Activation of Oncogenes by Chemical Carcinogens

  • Marshall W. Anderson
  • Steven H. Reynolds


Increasing evidence suggests that a small set of cellular genes appear to be targets for genetic alterations that contribute to the neoplastic transformation of cells. These genes, termed protooncogenes, appear to play a crucial role in normal cellular growth or differentiation since they are highly conserved in nature, being detected in species as divergent as yeast, Drosophila, and humans. Recent identification of a number of these genes as encoding for putative growth factors (sis,hst, int-2), growth factor receptors (neu, erb B, fms), proteins involved in the regulation of transmembrane signal transduction (ras), nuclear regulatory proteins (myc, myb, fos, jun), tyrosine kinases (src) and serine/threonine kinases (raf, mos) has served to substantiate this idea.


Acute Myeloid Leukemia Cellular Oncogene Rodent Tumor Skin Papilloma Acute Myeloid Leuke 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Land, H., Parada, L., and Weinberg, R. A., 1983, Cellular oncogenes and multistep carcinogenesis, Science 44: 771–778.CrossRefGoogle Scholar
  2. 2.
    Varmus, H. E., 1984, The molecular genetics of cellular oncogenes, Annu. Rev. Genet. 18: 553–612.PubMedCrossRefGoogle Scholar
  3. 3.
    Bishop, J. M., 1985, Viral oncogenes, Cell 42: 23–38.PubMedCrossRefGoogle Scholar
  4. 4.
    Weinberg, R. A., 1985, The action of oncogenes in the cytoplasm and nucleus, Science 230: 770–776.PubMedCrossRefGoogle Scholar
  5. 5.
    Bishop, J. M., 1987, The molecular genetics of cancer, Science 235: 305–311.PubMedCrossRefGoogle Scholar
  6. 6.
    Balmain, A., Ramsden, M., Bowden, G. T., and Smith, J., 1984, Activation of the mouse cellular Harvey-ras gene in chemically induced benign skin papillomas, Nature (Lond.) 307: 658–660.CrossRefGoogle Scholar
  7. 7.
    Guerrero, I., Villasante, A., Corces, V., and Pellicer, A., 1984, Activation of the c-K-ras oncogene by somatic mutation in mouse lymphomas induced by gamma radiation, Science 225: 1159–1162.PubMedCrossRefGoogle Scholar
  8. 8.
    Zarbl, H., Sukumar, S., Arthur, A. V., Martin-Zanca, D., and Barbacid, M., 1985, Direct mutagenesis of H-ras-I oncogenes by nitroso-methylurea during initiation of mammary carcinogenesis in rats, Nature (Lond.) 315: 382–385.CrossRefGoogle Scholar
  9. 9.
    Bizub, D., Wood, A. W., and Skalka, A. M., 1986, Mutagenesis of the Ha-ras oncogene in mouse skin tumors induced by polycyclic aromatic hydrocarbons, Proc. Natl. Acad. Sci. USA 83: 6048–6052.PubMedCrossRefGoogle Scholar
  10. 10.
    Brodeur, G. M., Seeger, R. C., Schwab, M., Varmus, H. E., and Bishop, J. M., 1984, Amplification of N-myc in untreated neuroblastomas correlates with advanced disease stage, Science 224: 1121–1124.PubMedCrossRefGoogle Scholar
  11. 11.
    Seeger, R. C., Brodeur, G. M., Sather, H., Dalton, A., Siegel, S. E., Wong, K. Y., and Hammond, D., 1985, Association of multiple copies of the N-myc oncogene with rapid progression of neuroblaste, N. Engl. J. Med. 313: 1111–1116.PubMedCrossRefGoogle Scholar
  12. 12.
    Vousden, K. H., and Marshall, C. J., 1984, Three different activated ras genes in mouse tumors; evidence for oncogene activation during progression of a mouse lymphoma, EMBO J. 3: 913–917.PubMedGoogle Scholar
  13. 13.
