Advertisement

Alterations in Biochemical Control Mechanisms of Neoplastic Cells

  • Charles E. Wenner
  • Anthony Cutry

Abstract

An alteration in the regulation of cell growth underlies the basic defect in the transformed state. A primary goal is to understand the molecular mechanisms by which control of cell-cycle proliferation differs in normal versus neoplastic cells. Much attention is being paid to several areas in an effort to develop knowledge of the molecular processes involved in these changes: (1) regulation of gene expression and their messenger RNA (mRNA); (2) growth factor—receptor interactions and their subsequent messenger processes; (3) alteration in biochemical control mechanisms, including the role of ion transport in signal transduction mechanisms; and (4) changes in the bioenergetics or metabolism of the cell that contribute to the maintenance of an active proliferative cycle. Consider­able data have been obtained from experiments with cell culture, and attempts to integrate findings in relationship to the classic periods of cell cycle have been made.

Keywords

Adenylate Cyclase Amino Acid Transport Burkitt Lymphoma GTPase Activity Ehrlich Ascites Tumor Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bishop, J. M., 1987, The molecular genetics of cancer, Science 235: 305–311.PubMedCrossRefGoogle Scholar
  2. 2.
    Weinberg, R., 1985, The action of oncogenes in the cytoplasm and nucleus, Science 230: 770–776.PubMedCrossRefGoogle Scholar
  3. 3.
    Baumbach, W. R., Keath, E. J., and Cole, M. D., 1986, A mouse c-myc retrovirus transforms established fibroblast lines in vitro and induces monocyte—macrophage tumors in vivo, J. Virol. 59: 276–283.PubMedGoogle Scholar
  4. 4.
    Sporn, M. B., and Todaro, G., 1986, Autocrine secretion and malignant transforming of cells, N. Engl. J. Med. 303: 878–880.CrossRefGoogle Scholar
  5. 5.
    Foster, D. O., and Pardee, A. B., 1969, Transport of amino acids by confluent and nonconfluent 3T3 and polyoma virus-transformed 3T3 cells growing on glass cover slips, J. Biol. Chem. 244: 2675–2681.PubMedGoogle Scholar
  6. 6.
    Cunningham, D. D., and Pardee, A. B., 1969, Transport changes rapidly initiated by serum additions to “contact inhibited” 3T3 cells, Proc. Natl. Acad. Sci. USA 64: 1049–1056.PubMedCrossRefGoogle Scholar
  7. 7.
    Isselbacher, K. J., 1972, Increased uptake of amino acids and 2-deoxy-d-glucose by virus-transformed cells in culture, Proc. Natl. Acad. Sci. USA 69: 585–589.PubMedCrossRefGoogle Scholar
  8. 8.
    Boemer, P., and Saier, M., 1982, Growth regulation and amino acid transport in epithelial cells: Influence of culture conditions and transformation on A, ASC, L transport activities, J. Cell. Physiol. 113: 240–246.CrossRefGoogle Scholar
  9. 9.
    Boemer, P., and Racker, E., 1985, Methionine-sensitive glycolysis in transformed cells, Proc. Natl. Acad. Sci. USA 82: 6750–6754.CrossRefGoogle Scholar
  10. 10.
    Boemer, P., and Saier, M. H., Jr., 1985, Adaptive regulatory control of system A transport activity in a kidney epithelial cell line (MDCK) and in a transformed variant (MDCK-T1), J. Cell Physiol. 122: 308315.Google Scholar
  11. 11.
    Boemer, P., Resnick, R., and Racker, E., 1985, Stimulation of glycolysis and amino acid uptake in NRK-49F cells by transforming growth factor, Proc. Natl. Acad. Sci. USA 82: 1350–1353.CrossRefGoogle Scholar
  12. 12.
    Heinz, A., Jackson, J. W., Richey, B. E., Sachs, G., and Schaefer, J. A., 1981, Amino acid active transport and stimulation by substrates in the absence of a Na+ electrochemical potential gradient, J. Membrane Biol. 62: 149–160.CrossRefGoogle Scholar
  13. 13.
    Zibirre, R., Poronnik, P., and Koch, G., 1986, Nadependent amino transport is a major factor determining the rate of (Na+/K+)ATPase mediated cation transport in intact HeLa cells, J. Cell. Physiol. 129: 85–93.PubMedCrossRefGoogle Scholar
  14. 14.
