Transformation of normal cells that compose the spectrum of tissues and organ systems of the intact organism is commonly thought to involve a multistep process ultimately reflected in genetic aberrations in the evolving tumor cell. These genetic aberrations may represent important factors that modulate both the individual tumor phenotype and the diversity evident in many tumors.1 The spectrum of genetic alterations observed is broad but includes such events as chromosomal alterations with breakage, duplications or loss, gene amplification, mutations, and transposition-mediated events such as those associated with retroviruses. Ultimately, these genetic events must result in altered function of one or more gene products associated with control of cell proliferation and differentiation.


Burkitt Lymphoma Mouse Mammary Tumor Virus Rous Sarcoma Virus Avian Leukosis Virus Cellular Oncogene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nicolson, G. L., 1987, Tumor cell instability, diversification, and progression to metastatic phenotype: From oncogene to oncofetal expression, Cancer Res. 47: 1473–1487.PubMedGoogle Scholar
  2. 2.
    Varmus, H. E., 1984, The molecular genetics of cellular oncogenes, Annu. Rev. Genet. 18: 553–612.PubMedCrossRefGoogle Scholar
  3. 3.
    Bishop, J. M., 1987, The molecular genetics of cancer, Science 235: 305–311.PubMedCrossRefGoogle Scholar
  4. 4.
    Rous, P., 1911, A sarcoma of the fowl transmissible by an agent separable from the tumor cells, J. Exp. Med. 13: 397–411.PubMedCrossRefGoogle Scholar
  5. 5.
    Klein, G. (ed.), 1980, Viral Oncology, Raven, New York.Google Scholar
  6. 6.
    Bishop, J. M., 1981, Retroviruses, Annu. Rev. Biochem. 47: 35–88.CrossRefGoogle Scholar
  7. 7.
    Weiss, R., Teich, N., Varmus, H., and Coffin, J., 1984, RNA Tumor Viruses, Vol. I, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  8. 8.
    Popovic, M., Lange-Wantzin, G., Sarin, P. S., Mann, D., and Gallo, R. C., 1983, Transformation of human umbilical cord blood T cells by human T-cell leukemia/lymphoma virus (HTLV), Proc. Natl. Acad. Sci. USA 80: 5402–5406.PubMedCrossRefGoogle Scholar
  9. 9.
    Stehelin, D., Varmus, H. E., and Bishop, J. M., 1976, DNA related to the transforming gene(s) of avian sarcoma virus is present in normal avian DNA, Nature (Lond.) 260: 170–172.CrossRefGoogle Scholar
  10. 10.
    Spector, D. H., Baker, B., Varmus, H. E., and Bishop, J. M., 1978, Characteristics of cellular RNA related to the transforming gene of avian sarcoma virus, Cell 13: 381–386.PubMedCrossRefGoogle Scholar
  11. 11.
    Wang, L. H., Halpern, C. C., Nadel, M., and Hanafusa, H., 1978, Recombination between viral and cellular sequences generates transforming sarcoma virus, Proc. Natl. Acad. Sci. USA 12: 5812–5816.CrossRefGoogle Scholar
  12. 12.
    Robinson, H. L., and Gagnon, G. C., 1986, Patterns of proviral insertion and deletion in avian leukosis virus-induced lymphomas, J. Virol. 57: 26–36.Google Scholar
  13. 13.
    Coffin, J. M., Varmus, H. E., Bishop, J. M., Essex, M., Hardy, W. D., Martin, G. S., Rosenberg, N. E., Scolnick, E. M., Weinberg, R. A., and Vogt, P. K., 1981, Proposal for naming host cell-derived inserts in retrovirus genomes, J. Virol. 40: 953–957.PubMedGoogle Scholar
  14. 14.
    Lai, M. M. C., Neil, J. C., and Vogt, P. K., 1980, Cell-free translation of avian erythroblastosis virus RNA yields two specific and distinct proteins with molecular weights of 75,000 and 40,000, Virology 100: 475–483.PubMedCrossRefGoogle Scholar
  15. 15.
    Vennstrom, B., and Bishop, J. M., 1982, Isolation and characterization of chicken DNA homologous to the two putative oncogenes of avian erythroblastosis virus, Cell 28: 135–143.PubMedCrossRefGoogle Scholar
  16. 16.
    Kan, N. C., Flordellis, C. S., Mark, G. E., Deusberg, P. H., and Papas, T. S., 1984, A common one gene sequence transduced by avian carcinoma virus MH2 and by murine sarcoma virus 3611, Science 223: 813–816.PubMedCrossRefGoogle Scholar
  17. 16a.
    LeBeau, M. M., and Rowley, J. D., 1986, Chromosomal abnormalities in leukemia and lymphoma: Clinical and biological significance, Adv. Hum. Genet. 15: 1–54.Google Scholar
  18. 17.
    Wolfe, L. G., Deinhardt, F., Theilen, G. H., Rabin, H., Kawakami, T., and Bustad, L. K., 1971, Induction of tumors in marmoset monkeys by simian sarcoma virus, type 1 (Lagothrix): A preliminary report, J. Natl. Cancer Inst. 47: 1115–1120.PubMedGoogle Scholar
  19. 18.