    Tainsky, M. A., Cooper, C. S., Giovanella, B. C., and Vande Woude, G. F., 1984, An activated N-ras gene: Detected in late but not early passage human PA1 teratocarcinoma cells, Science 225: 643–645.PubMedCrossRefGoogle Scholar
  14. 14.
    Land, H., Parada, L. F., and Weinberg, R. A., 1983, Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes, Nature (Land.) 304: 596–602.CrossRefGoogle Scholar
  15. 15.
    Spandidos, D. A., and Wilkie, N. M., 1984, Malignant transformation of early passage rodent cells by a single mutated oncogene, Nature (Lond.) 310: 469–475.CrossRefGoogle Scholar
  16. 16.
    Barrett, J. C., Oshimura, M., and Koi, M., 1987, Role of oncogenes and tumor supressant genes in a multistep model of carcinogenesis, in: Symposium on Fundamental Cancer Research, Vol. 38 (F. Becker, ed.), pp. 45–56.Google Scholar
  17. 17.
    Gazdar, A. F., Camey, D. N., Nau, M. M., and Minna, J. D., 1985, Characterization of variant subclasses of cell lines derived from small cell lung cancer having distinctive biochemical, morphological, and growth properties, Cancer Res. 45: 2924–2930.PubMedGoogle Scholar
  18. 18.
    Escot, C., Theillet, C., Lidereau, R., Spyratos, F., Champema, M. H., Gest, J., and Callahan, R., 1986, Genetic alteration of the c-myc proto-oncogene (MYC) in human primary breast carcinomas, Proc. Natl. Acad. Sci. USA 83: 4834–4838.PubMedCrossRefGoogle Scholar
  19. 19.
    Barletta, C., Pelicci, P-G., Kenyon, L. C., Smith, S. D., and Dalla-Favera, R., 1987, Relationship between the c-myb locus and the 6q-chromosomal aberration in leukemias and lymphomas, Science 235: 1064–1067.PubMedCrossRefGoogle Scholar
  20. 20.
    Slamon, D. J., Clark, G. M., Wong, S. G., Levin, W. J., Ullrich, A., and McGuire, W. L., 1987, Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene, Science 235: 177–182.PubMedCrossRefGoogle Scholar
  21. 21.
    Konopka, J. B., Watanabe, S. M., and Witte, O. N., 1984, An alteration of the human c-abl protein in K562 leukemia cells unmasks associated tyrosine kinase activity, Cell 37: 1035–1042.PubMedCrossRefGoogle Scholar
  22. 22.
    Shtivelman, E., Lifshitz, B., Gale, R. P., and Canaani, E., 1985, Fused transcript of abl and ber genes in chronic myelogenous leukaemia, Nature (Land.) 315: 550–554.CrossRefGoogle Scholar
  23. 23.
    Konopka, J. B., Clark, S., McLaughlin, J., Nitta, M., Kato, Y., Strife, A., Clarkson, B., and Witte, O. N., 1986, Variable expression of the translocated c-abl oncogene in Philadelphia-chromosome-positive B-lymphoid cell lines from chronic myelogenous leukemia patients, Proc. Natl. Acad. Sci. USA 83: 4049–4052.Google Scholar
  24. 24.
    Tsujimoto, Y., and Croce, C. M., 1986, Analysis of the structure, transcripts, and protein products of bcl-2, the gene involved in human follicular lymphoma, Proc. Natl. Acad. Sci. USA 83: 5214–5218.PubMedCrossRefGoogle Scholar
  25. 25.
    Shih, C., Shilo, B., Goldfarb, M. P., Dannenberg, A., and Weinberg, R. A., 1979, Passage of phenotypes of chemically transformed cells via transfection of DNA and chromatin, Proc. Natl. Acad. Sci. USA 76: 5714–5718.PubMedCrossRefGoogle Scholar
  26. 26.
    Bos, J. L., Fearon, E. R., Hamilton, S. R., Verlaan-deVries, M., van Boom, J. H., van der Eb, A. J., and Vogelstein, B., 1987, Prevalence of ras gene mutations in human colorectal cancers, Nature (Lond.) 327: 293–297.CrossRefGoogle Scholar
  27. 27.