    Guidotti, G. G., Gazzola, G. C., Borghetti, A. F., and Franchi-Gazzola, R., 1975, Adaptive regulation of amino acid transport across the cell membrane in avian and mammalian tissues, Biochim. Biophys. Acta 406: 264–275.PubMedCrossRefGoogle Scholar
  15. 15.
    Mendoza, S. A., Wigglesworth, N. M., Pohjanpelto, P., and Rozengurt, E., 1980, Na entry and Na–K pump activity in murine, hamster, and human cells—Effect of monensin, serum, platelet extract, and viral transformation, J. Cell. Physiol. 103: 17–27.PubMedCrossRefGoogle Scholar
  16. 16.
    Gadsby, D. C., Kimura, J., and Noma, A., 1985, Voltage dependence of Na/K pump current in isolated heart cells, Nature (Lond.) 315: 63–65.CrossRefGoogle Scholar
  17. 17.
    Bashford, C. L., and Pastemak, C. A., 1986, Plasma membrane potential of some animal cells is generated by ion pumping, not by ion gradients, Trends Biol. Sci. 11: 113–116.CrossRefGoogle Scholar
  18. 18.
    Leister, K. J., Schenerman, M. A., and Racker, E., 1988, Energetic mechanisms of System A transport in normal and transformed fibroblasts, J. Cell. Physiol. 135: 163–168.PubMedCrossRefGoogle Scholar
  19. 19.
    Graves, J. S., and Wheeler, D. D., 1982, Increase in K+ and a-AIB active transport after low (K+) treatment, Am. J. Physiol. 243:C124–130.Google Scholar
  20. 20.
    Kimelberg, H., and Mayhew, E., 1975, Increased ouabain-sensitive 86Ró+ uptake and sodium and potassium ion-activated adenosine triphosphatase activity in transformed cell lines, J. Biol. Chem. 250: 100–104.PubMedGoogle Scholar
  21. 21.
    Tupper, J. T., 1977, Variation in potassium transport properties of mouse 3T3 cells as a result of subcultivation, J. Cell. Physiol. 93: 303–308.PubMedCrossRefGoogle Scholar
  22. 22.
    Leister, K. J., Tomei, L. D., and Wenner, C. E., 1985, Correlation of ion movements with cell cycle activation, Proc. Natl. Acad. Sci. USA 82: 1599–1603.PubMedCrossRefGoogle Scholar
  23. 23.
    Mitchison, J. M., 1971, The Biology of the Cell Cycle, Cambridge University Press, England.Google Scholar
  24. 24.
    Hacking, C., and Eddy, A. A., 1981, The accumulation of amino acids by mouse ascites-tumour cells, Biochem. J. 194: 415–426.PubMedGoogle Scholar
  25. 25.
    Pestka, S., 1971, Protein biosynthesis: Mechanism, requirements and potassium-dependency, in: Membranes and Ion Transport ( E. E. Bittar, ed.), pp. 279–296, Wiley, New York.Google Scholar
  26. 26.
    Moldave, K., 1985, Eukaryotic protein synthesis, Annu. Rev. Biochem. 54: 1109–1149.PubMedCrossRefGoogle Scholar
  27. 27.
    Suolinna, E-M., Lang, D., and Racker, E., 1974, Quercetin, an artificial regulator of the high aerobic glycolysis of tumor cells, J. Natl. Cancer Inst. 53: 1515–1519.PubMedGoogle Scholar
  28. 28.
    Benade, L. E., Talbot, N., Tagliaferri, P., Hardy, C., Card, J., Noda, M., Najam, N., and Bassin. R., 1986, Ouabain sensitivity is linked to ras-transformation in human HOS cells, Biochem. Biophys. Res. Commun. 136: 807–814.PubMedCrossRefGoogle Scholar
  29. 29.
    Lelievre, L. G., Potter, J. D., Piascik, M., Wallick, E. T., Schwartz, A., Charlemagne, D., and Geny, B., 1985, Specific involvement of calmodulin and non-specific effect of tropomyosin in the sensitivity to ouabain of Na +,K + -ATPase in murine plasmacytoma cells, Eur. J. Biochem. 148: 13–19.PubMedCrossRefGoogle Scholar
  30. 30.