    Waterfield, M. D., Scrace, G. T., Whittle, N., Stroobant, P., Johnson, A., Wasteson, A., Westermark, B., Heldin, C. H., Huang, J. S., and Deuel, T. F., 1983, Platelet-derived growth factor is structurally related to the putative transforming protein p28 sis of simian sarcoma virus, Nature (Lond.) 304: 35–39.CrossRefGoogle Scholar
  20. 19.
    Doolittle, R. F., Hunkapiller, M. W., Hood, L. E., Devare, S. G., Robbins, K. C., Aaronson, S. A., and Antoniades, H. N., 1983, Simian sarcoma virus one gene, v-sis, is derived from the gene (or genes) encoding a platelet-derived growth factor, Science 221: 275–277.PubMedCrossRefGoogle Scholar
  21. 20.
    Robbins, K. C., Antoniades, H. N., Devare, S. G., Hunkapiller, M. W., and Aaronson, S. A., 1983, Structural and immunological similarities between simian sarcoma virus gene product(s) and human platelet-derived growth factor, Nature (Lond.) 305: 605–608.CrossRefGoogle Scholar
  22. 21.
    Josephs, S. F., Ratner, L., Clarke, M. F., Westin, E. H., Reitz, M. S., and Wong-Staal, F., 1984, Transforming potential of human c-sis nucleotide sequences encoding platelet-derived growth factor, Science 225: 636–639.PubMedCrossRefGoogle Scholar
  23. 22.
    Chiu, I. M., Reddy, E. P., Givol, D., Robbins, K. C., Tronick, S. R., and Aaronson, S. A., 1984, Nucleotide sequence analysis identifies the human c-sis proto-oncogene as a structural gene for platelet-derived growth factor, Cell 37: 123–129.PubMedCrossRefGoogle Scholar
  24. 23.
    Downward, J., Yarden, Y., Mayes, E., Scrace, G., Totty, N., Stockwell, P., Ullrich, A., Schlessinger, J., and Waterfield, M. D., 1984, Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences, Nature (Lond.) 307: 521–527.CrossRefGoogle Scholar
  25. 24.
    Sap, J., Munoz, A., Damm, K., Goldberg, Y., Ghysdael, J., Leutz, A., Beug, H., and Vennstrom, B., 1986, The c-erb-A protein is a high-affinity receptor for thyroid hormone, Nature (Lond.) 324: 635–640.CrossRefGoogle Scholar
  26. 25.
    Weinberger, C., Thompson, C. C., Ong, E. S., Lebo, R., Gruol, D. J., and Evans, R. M., 1986, The cerb-A gene encodes a thyroid hormone receptor, Nature (Lord.) 324: 641–646.CrossRefGoogle Scholar
  27. 26.
    Roussel, M. F., Scherr, C. J., Barker, P. E., and Ruddle, F. H., 1983, Molecular cloning of the c-fms locus and its assignment to human chromosome 5, J. Virol. 48: 770–773.PubMedGoogle Scholar
  28. 27.
    Neinhuis, A. W., Bunn, H. F., Turner, P. H., Gopal, T. V., Nash, W. G., O’Brien, S. J., and Scherr, C. J., 1985, Expression of the human c-fms proto-oncogene in hematopoietic cells and its deletion in the 5q-syndrome, Cell 42: 421–426.CrossRefGoogle Scholar
  29. 28.
    Le Beau, M. M., Westbrook, C. A., Diaz, M. O., Larson, R. A., Rowley, J. D., Gasson, J. C., Golde, D. W., and Sherr, C. J., 1986, Evidence for the involvement of GM-CSF and fms in the deletion (5q) in myeloid disorders, Science 231: 984–987.PubMedCrossRefGoogle Scholar
  30. 29.
    Sherr, C. J., Rettenmier, C. W., Sacca, R., Roussel, M. F., Look, A. T., and Stanley, E. R., 1985, The c-fms proto-oncogene product is related to the receptor for the mononuclear phagocyte growth factor, CSF-1, Cell 41: 665–676.PubMedCrossRefGoogle Scholar
  31. 30.
    Chang, E. H., Gonda, M. A., Ellis, R. W., Scolnick, E. M., and Lowy, D. R., 1982, Human genome contains four genes homologous to transforming genes of Harvey and Kirsten mutine sarcoma viruses, Proc. Natl. Acad. Sci. USA 79: 4848–4852.PubMedCrossRefGoogle Scholar
  32. 31.
    Hall, A., Marshall, C. J., Spun, N. K., and Weiss, R. A., 1983, Identification of transforming gene in two human sarcoma cell lines as a new member of the ras gene family located on chromosome 1, Nature (Lond.) 303: 396–400.CrossRefGoogle Scholar
  33. 32.
    Taparowsky, E., Shimizu, K., Goldfarb, M., and Wigler, M., 1983, Structure and activation of the human N-ras gene, Cell 34: 581–586.PubMedCrossRefGoogle Scholar
  34. 33.