    Verlaan-deVries, M., Boggard, M., van den Elst, H., van Boom, J. H., van der Eb, A. J., and Bos, J. L., 1986, A dot-blot screening procedure for mutated ras oncogenes using synthetic oligonucleotides, Gene 50: 313–320.CrossRefGoogle Scholar
  28. 28.
    Forrester, K., Almoguera, C., Han, K., Grizzle, W. E., and Perucho, M., 1987, Detection of high incidence of K-ras oncogenes during human colon tumorigenesis, Nature (Lond.) 327: 298–303.CrossRefGoogle Scholar
  29. 29.
    Ochiya, T., Fujiyama, A., Fukushige, S., Hatada, I., and Matsubara, K., 1986, Molecular cloning of an oncogene from a human hepatocellular carcinoma, Proc. Natl. Acad. Sci. USA 83: 4993–4997.PubMedCrossRefGoogle Scholar
  30. 30.
    Sakamoto, H., Mori, M., Taira, M., Yoshida, T., Matsukawa, S., Shimizu, K., Sekiguchi, M., Terada, M., and Sugimura, T., 1986, Transforming gene from human stomach cancers and a noncancerous portion of stomach mucosa, Proc. Natl. Acad. Sci. USA 83: 3997–4001.PubMedCrossRefGoogle Scholar
  31. 31.
    Martin-Zanca, D., Hughes, S. H., and Barbacid, M., 1986, A human oncogene formed by the fusion of truncated tropomyosin and protein kinase sequences, Nature (Lond.) 319: 743–748.CrossRefGoogle Scholar
  32. 32.
    Fusco, A., Arieco, M., Santoro, M., Berlingieri, M. T., Pilotti, S., Pierotti, M. A., Della Porta, G., and Vecchio, G., 1987, A new oncogene in human thyroid papillary carcinomas and their lymph-nodal metastases, Nature (Lond.) 328: 170–172.CrossRefGoogle Scholar
  33. 33.
    Schechter, A. L., Stern, D. F., Vaidyanathan, L., Decker, S. J., Drebin, J. A., Greene, M. I., and Weinberg, R. A., 1984, The neu oncogene: An erb-B-related gene encoding a 185,000-Mr tumour antigen, Nature (Lond.) 312: 513–516.CrossRefGoogle Scholar
  34. 34.
    Sukumar, S., 1987, Involvement of oncogenes in carcinogenesis, in: Cellular and Molecular Biology of Experimental Mammary Cancer ( D. Medina, W. Kidwell, G. Heppnar, and E. Anderson, eds.), pp. 381–398, Plenum, New York.CrossRefGoogle Scholar
  35. 35.
    Fasano, O., Birnbaum, D., Edlund, L., Fogh, J., and Wigler, M., 1984, New human genes detected by a tumorigenicity assay, Mol. Cell. Biol. 4: 1695–1705.PubMedGoogle Scholar
  36. 36.
    Bos, J. L., Toksoz, D., Marshall, C. J., Verlaan-deVries, M., Veeneman, G. H., van der Eb, A. J., van Boom, J. H., Janssen, J. W. G., and Steenvoorden, C. M., 1985, Amino-acid substitutions at codon 13 of the N-ras oncogene in human acute myeloid leukaemia, Nature (Lond.) 315: 726–730.CrossRefGoogle Scholar
  37. 37.
    Ananthaswamy, H. N., Price, J. E., Goldberg, L. H., and Straka, C., 1987, Simultaneous transfer of tumorigenic and metastatic phenotypes by transfection with genomic DNA from a human cutaneous squamous cell carcinoma, Proc. Am. Assoc. Cancer Res. 28: 69.Google Scholar
  38. 38.
    Reynolds, S. H., Stowers, S. J., Patterson, R., Maronpot, R. R., Aaronson, S. A., and Anderson, M. W., 1987, Activated oncogenes in B6C3F1 mouse liver tumors: Implications for risk assessment, Science 237: 1309–1316.PubMedCrossRefGoogle Scholar
  39. 39.