    Lin, J. J., Yamashiro-Matsumura, S., and Matsumura, F., 1984, Microfilaments in normal and transformed cells: Changes in the multiple forms of tropomyosin, in: Cancer Cells/The Transformed Phenotype ( A. Levine, G. Vande Woude, W. Topp, and J. D. Watson, eds.), pp. 57–65, Cold Spring Harbor Laboratory, New York.Google Scholar
  31. 31.
    Cooper, H. L., Feuerstein, N., Noda, M., and Bassin, R., 1985, Suppression of tropomyosin synthesis, acommon biochemical feature of oncogenesis by structurally diverse retroviral oncogenes, Mol. Cell. Biol. 5:972–983.Google Scholar
  32. 32.
    Matsumura, F., and Yamashiro-Matsamura, S., 1986, Modulation of actin-bundling activity of 55-kDa protein by multiple isoforms of tropomyosin, J. Biol. Chem. 261: 4655–4659.PubMedGoogle Scholar
  33. 33.
    Racker, E., Resnick, R. J., and Feldman, R., 1985, Glycolysis, and methylaminoisobutyrate uptake in rat-1 cells transfected with ras or myc oncogenes, Proc. Natl. Acad. Sci. USA. 82: 3535–3538.PubMedCrossRefGoogle Scholar
  34. 34.
    Racker, E., 1985, Reconstitution of Transporters, Receptors, and Pathological States, Academic, New York.Google Scholar
  35. 35.
    Balaban, B. S., and Bader, J. P., 1983, The efficiency of (Na +/K+)-ATPase in tumorigenic cells, Biochim. Biophys. Acta 730: 271–275.Google Scholar
  36. 36.
    Gibbs, J. B., Ellis, R. W., and Scolnick, E. M., 1979, Autophosphorylation of v-Ha-ras p21 is modulated by amino acid residue 12, Proc. Natl. Acad. Sci. USA 81: 2674–2678.CrossRefGoogle Scholar
  37. 37.
    Lau, L. F., and Nathans, D., 1987, Expression of a set of growth-related immediate early genes in BALB/3T3 cells: Coordinate regulation with c-fos or c-myc, Proc. Natl. Acad. Sci. USA 84: 1182–1186.PubMedCrossRefGoogle Scholar
  38. 38.
    Pollard, T. D., and Craig, S. W., 1982, Mechanism of actin polymerization, Trends Biol. Sci. 7: 5558.CrossRefGoogle Scholar
  39. 39.
    Jesaitis, A. J., Tolley, J. O., and Allen, R. A., 1986, Receptor—cytoskeleton interactions and membrane traffic may regulate chemoattractant-induced superoxide production in human granulocytes, J. Biol. Chem. 261: 13662–13669.PubMedGoogle Scholar
  40. 40.
    Weinhouser, S.. 1956, On respiratory impairment in cancer cells, Science 124: 267–268.CrossRefGoogle Scholar
  41. 41.
    Wenner, C. E., 1975, Regulation of energy metabolism in normal and tumor tissue, in: Cancer: A Comprehensive Treatise, Vol. 3 ( F. F. Becker, ed.), pp. 389–401, Plenum, New York.Google Scholar
  42. 42.
    Parlo, R. A., and Coleman, P. S., 1984, Enhanced rate of citrate export from cholesterol-rich hepatoma mitochondria, J. Biol. Chem. 259: 9997–10003.PubMedGoogle Scholar
  43. 43.
    Sauer, L., Dauchy, R. T., Nagel, W. O., and Morris, H., 1980, Mitochondrial malic enzymes, J. Biol. Chem. 255: 3844–3848.PubMedGoogle Scholar
  44. 44.
    Fiskum, G., and Pease, A., 1986, Hydroperoxide-stimulated release of calcium from rat liver and AS-30D hepatoma mitochondria, Cancer Res. 46: 3459–3463.PubMedGoogle Scholar
  45. 45.
    Moreadith, R. W., and Lehninger, A. L., 1984, The pathways of glutamate and glutamine oxidation by tumor cell mitochondria, J Biol. Chem 259: 6215–6221.PubMedGoogle Scholar
  46. 46.
    Yu, C-L., Tsai, M-H., and Stacey, D. W., 1988, Cellular ras activity and phospholipid metabolism, Cell 52: 63–71.PubMedCrossRefGoogle Scholar
  47. 47.
