRNA virus–transformed cell lines, Nature New Biol. 245: 19–21.PubMedGoogle Scholar
  60. 60.
    Creek, K. E., Walter, V. P., Evers, D., Yeo, E., Elliott, W. L., Heinstein, P. F., Morré, D. M., and Morré, D. J., 1984, Sialoglycoconjugate changes during 2–acetylaminofluorene–induced hepatocarcinogenesis in the rat, Biochim. Biophys. Acta 793: 133–144.PubMedGoogle Scholar
  61. 61.
    Elliott, W. L., Sawick, D. P., Creek, K. E., Walter, V. P., Deutscher, S. L., Quinn, J. F., Yeo, E., Morré, D. M., Heinstein, P. F., Cassady, J. M., and Morré, D. J., 1984, Early biochemical alterations induced by acetylaminofluorene in rat liver, Int. J. Biochem. 16: 947–956.PubMedCrossRefGoogle Scholar
  62. 62.
    Buck, C. A., Glick, M. C., and Warren, L., 1970, A comparative study of glycoproteins from the surface of control and Rous sarcoma virus transformed hamster cells, Biochemistry 9: 4567–4576.PubMedCrossRefGoogle Scholar
  63. 63.
    Bryant, M. L., Stoner, G. D., and Metzger, R. P., 1974, Protein–bound carbohydrate content of normal and tumorous lung tissue, Biochim. Biophys. Acta 343: 226–231.PubMedCrossRefGoogle Scholar
  64. 64.
    Buck, C. A., Fuhrer, J. P., Soslau, G., and Warren, L., 1974, Membrane glycopeptides from subcellular fractions of control and virus–transformed cells, J. Biol. Chem. 249: 1541–1550.PubMedGoogle Scholar
  65. 65.
    Grimes, W. J., 1970, Sialic acid transferases and sialic acid levels in normal and transformed cells, Biochemistry 9: 5083–5092.PubMedCrossRefGoogle Scholar
  66. 66.
    Harms, E., Kreisel, W., Morris, H. D., and Reutter, W., 1973, Biosynthesis of N–acetylneuraminic acid in Morris hepatoma, Eur. J. Biochem. 32: 254–262.PubMedCrossRefGoogle Scholar
  67. 67.
    Kanwar, Y. S., Rosenzweig, L. J., Jakubowstri, M. L., and Reddy, J. K., 1983, Plasma membrane retrieval in neoplastic pancreatic acinar cells, Proc. Natl. Acad. Sci. USA 80: 6877–6881.PubMedCrossRefGoogle Scholar
  68. 68.
    Hunter, T, 1985, Oncogenes and growth control, TIBS 10: 275–280.Google Scholar
  69. 69.
    Hayman, M. J., and Beug, H., 1984, Identification of a form of the avian erythroblastosis virus erb–B gene product at the cell surface, Nature (Lond.) 309: 460–462.CrossRefGoogle Scholar
  70. 70.
    Schatzman, R. C., Evan, G. I., Privalsky, M. L., and Bishop, J. M., 1986, Orientation of the v–erb–B gene product in the plasma membrane, Mol. Cell Biol. 6: 1329–1333.PubMedGoogle Scholar
  71. 71.
    Shinitzky, M., 1984, Membrane fluidity in malignancy. Administrative and recuperative, Biochim. Biophys. Acta 738: 251–261.PubMedGoogle Scholar
  72. 72.
    Hakomori, S.—I., 1981, Glycosphingolipids in cellular interaction; Differentiation and oncogenes, Annu. Rev. Biochem. 50: 733–764.PubMedCrossRefGoogle Scholar
  73. 73.
    Morré, D. J., Kloppel, T. M., Merritt, W. D., and Keenan, T. W., 1978, Glycolipids as indicators of tumorigenesis, J. Supramol. Struct. 9: 157–177.PubMedCrossRefGoogle Scholar
  74. 74.
    Matyas, G. R., Evers, D. C., Radinsky, R., and Morré, D. J., 1986, Fibronectin binding to gangliosides and rat liver plasma membranes, Exp. Cell Res. 162: 296–318.PubMedCrossRefGoogle Scholar
  75. 75.