    Tainsky, M. A., Shamanski, F. L., Blair, D., and Vande Woude, G., 1987, Human recipient cell for oncogene transfection studies, Mol. Cell. Biol. 7: 1280–1284.PubMedGoogle Scholar
  40. 40.
    Sukumar, S., Notano, V., Martin-Zanca, D., and Barbacid, M., 1983, Induction of mammary carcinomas by nitroso-methyl-urea involves malignant activation of H-ras-1 locus by single point mutations, Nature (Lond.) 306: 658–661.CrossRefGoogle Scholar
  41. 41.
    Barbacid, M., 1987, ras Genes, Annu. Rev. Biochem. 56: 780–813.Google Scholar
  42. 42.
    Quintanilla, M., Brown, K., Ramsden, M., and Balmain, A., 1986, Carcinogen-specific mutation and amplification of Ha-ras during mouse skin carcinogenesis, Nature (Lond.) 322: 78–80.CrossRefGoogle Scholar
  43. 43.
    Reynolds, S. H., Stowers, S. J., Maronpot, R. R., Anderson, M. W., and Aaronson, S. A., 1986, Detection and identification of activated oncogenes in spontaneously occurring benign and malignant hepatocellular tumors of the B6C3F1 mouse, Proc. Natl. Acad. Sci. USA 83: 33–37.Google Scholar
  44. 44.
    Brown, K., Quintanilla, M., Ramsden, M., Kerr, I. B., Young, S., and Balmain, A., 1986, v-ras Genes from harvey and balb murine sarcoma viruses can act as initiators of two-stage mouse skin carcinogenesis, Cell 46: 447–456.Google Scholar
  45. 45.
    Bargmann, C. I., Hung, M. C., and Weinberg, R. A., 1986, Multiple independent activations of the neu oncogene by a point mutation altering the transmembrane domain of p185, Cell 45: 649–657.PubMedCrossRefGoogle Scholar
  46. 46.
    Sawey, M. J., Hood, A. T., Burns, F. J., and Garte, S. J., 1987, Activation of myc and ras oncogenes in primary rat tumors induced by ionizing radiation, Mol. Cell. Biol. 7: 932–935.PubMedGoogle Scholar
  47. 47.
    Haseman, J. K., Huff, J., and Boorman, G. A., 1984, Use of historical control data in carcinogenicity studies in rodents, Toxicol. Pathol. 12: 126–135.PubMedCrossRefGoogle Scholar
  48. 48.
    Fox, T. R., and Watanabe, P. G., 1985, Detection of a cellular oncogene in spontaneous liver tumors of B6C3F1 mice, Science 228: 596–597.PubMedCrossRefGoogle Scholar
  49. 49.
    Stowers, S. J., Glover, P. L., Boone, L. R., Maronpot, R. R., Reynolds, S. H., and Anderson, M. W., 1987, Activation of the K-ras proto-oncogene in rat and mouse lung tumors induced by chronic exposure to tetranitromethane, Cancer Res. 47: 3212–3219.PubMedGoogle Scholar
  50. 50.
    Wiseman, R. W., Stowers, S.J., Miller, E. C., Anderson, M. W., and Miller, J. A., 1986, Activating mutations of the c-Ha-ras proto-oncogene in chemically induced hepatomas of the male B6C3F1 mouse, Proc. Natl. Acad. Sci. USA 83: 5285–5289.CrossRefGoogle Scholar
  51. 51.
    Balmain, A., and Pragnell, I. B., 1983, Mouse skin carcinomas induced in vivo by chemical carcinogens have a transforming Harvey-ras oncogene, Nature (Lond.) 303: 72–74.CrossRefGoogle Scholar
  52. 52.
    McMahon, G., Hanson, L., Lee, J., and Wogan, G. N., 1986, Identification of an activated c-Ki-ras oncogene in rat liver tumors induced by aflatoxin B1, Proc. Natl. Acad. Sci. USA 83: 9418–9422.PubMedCrossRefGoogle Scholar
  53. 53.