    Macara, I., 1985, Oncogenes, ions and phospholipids, Am. J. Physiol. 249: C3 — C11.Google Scholar
  48. 48.
    Weinberger, C., Thompson, C. C, Ong, E. S., Lebo, R., Gruol, D. J., and Evans, R. M., 1986, The cerb-A gene encodes a thyroid hormone receptor, Nature (Lond.) 324: 641–646.CrossRefGoogle Scholar
  49. 49.
    Loew, D. G., Capon, D. J., Delwart, E., Sakaguchi, A. Y., Naylor, S. L., and Goeddel, D. V., 1987, Structure of the human and murine R-ras genes, novel genes closely related to ras proto-oncogenes, Cell 48: 137–146.CrossRefGoogle Scholar
  50. 50.
    Gilman, A. G., 1984, G proteins and dual control of adenylate cyclase, Cell 36: 577–579.PubMedCrossRefGoogle Scholar
  51. 51.
    Robinson, C. L., Gibbs, J. B., Marshall, M. S., Sigal, I. S., and Tatchell, K.. 1987, CDC25: A component of the RAS-adenylate cyclase pathway in Saccharomyces cerevisiae, Science 235: 1218–1221.PubMedCrossRefGoogle Scholar
  52. 52.
    Boynton, A. L., and Whitfield, J. F., 1983, The role of cyclic AMP in cell proliferation: A critical assessment of the evidence, Adv. Cyclic Nucleotides Res. 15: 193–294.Google Scholar
  53. 53.
    Sweet, R. W., Yokoyama, S., Kamata, T., Feramisco, J. R., Rosenberg, M., and Gross, M., 1984, The product of ras is a GTPase and the T24 oncogenic mutant is deficient in this activity, Nature (Lond.) 311: 273–275.CrossRefGoogle Scholar
  54. 54.
    Gibbs, J. B., Sigal, I. S., Poe, M., and Scolnick, E. M., 1984, Intrinsic GTPase activity distinguishes normal and oncogenic ras p21 molecules, Proc. Natl. Acad. Sci. USA 81: 5704–5708.PubMedCrossRefGoogle Scholar
  55. 55.
    McCormick, F., Trahey, M., Rubinfeld, B., Wong, G., and Adari, H., 1988, Control of ras p21 GTPase activity by a cellular protein, J. Cell. Biochem. Suppl. 12A, Abstracts of the UCLA Symposia on Molecular and Cellular Biology, abst. C732, p. 170.Google Scholar
  56. 56.
    Taparowsky, E., Shimizu, K., Goldfarb, M., and Wigler, M.. 1983, Structure and activation of the human N-ras gene, Cell 34: 581–586.PubMedCrossRefGoogle Scholar
  57. 57.
    Santos, E., Tronick, S. R., Aaronson, S. A., Pulciani, S., and Barbacid, M., 1982, T24 human bladder carcinoma oncogene is an activated form of the normal human homologue of BALB- and Harvey-MSV transforming genes, Nature (Lond.) 298: 343–347.CrossRefGoogle Scholar
  58. 58.
    Tabin, C. J., Bradley, S. M., Bargmann, C. I., Weinberg, R. A., Papageorge, A. G., Scolnick, E. M., Dahr, R., Lowy, D. R., and Chang, E. H., 1982, Mechanism of activation of a human oncogene, Nature (Lond.) 300: 143–149.CrossRefGoogle Scholar
  59. 59.
    Yuasa, Y., Srivastava, S. K., Dunn, C. Y., Rhim, J. S., Reddy, E. P., and Aaronson, S. A., 1983, Acquisition of transforming properties by alternative point mutations within c-bas/has human proto-oncogene, Nature (Lond.) 303: 775–779.CrossRefGoogle Scholar
  60. 60.
    Capon, D. J., Seeburg, P. H., McGrath, J. P., Hayflick, J. S., Edman, U., Levinson, A. D., and Goeddel, D. V., 1983, Activation of Ki-ras2 gene in human colon and lung carcinomas by two different point mutations, Nature (Lond.) 304: 507–513.CrossRefGoogle Scholar
  61. 61.