    Spiegel, S., and Fishman, P. H., 1987, Gangliosides as bimodal regulators of cell growth, Proc. Natl. Acad. Sci. USA 84: 141–145.PubMedCrossRefGoogle Scholar
  76. 76.
    Lowenstein, W. R., 1978, The cell–to–cell membrane channel in development and growth, in: Differention and Development, Miami Winter Symposium, Vol. 15 ( F. Ahmad, J. Schultz, T. R. Russell, and R. Wermer, eds.), pp. 399–409, Academic, New York.Google Scholar
  77. 77.
    Mullin, J. M., and O’Brien, T. G., 1986, Effects of tumor promoters on LLC–PK1 renal epithelial tight junctions and transepithelial fluxes, Am. J. Physiol. 251: C597 — C602.PubMedGoogle Scholar
  78. 78.
    Yancey, S. B., Edens, J. E., Trosko, J. E., Chang, C. C., and Revel, J. P., 1982, Decreased gap junctions between Chinese hamster V79 cells upon exposure to the tumor promoter 12–o–tetradecanoylphorbol–13–acetate. Exp. Cell Res. 139: 329–340.PubMedCrossRefGoogle Scholar
  79. 79.
    Mesnil, M., Montesano, R., and Yamasaki, H., 1986, Intracellular communication of transformed and non–transformed rat liver epithelial cells, Exp. Cell Res. 165: 391–402.PubMedCrossRefGoogle Scholar
  80. 80.
    Weatherbee, J. A., 1981, Membranes and cell movement: Interactions of membranes with the proteins of the cytoskeleton, Int. Rev. Cytol. (Suppl.) 12: 113–176.Google Scholar
  81. 81.
    Ben–Zeev, A., 1985, The cytoskeleton in cancer cells, Biochim. Biophys. Acta 780: 197–232.Google Scholar
  82. 82.
    Cohen, C. M., and Smith, D. K., 1985, Associations of cytoskeletal proteins with plasma membranes, in: The Enzymes of Biological Membranes, Vol. 1: Membrane Structure and Dynamics, 2nd ed. ( A. N. Martonosi, ed.), pp. 29–80, Plenum, New York.Google Scholar
  83. 83.
    Collett, M. S., and Erikson, R. L., 1978, Protein kinase activity associated with ovarian sarcoma virus src gene product, Proc. Natl. Acad. Sci. USA 75: 2021–2024.PubMedCrossRefGoogle Scholar
  84. 84.
    Hunter, T. and Sefton, B. M., 1980, The transforming gene product of Rous sarcoma virus phosphorylates tyrosine, Proc. Natl. Acad. Sci. USA 77: 1311–1315.PubMedCrossRefGoogle Scholar
  85. 85.
    David—Pfeuty, T., and Singer, S. J., 1980, Altered distributions of the cytoskeletal proteins vinculin and a–actinin in cultured fibroblasts transformed by Rous sarcoma virus, Proc Natl. Acad. Sci. USA 77: 6687–6691.CrossRefGoogle Scholar
  86. 86.
    Carley, W. W., Barak, L. S., and Webb, W. W., 1981, F–actin aggregates in transformed cells, J. Cell Biol. 90: 797–802.PubMedCrossRefGoogle Scholar
  87. 87.
    Shriver, K., and Rohrschneider, L., 1981, Organization of pp60sr° and selected cytoskeletal proteins within adhesion plaques and junctions of Rous sarcoma virus–transformed cells, J. Cell Biol. 89: 525–533.PubMedCrossRefGoogle Scholar
  88. 88.
    Sefton, B. M., Hunter, T., Ball, E. H., and Singer, S. J., 1981, Vinculin: A cytoskeletal target of the transforming protein of Rous sarcoma virus, Cell 24: 165–174.PubMedCrossRefGoogle Scholar
  89. 89.
    Hynes, R. 0., 1982, Phosphorylation of vinculin by pp6os«: What might it mean?, Cell 28: 437–438.PubMedCrossRefGoogle Scholar
  90. 90.