    Guerrero, I., Calzada, P., Mayer, A., and Pellicer, A., 1984, A molecular approach to leukemogenesis: mouse lymphomas contain an activated c-ras gene, Proc. Natl. Acad. Sci. USA 81: 202–205.PubMedCrossRefGoogle Scholar
  54. 54.
    Guerrero, I., Villasante, A., Corces, V., and Pellicer, A., 1985, Loss of the normal N-ras allele in a mouse thymic lymphoma induced by a chemical carcinogen, Proc. Natl. Acad. Sci. USA 82: 7810–7814.PubMedCrossRefGoogle Scholar
  55. 55.
    Eva, A., and Trimmer, R. W., 1986, High frequency of c-K-ras activation in 3-methylcholanthreneinduced mouse thymomas, Carcinogenesis 7: 1931–1933.PubMedCrossRefGoogle Scholar
  56. 56.
    Tennant, R. W., Margolin, B. H., Shelby, M. D., Zeiger, E., Haseman, J. K., Spalding, J., Caspary, W., Resnick, M., Stasiewicz, S., Anderson, B., and Minor, R., 1987, Prediction of chemical carcinogenicity in rodents from in vitro genetic toxicity assays, Science 236: 933–941.PubMedCrossRefGoogle Scholar
  57. 57.
    Ocadiz, R., Sauceda, R., Cruz, M., Graef, A. M., and Ganglio, P., 1987, High correlation between molecular alterations of the c-myc oncogene and carcinoma of the uterine cervix, Cancer Res. 47: 4173–4177.PubMedGoogle Scholar
  58. 58.
    Yokota, J., Tsunetsugu-Yakota, Y., Battifora, H., Le Fevre, C., and Cline, M. J., 1986, Alterations of myc, myb, and Ha-ras proto-oncogenes in cancers are frequent and show clinical correlation, Science 231: 261–265.PubMedCrossRefGoogle Scholar
  59. 59.
    Nau, M. M., Carney, D. N., Battey, J., Johnson, B., Little, C., Gazdar, A., and Minna, J. D., 1984, Amplification, expression and rearrangement of c-myc and N-myc oncogenes in human lung cancer, Curr. Topics Microbiol. Immunol. 113: 172–177.CrossRefGoogle Scholar
  60. 60.
    Nau, M. M., Brooks, B. J., Battey, J., Sausville, E., Gazdar, A. F., Kirsch, I. R., McBride, O. W., Bertness, V., Hollis, G. F., and Minna, J. D., 1985, L-myc, a new myc-related gene amplified and expressed in human small cell lung cancer, Nature (Lond.) 318: 69–73.Google Scholar
  61. 61.
    Wong, A. J., Ruppert, J. M., Eggleston, J., Hamilton, S. R., Baylin, S. B., and Vogelstein, B., 1986, Gene amplification of c-myc and N-myc in small cell carcinoma of the lung, Science 233: 461–464.PubMedCrossRefGoogle Scholar
  62. 62.
    King, C. R., Kraus, M. H., and Aaronson, S. A., 1985, Amplification of a novel V-erbB-related gene in a human mammary carcinoma, Science 229: 974–976.PubMedCrossRefGoogle Scholar
  63. 63.
    Semlea, K., Kamata, N., Toyoshima, K., and Yamamoto, T., 1985, A v-erbB-related protooncogene, e-erbB-2, is distinct from the c-erbB- I /epidermal growth factor-receptor gene and is amplified in a human salivary gland adenocarcinoma, Proc. Natl. Acad. Sci. USA 82: 6497–6501.CrossRefGoogle Scholar
  64. 64.
    Pelicci, P-G., Lanfrancone, L., Brathwaite, M. D., Wolman, S. R., and Dalla-Favera, R., 1984, Amplification of the c-myb oncogene in a case of human acute myelogenous leukemia, Science 224: 1117–1121.PubMedCrossRefGoogle Scholar
  65. 65.
    Slamon, D. J., deKemion, J. B., Verma, I. M., and Cline, M. J., 1984, Expression of cellular oncogenes in human malignancies, Science 224: 256–262.PubMedCrossRefGoogle Scholar
  66. 66.