    Quintanilla, M., Brown, K., Ramsden, M., and Balmain, A., 1986, Carcinogen-specific mutation and amplification of Ha-ras during mouse skin carcinogenesis, Nature (Lond.) 322: 78–80.CrossRefGoogle Scholar
  62. 62.
    Newbold, R., 1984, Mutant ras proteins and cell transformation, Nature (Lond.) 310: 628–629.CrossRefGoogle Scholar
  63. 63.
    Beckner, S. K., Hattori, S., and Shih, T. Y., 1985, The ras oncogene product is not a regulatory component of adenylate cyclase, Nature (Lond.) 317: 71–72.CrossRefGoogle Scholar
  64. 64.
    Franks, D. J., Whitfield, J. F., and Durkin, J. P., 1985, The mitogenic/oncogenic p21 Ki-ras protein stimulates adenylate cyclase activity early in the G, phase of NRK rat kidney cells, Biochem. Biophys. Res. Commun. 132: 780–786.PubMedCrossRefGoogle Scholar
  65. 65.
    Litosch, I., Wallis, C., and Fain, J. N., 1985, 5-Hydroxytryptamine stimulates inositol phosphate production in a cell-free system from blowfly salivary glands, J. Biol. Chem. 260: 5464–5471.Google Scholar
  66. 66.
    Houslay, D. A., Bojanic, D., and Wilson, A., 1986, Platelet activating factor and U44069 stimulate a GTPase activity in human platelets which is distinct from the guanine nucleotide regulatory proteins, Ns and N;, Biochem. J. 234: 737–740.PubMedGoogle Scholar
  67. 67.
    Wolfman, A., and Macara, I. G., 1987, Elevated levels of diacylglycerol and decreased phorbol ester sensitivity in ras-transformed fibroblasts, Nature (Lond.) 325: 359–361.CrossRefGoogle Scholar
  68. 68.
    Lacal, J. C., Fleming, T. P., Warren, B. S., Blumberg, P. M., and Aaronson, S. A., 1987, Involvement of functional protein kinase C in the mitogenic response to the H-ras oncogene product, Mol. Cell. Biol. 7: 4146–4149.PubMedGoogle Scholar
  69. 69.
    Yatani, A., Codina, J., Imoto, Y., Reeves, J. P., Birnbaumer, L., and Brown, A. M., 1987, A G protein directly regulates mammalian cardiac calcium channels, Science 239: 1288–1292.CrossRefGoogle Scholar
  70. 70.
    Sawey, M. J., Hood, A. T., Burns, F. J., and Garte, S. J., 1987, Activation of c-myc and c-K-ras oncogenes in primary rat tumors induced by ionizing radiation, Mol. Cell. Biol. 7: 932–935.PubMedGoogle Scholar
  71. 71.
    Guerrero, I., Calzada, P., Mayer, A., and Pellicer, A., 1984, A molecular approach to leukemogenesis: Mouse lymphomas contain an activated c-ras oncogene, Proc. Natl. Acad. Sci. USA 81: 202–205.PubMedCrossRefGoogle Scholar
  72. 72.
    Cichutek, K., and Duesberg, P. H., 1986, Harvey ras genes transform without mutant codons, apparently activated by truncation of a 5’ (exon-1), Proc. Natl. Acad. Sci. USA 83: 2340–2344.PubMedCrossRefGoogle Scholar
  73. 73.
    deVos, A. M., Tong, L., Milburn, M. V., Matias, P. M., Jancarik, J., Noguchi, S., Nishimura, S., Miura, K., Ohtsuka, E., and Kim, S-H., 1988, Three-dimensional structure of an oncogene protein: Catalytic domain of human c-H-ras p21, Science 239: 888–893.CrossRefGoogle Scholar
  74. 74.
    DeLarco, J. E., and Todaro, G. J., 1978, Growth factors from murine sarcoma virus-transformed cells, Proc. Natl. Acad. Sci. USA 75: 4001–4005.CrossRefGoogle Scholar
  75. 75.
    Derynck, R., 1986, Transforming growth factor-a: Structure and biological activities, J. Cell. Biochem. 32: 293–304.PubMedCrossRefGoogle Scholar
  76. 76.
    Anzano, M. A., Roberts, A. B., Smith, J. M., Sporn, M. B., and DeLarco, J. E., 1983, Sarcoma growth factor from conditioned medium of virally transformed cells is composed of both type and transforming growth factors, Proc. Natl. Acad. Sci. USA 80: 6264–6268.PubMedCrossRefGoogle Scholar
  77. 77.