    Burger, B. P., 1987, The cytoskeletal protein vinculin contains transformation sensitive, covalently bound lipid, Science 235: 476–479.PubMedCrossRefGoogle Scholar
  91. 91.
    Singer, I. I., and Paradiso, P. R., 1981, A transmembrane relationship between fibronectin and vinculin (130 kd protein): Serum modulation in normal and transformed hamster fibroblasts, Cell 24: 481–492.PubMedCrossRefGoogle Scholar
  92. 92.
    Norton, E. K., and Issard, C. S., 1982, Fibronectin promotes formation of the close cell–to–substrate contact in cultured cells, Exp. Cell Res. 139: 463–467.PubMedCrossRefGoogle Scholar
  93. 93.
    Virtanen, I., Vartio, T., Badley, R. A., and Lehto, V. P., 1982, Fibronectin in adhesion spreading and cytoskeletal organization of cultured fibroblasts, Nature (Lond.) 298: 660–663.CrossRefGoogle Scholar
  94. 94.
    Pytela, R., Pierschbacher, M. D., and Ruoslahti, E., 1985, Identification and isolation of a 140 kd cell surface glycoprotein with properties expected of a fibronectin receptor, Cell 40: 191–198.PubMedCrossRefGoogle Scholar
  95. 95.
    Oppenheimer–Marks, N., and Grinnell, F., 1984, Calcium ions protect cell–substratum adhesion receptors against proteolysis. Evidence from immunoabsorption and electroblotting studies, Exp. Cell Res. 152: 467–475.CrossRefGoogle Scholar
  96. 96.
    Puck, T. T., 1977, Cyclic AMP, the microtubule–microfilament system, and cancer, Proc. Natl. Acad. Sci. USA 74: 4491–4495.PubMedCrossRefGoogle Scholar
  97. 97.
    Benz, E. W., 1985, Intermediate filament proteins: A molecular basis for tumor diagnostics, BioTechniques 3: 412–420.CrossRefGoogle Scholar
  98. 98.
    Fouts, J. R., and Gram, T. E., 1969, The metabolism of drugs by subfractionations of hepatic microsomes: The case for microsomal heterogeneity, in: Microsomes and Drug Oxidations ( J. R. Gillete, A. H. Conney, G. J. Cosmides, R. W. Estabrook, J. R. Fouts, and G. J. Mannering, eds.), pp. 81–91, Academic, New York.Google Scholar
  99. 99.
    Farber, E., and Cameron, R., 1980, The sequential analysis of cancer development, Adv. Cancer Res. 31: 125–226.PubMedCrossRefGoogle Scholar
  100. 100.
    Kasper, C. B., and Henton, D., 1980, in: Enzymatic Basis of Detoxification, Vol. 2 (W. B. Jakoby, ed.), pp. 4–27, Academic, New York.Google Scholar
  101. 101.
    Reddy, J. K., and Lalwani, N. D., 1983, Carcinogenesis by hepatic peroxisome proliferators: Evaluation of the risk of hypolipedemic drugs and industrial plasticizers to humans, CRC Crit. Rev. Toxicol. 12: 1–58.CrossRefGoogle Scholar
  102. 102.
    Cerotti, P. A., 1985, Peroxidant states and tumor promotion, Science 227: 375–381.CrossRefGoogle Scholar
  103. 103.
    Comporti, M., 1985, Biology of disease. Lipid peroxidation and cellular damage in toxic liver injury, Lab. Invest. 53: 599–623.PubMedGoogle Scholar
  104. 104.
    Allison, S. C., 1969, Lysosomes and cancer, in: Lysosomes in Biology and Pathology, Vol. 2 ( J. T. Dingle and H. B. Fell, eds.), pp. 178–204, North–Holland, Amsterdam.Google Scholar
  105. 105.
    Wallach, D. F. H., 1972, The Plasma Membrane: Dynamic Perspectives, Genetics and Pathology, Springer—Verlag, New York.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • D. James Morré
    • 1
  1. 1.Department of Medicinal Chemistry and PharmacognosyPurdue UniversityWest LafayetteUSA

Personalised recommendations