    Wang, L-C., Vass, W., Gao, C., and Chang, K. S. S., 1987, Amplification and enhanced expression of the c-Ki-ras-2 protooncogene in human embryonal carcinomas, Cancer Res. 47: 4192–4198.PubMedGoogle Scholar
  67. 67.
    Fujita, J., Srivastava, S. K., Kraus, M. H., Rhim, J. S., Tronick, S. R., and Aaronson, S. A., 1985, Frequency of molecular alterations affecting ras protooncogenes in human urinary tract tumors, Proc. Natl. Acad. Sci. USA 82: 3849–3853.PubMedCrossRefGoogle Scholar
  68. 68.
    Croce, C. M., Thierfelder, W., Erikson, J., Nishikura, K., Finan, J., Lenoir, G. M., and Nowell, P. C., 1983, Transcriptional activation of an unrearranged and untranslocated c-myc oncogene by translocation of a cX locus in Burkitt lymphoma cells, Proc. Natl. Acad. Sci. USA 80: 6922–6926.PubMedCrossRefGoogle Scholar
  69. 69.
    Dalla-Favera, R., Bregni, M., Erikson, J., Patterson, D., Gallo, R. C., and Croce, C. M., 1982, Human c-myc oncogene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells, Proc. Natl. Acad. Sci. USA 79: 7824–7827.PubMedCrossRefGoogle Scholar
  70. 70.
    Erikson, J., Nishikura, K., Ar-Rushdi, A., Finan, J., Emanuel, B., Lenoir, G., Nowell, P. C., and Croce, C. M., 1983, Translocation of an immunoglobulin K locus to a region 3’ of a unnrearranged c-myc oncogene enhances c-myc transcription, Proc. Natl. Acad. Sci. USA 80: 7581–7585.PubMedCrossRefGoogle Scholar
  71. 71.
    Cory, S., Gerondakis, S., and Adams, J. M., 1983, Interchromosomal recombination of the cellular oncogene c-myc with the immunoglobulin heavy chain locus in murine plasmacytomas is a reciprocal exchange, EMBO J. 2: 697–703.PubMedGoogle Scholar
  72. 72.
    Shen-Ong, G. L. C., Keath, E. J., Piccoli, S. P., and Cole, M., 1982, Novel myc oncogene RNA from abortive immunoglobulin-gene recombination in mouse plasmacytomas, Cell 31: 443–452.PubMedCrossRefGoogle Scholar
  73. 73.
    Stanton, L. W., Watt, R., and Marcu, K. B., 1983, Translocation, breakage, and truncated transcripts of c-myc oncogene in murine plasmacytomas, Nature (Lond.) 303: 401–406.CrossRefGoogle Scholar
  74. 74.
    Erikson, J., Finger, L., Sun, L., Ar-Rushdi, A., Nishikura, K., Minowada, J., Finan, J., Emanuel, B. S., Nowell, P. C., and Croce, C. M., 1986, Deregulation of c-myc by translocation of the a-locus of the T-cell receptor in T-cell leukemias, Science 232: 884–886.PubMedCrossRefGoogle Scholar
  75. 75.
    Moroy, T., Marchio, A., Etiemble, J., Trepo, C., Tiollais, P., and Buendia, M-A., 1986, Rearrangement and enhanced expression of c-myc in hepatocellular carcinoma of hepatitis virus infected woodchucks, Nature (Lond.) 324: 276–279.CrossRefGoogle Scholar
  76. 76.
    Tsujimoto, H., Yunis, J., Onovato-Showe, L., Erikson, J., Nowell, P. C., and Croce, C. M., 1984, Molecular cloning of the chromosomal breakpoint of B-cell lymphomas and leukemias with the t(11;I4) chromosome translocation, Science 224: 1403–1406.PubMedCrossRefGoogle Scholar
  77. 77.
    Groffen, J., Stephenson, J. R., Heisterkamp, N., de Klein, A., Bartram, C. R., and Grosveld, G., 1984, Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22, Cell 36: 93–99.Google Scholar
  78. 78.