    Kaplan, P. L., Anderson, M., and Ozanne, B., 1982, Transforming growth factor(s) production enables cells to grow in the absence of serum: An autocrine system, Proc. Natl. Acad. Sci. USA 79: 485–489.PubMedCrossRefGoogle Scholar
  78. 78.
    Marshall, C. J., Vousden, K., and Ozanne, B, 1985, The involvement of activated ras genes in determining the transformed phenotype, Proc. R. Soc. Lond. 226: 99–106.PubMedCrossRefGoogle Scholar
  79. 79.
    Massague, J., 1987, The transforming growth factors, in: Oncogenes and Growth Factors ( R. A. Bradshaw and S. Prentis, eds.), pp. 157–163, Elsevier, New York.Google Scholar
  80. 80.
    Coffey, R. J., Jr., Derynck, R., Wilcox, J. N., Bringman, T. S., Goustin, A. S., Moses, H. L., and Pittelkow, M. R., 1987, Production and auto-induction of transforming growth factor alpha in human keratinocytes, Nature (Lond.) 328: 817–820.CrossRefGoogle Scholar
  81. 81.
    Marquardt, H., Hunkapiller, M. A., Hood, L. E., and Todaro, G. J., 1984, Rat transforming growth factor type 1: Structure and relation to epidermal growth factor, Science 223: 1079–1082.PubMedCrossRefGoogle Scholar
  82. 82.
    Twardzik, D. R., Kimball, E. S., Sherwin, S. A., Ranchalis, J. E., and Todaro, G. J., 1985, Comparison of growth factors functionally related to epidermal growth factor in the urine of normal and human tumor bearing athymic mice, Cancer Res. 45: 1934–939.PubMedGoogle Scholar
  83. 83.
    Lee, D. C., Rose, T. M., Webb, N. R., and Todaro, G. J., 1985, Cloning and sequence analysis of a cDNA for rat transforming growth factor-a, Nature (Lond.) 313: 489–491.CrossRefGoogle Scholar
  84. 84.
    Derynck, R., Goeddel, D. V., Ullrich, A., Gutterman, J. U., Williams, R. D., Bringman, T. S., and Berger, W. H., 1987, Synthesis of messenger RNAs for transforming growth factors and the epidermal growth factor receptor by human tumors, Cancer Res. 47: 707–712.PubMedGoogle Scholar
  85. 85.
    Watt, R., Stanton, L. W., Marcu, K. B., Gallo, R. C., Croce, C. M., and Rovera, G., 1983, Nucleotide sequence of cloned cDNA of human c-myc oncogene, Nature (Lond.) 303: 725–728.CrossRefGoogle Scholar
  86. 86.
    Marcu, K. B., 1987, Regulation of expression of the c-myc proto-oncogene, BioEssays 6: 28–32.Google Scholar
  87. 87.
    Studzinski, G. P., Brelvi, Z. S., Feldman, S. C., and Watt, R. A., 1986, Participation of c-myc protein in DNA synthesis of human cells, Science 234: 467–470.PubMedCrossRefGoogle Scholar
  88. 88.
    Spector, D. L., Watt, R. A., and Sullivan, N. F., 1987, The v-and c-myc oncogene proteins colocalize in situ with small nuclear ribonucleoprotein particles, Oncogene 1: 5–12.PubMedGoogle Scholar
  89. 89.
    Kelly, K., Cochran, B. H., Stiles, C. D., and Leder, P., 1983, Cell-specific regulation of the c-myc gene by lymphocyte mitogens and platelet-derived growth factor, Cell 35: 603–610.PubMedCrossRefGoogle Scholar
  90. 90.
    Varmus, H. E., 1984, The molecular genetics of cellular oncogenes, Annu. Rev. Genet. 18: 553–612.PubMedCrossRefGoogle Scholar
  91. 91.
    Klein, G., 1983, Specific chromosomal translocations and the genesis of B-cell derived tumors in mice and men, Cell 32: 311–315.PubMedCrossRefGoogle Scholar
  92. 92.
    Marcu, K. B., Harris, L. J., Stanton, L. W., Erikson, J., Watt, R., and Croce, C. M., 1983, Transcriptionally active c-myc oncogene is contained within NIARD, a DNA sequence associated with chromosomal translocations in B-cell neoplasia, Proc. Natl. Acad. Sci. USA 80: 519–523.PubMedCrossRefGoogle Scholar
  93. 93.
    Campisi, J., Gray, H. E., Pardee, A. B., Dean, M., and Sonenshein, G. E., 1984, Cell-cycle control of cmyc but not c-ras expression is lost following chemical transformation, Cell 36: 241–247.PubMedCrossRefGoogle Scholar
  94. 94.
    Thompson, C. B., Challoner, P. B., Neiman, P. E., and Groudine, M., 1985, Levels of c-myc oncogene mRNA are invariant throughout the cell cycle, Nature (Lond.) 314: 363–366.CrossRefGoogle Scholar
  95. 95.
    Croce, C. M., 1986, Chromosomal translocations and human cancer, Cancer Res. 46: 6019–6023.PubMedGoogle Scholar
  96. 96.
    Croce, C. M., Shander, M., Martinis, J., Cicurel, L., D’Ancona, G. G., Dolby, T. W., and Koprowski, H., 1979, Chromosomal location of the genes for human immunoglobulin heavy chains, Proc. Natl. Acad. Sci. USA 76: 3416–3419.PubMedCrossRefGoogle Scholar
  97. 97.
    Erikson, J., Martinis, J., and Croce, C. M., 1981, Assignment of the genes for human immunoglobulin chains to chromosome 22, Nature (Lond.) 294: 173–175.CrossRefGoogle Scholar
  98. 98.
    McBride, O. W., Hieter, P. A., Hollis, G. F., Swan, D., Otey, M. C., and Leder, P., 1982, Chromosomal location of human kappa and lambda immunoglobulin light chain constant regions, J. Exp. Med. 155:1480–1490.Google Scholar
  99. 99.
    Erikson, J., ar-Rushdi, A., Drwinga, H. L., Nowell, P. C., and Croce, C. M., 1983, Transcriptional activation of the translocated c-myc oncogene in Burkitt lymphoma, Proc. Natl. Acad. Sci. USA 80: 810824.Google Scholar
  100. 100.
    Dalla-Favera, R., Martinotti, S., Gallo, R. C., Erikson, J., and Croce, C. M., 1983, Translocation and rearrangements of the c-myc oncogene locus in human undifferentiated B-cell lymphomas, Science 219: 963–967.PubMedCrossRefGoogle Scholar
  101. 101.
    Klein, G., and Klein, E., 1985, Evolution of tumors and the impact of molecular oncology, Nature (Lond.) 315: 190–195.CrossRefGoogle Scholar
  102. 102.
    Croce, C. M., Thierfelder, W., Erikson, J., Nishikura, K., Finan, J., Lenoir, G. M., and Nowell, P. C., 1983, Transcriptional activation of an unrearranged and untranslocated c-myc oncogene by translocation of a C locus in Burkitt lymphoma cells, Proc. Natl. Acad. Sci. USA 80: 6922–6926.PubMedCrossRefGoogle Scholar
  103. 103.
    Erikson, J., Nishikura, K., ar-Rushdi, A., Finan, J., Emanuel, B., Lenoir, G., Nowell, P. C., and Croce, C. M., 1983, Translocation of an immunoglobulin k locus to a region 3’ of an unrearranged c-myc oncogene enhances c-myc transcription, Proc. Natl. Acad. Sci. USA 80: 7581–7585.PubMedCrossRefGoogle Scholar
  104. 104.
    Emanuel, B. S., Selden, J. R., Chaganti, R. S. K., Jhanwar, S., Nowell, P. C., and Croce, C. M., 1984, The 2p breakpoint of a 2;8 translocation in Burkitt lymphoma interrupts the Vk locus, Proc. Natl. Acad. Sci. USA 81: 2444–2446.PubMedCrossRefGoogle Scholar
  105. 105.
    Nishikura, K., ar-Rushdi, A., Erikson, J., Watt, R., Rovera, G., and Croce, C. M., 1983, Differential expression of the normal and of the translocated human c-myc oncogenes in B cells, Proc. Natl. Acad. Sci. USA 80: 4822–4826.PubMedCrossRefGoogle Scholar
  106. 106.