    Clark, S. S., McLaughlin, J., Crist, W. M., Champlin, R., and Witte, O. N., 1987, Unique forms of the abl tyrosine kinase distinguish Ph’-positive CML from Ph1-positive ALL, Science 235: 85–88.PubMedCrossRefGoogle Scholar
  79. 79.
    Stanton, V. P., and Cooper, G. M., 1987, Activation of human raf transforming genes by deletion of normal amino-terminal coding sequences, Mol. Cell. Biol. 7: 1171–1179.PubMedGoogle Scholar
  80. 80.
    Bos, J. L., Verlaan-deVries, M., van der Eb, A. J., Janssen, J. W. G., Delwel, R., Lownberg, B., and Colly, L. P., 1987, Mutations in N-ras predominate in acute myeloid leukemia, Blood 69: 1237–1241.PubMedGoogle Scholar
  81. 81.
    Hirari, H., Kobayashi, Y., Mano, H., Hagiwara, K., Mani, Y., Omine, M., Mizoguchi, H., Nishida, J., and Takaku, F., 1987, A point mutation at codon 13 of the N-ras oncogene in myelodysplastic syndrome, Nature (Lond.) 327: 430–432.CrossRefGoogle Scholar
  82. 82.
    Shimizu, K., Nakatsu, Y., Sekiguchi, M., Hokamura, K., Tanaka, K., Terada, M., and Sugimura, T., 1985, Molecular cloning of an activated human oncogene, homologous to v-raf, from primary stomach cancer, Proc. Natl. Acad. Sci. USA 82: 5641–5645.PubMedCrossRefGoogle Scholar
  83. 83.
    Eva, A., and Aaronson, S. A., 1985, Isolation of a new human oncogene from a diffuse B-cell lymphoma, Nature (Lond.) 316: 273–275.CrossRefGoogle Scholar
  84. 84.
    Pulciani, S., Sakano, T., Ohnishi, K., Anastasi, A. M., Pecorelli, A., Fiorucci, G., Oppi, C., Rossi, G. B., and Bonavida, B., 1987, Detection of a transforming gene in spontaneous reticulum cell sarcoma of SJL/J mice: Genetically linked and host-dependent neoplasia, Cancer Res. 47: 523–526.PubMedGoogle Scholar
  85. 85.
    Sukumar, S., Peroantoni, A., Reed, C., Rice, J. M., and Wenk, M. L., 1986, Activated K-ras and N-ras oncogenes in primary renal mesenchymal tumors induced in F344 rats by methyl(methoxymethyl)nitrosamine, Mol. Cell. Biol. 6: 2716–2720.PubMedGoogle Scholar
  86. 86.
    McMahon, G., Hanson, L., Lee, J., and Wogan, G. N., 1986, Identification of an activated c-Ki-ras oncogene in rat liver tumors induced by aflatoxin B1, Proc. Natl. Acad. Sci. USA 83: 9418–9422.PubMedCrossRefGoogle Scholar
  87. 87.
    Farber, E., 1984, Cellular biochemistry of the stepwise development of cancer with chemicals. Cancer Res. 44: 5463–5474.PubMedGoogle Scholar
  88. 88.
    Garte, S. J., Hood, A. T., Hochwait, A. E., D’Eustachio, P., Snyder, C. A., Segal, A., and Albert, R. E., 1985, Carcinogen specificity in the activation of transforming genes by direct-acting alkylating agents, Carcinogenesis 6: 1709–1712.PubMedCrossRefGoogle Scholar
  89. 89.
    Stowers, S. J., Wiseman, R. W., Ward, J. M., Miller, C. M., Miller, J. A., Anderson, M. W., and Eva, A., 1988, Detection of activated proto-oncogenes in N-nitrosodiethylamine-induced liver tumors: A comparison between B6C3F1 mice and Fischer 344 rats, Carcinogenesis 9: 271–276.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Marshall W. Anderson
    • 1
  • Steven H. Reynolds
    • 1
  1. 1.Laboratory of Biochemical Risk AnalysisNational Institute of Environmental Health SciencesResearch Triangle ParkUSA

Personalised recommendations