    Leder, P., Battey, J., Lenoir, G., Moulding, C., Murphy, W., Potter, H., Stewart, T., and Taub, R., 1983, Translocations among antibody genes in human cancer, Science 222: 765–771.PubMedCrossRefGoogle Scholar
  107. 107.
    Nishikura, K., ar-Rushdi, A., Erikson, J., DeJesus, E., Dugan, D., and Croce, C. M., 1984, Repression of rearranged gene and translocated c-myc in mouse 3T3 cells x Burkitt lymphoma cell hybrids, Science 224: 399–402.PubMedCrossRefGoogle Scholar
  108. 108.
    Feo, S., Harvey, R., Showe, L., and Croce, C. M., 1986, Regulation of translocated c-myc genes transfected into plasmacytoma cells, Proc. Natl. Acad. Sci. USA 83: 706–709.PubMedCrossRefGoogle Scholar
  109. 109.
    Cesarman, E., Dalla-Favera, R., Bentley, D., and Groudine, M., 1987, Mutations in the first exon are associated with altered transcription of c-myc in Burkitt lymphoma, Science 238: 1272–1275.PubMedCrossRefGoogle Scholar
  110. 110.
    Stanton, L. W., Watt, R., and Marcu, K. B., 1983, Translocation, breakage and truncated transcripts of cmyc oncogene in murine plasmacytomas, Nature (Lond.) 303: 401–406.CrossRefGoogle Scholar
  111. 111.
    Piechaczyk, M., Yang, J. Q., Blanchard, J. M., Jeanteur, P., and Marcu, K. B., 1985, Posttranscriptional mechanisms are responsible for accumulation of truncated cmyc RNAs in murine plasma cell tumors, Cell 42: 589–597.PubMedCrossRefGoogle Scholar
  112. 112.
    Blanchard, J. M., Piechaczyk, M., Dani, C., Chambard, J. C., Franchi, A., Pouyssegur, J., and Jeanteur, P., 1985, c-myc gene is transcribed at high rate in Go-arrested fibroblasts and is post-transcriptionally regulated in response to growth factors, Nature (Lond.) 317: 443–445.Google Scholar
  113. 113.
    Ray, D., Meneceur, P., Tavitian, A., and Robert-Lezenes, J., 1987, Presence of a c-myc transcript initiated in intron 1 in Friend erythroleukemia cells and in other murine cell types with no evidence of cmyc gene rearrangement, Mol. Cell. Biol. 7: 940–945.PubMedGoogle Scholar
  114. 114.
    Nepveu, A., Levine, R. A., Campisi, J., Greenberg, M. E., Ziff, E. B., and Marcu, K. B., 1987, Alternative modes of c-myc regulation in growth factor-stimulated and differentiating cells, Oncogene 1: 243–250.PubMedGoogle Scholar
  115. 115.
    Langdon, W. Y., Harris, A. W., Cory, S., and Adams, J. M., 1986, The c-myc oncogene perturbs B lymphocyte development in Eµ-myc transgenic mice, Cell 47: 11–18.PubMedCrossRefGoogle Scholar
  116. 116.
    Jones, T. R., and Cole, M. D., 1987, Rapid cytoplasmic turnover of c-myc mRNA: Requirement of the 3’ untranslated sequences, Mol. Cell. Biol. 7: 4513–4521.PubMedGoogle Scholar
  117. 117.
    Swartwout, S. G., Preisler, H., Guan, W., and Kinniburgh, A. J., 1987, Relatively stable population of cmyc RNA that lacks long poly(A), Mol. Cell. Biol. 7: 2052–2058.PubMedGoogle Scholar
  118. 118.
    Friend, S. H., Dryja, T. P., and Weinberg, 1988, Oncogenes and tumor-suppressing genes, N. Engl. J. Med. 318: 618–622.PubMedCrossRefGoogle Scholar
  119. 119.
    Harbour, J. W., Lai, S., Whang-peng, J., Gazdar, A. F., Minna, J. D., and Kaye, F. J., 1988, Abnormalities in structure and expression of the human retinoblastoma gene in SCLC, Science 241: 353–357.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Charles E. Wenner
    • 1
  • Anthony Cutry
    • 1
  1. 1.Biological Chemistry DivisionRoswell Park Memorial InstituteBuffaloUSA

Personalised recommendations