    Scolnick, E. M., Papageorge, A. G., and Shih, T. Y., 1979, Guanine nucleotide-binding activity as an assay for src protein of rat-derived murine sarcoma viruses, Proc. Natl. Acad. Sci. USA 76: 5355–5359.PubMedCrossRefGoogle Scholar
  35. 34.
    Papageorge, A., Lowy, D., and Scolnick, E. M., 1982, Comparative biochemical properties of p21 ras molecules coded for by viral and cellular ras genes, J. Virol. 44: 509–519.PubMedGoogle Scholar
  36. 35.
    Manne, V., Yamazaki, S., and Kung, H., 1984, Guanosine nucleotide binding by highly purified Ha-rasencoded p21 protein produced in Escherichia coli, Proc. Natl. Acad. Sci. USA 81: 6953–6957.PubMedCrossRefGoogle Scholar
  37. 36.
    Sweet, R., Yokoyama, S., Kamata, T., Feramisco, J. R., Rosenberg, M., and Gross, M., 1984, The product of ras is a GTPase and the T24 oncogenic mutant is deficient in this activity, Nature (Lond.) 311: 273–275.CrossRefGoogle Scholar
  38. 37.
    Gilman, A. G., 1984, G proteins and dual control of adenylate cyclase, Cell 36: 577–579.PubMedCrossRefGoogle Scholar
  39. 38.
    Hurley, J. B., Simon, M. I., Teplow, D. B., Robishaw, J. D., and Gilman, A. G., 1984, Homologies between signal transducing G proteins and ras gene products, Science 226: 860–862.PubMedCrossRefGoogle Scholar
  40. 39.
    Mulcahy, L. S., Smith, M. R., and Stacey, D. W., 1985, Requirement for ras proto-oncogene function during serum-stimulated growth of NIH 3T3 cells, Nature (Lond.) 318: 241–243.CrossRefGoogle Scholar
  41. 40.
    Smith, M. R., DeGudicibus, S. J., and Stacey, D. W., 1986, Requirement for c-ras proteins during viral oncogene transformation, Nature (Lond.) 320: 540–543.CrossRefGoogle Scholar
  42. 41.
    Fleischman, L. F., Chahwala, S. B., and Cantley, L., 1986, Ras-transformed cells: Altered levels of phosphatidylinositol-4,5-bisphosphate and catabolites, Science 231: 407–410.PubMedCrossRefGoogle Scholar
  43. 42.
    Wolfman, A., and Macara, I. G., Elevated levels of diacylglycerol and decreased phorbol ester sensitivity in ras-transformed fibroblasts, Nature (Lond.) 325: 359–361.Google Scholar
  44. 43.
    Parker, R. C., Varmus, H. E., and Bishop, J. M., 1981, Cellular homologue (c-src) of the transforming gene of Rous sarcoma virus: Isolation, mapping, and transcriptional analysis of c-src and flanking regions, Proc. Natl. Acad. Sci. USA 78: 5842–5846.PubMedCrossRefGoogle Scholar
  45. 44.
    Bonner, T. I., Oppermann, H., Seeburg, P., Kerby, S. B., Gunnell, M. A., Young, A. C., and Rapp, U. R., 1986, The complete nucleotide sequence of the human raf oncogene and the corresponding structure of the c-raf-1 gene, Nucleic Acids Res. 14: 1009–1015.PubMedCrossRefGoogle Scholar
  46. 45.
    Moelling, K., Heimann, B., Beimling, P., Rapp, U. R., and Sander, T., 1984, Serine-and threoninespecific protein kinase activities of purified gag-mil and gag-raf proteins, Nature (Lond.) 312: 558–561.CrossRefGoogle Scholar
  47. 46.
    Chen, W. T., Chen, J. M., Parsons, S. J., and Parsons, J. T., 1985, Local degradation of fibronectin at sites of expression of the transforming gene product pp60src, Nature (Lond.) 316: 156–158.CrossRefGoogle Scholar
  48. 47.
    Hamaguchi, M., and Hanafusa, H., 1987, Association of p60src with Triton X-100 resistant cellular structure correlates with morphological transformation, Proc. Natl. Acad. Sci. USA 84: 2312–2316.PubMedCrossRefGoogle Scholar
  49. 48.
    Dalla Favera, R., Gelmann, E. P., Martinotti, S., Franchini, G., Papas, T. S., Gallo, R. C., and Wong-Staal, F., 1982, Cloning and characterization of different human sequences related to the one gene (v-myc) of avian myelocytomatosis virus (MC29), Proc. Natl. Acad. Sci. USA 79: 6497–6501.CrossRefGoogle Scholar
  50. 49.
    Watt, R., Stanton, L. W., Marcu, K. B., Gallo, R. C., Croce, C. M., and Rovera, G., 1983, Nucleotide sequence of cloned cDNA of human c-myc oncogene, Nature (Lond.) 303: 725–728.CrossRefGoogle Scholar
  51. 50.
    Alitalo, K., Ramsay, G., Bishop, J. M., Pfeifer, S. O., Colby, W. W., and Levinson, A. D., 1983, Identification of nuclear proteins encoded by viral and cellular myc genes, Nature (Lond.) 306: 274–277.CrossRefGoogle Scholar
  52. 51.
    Straaten, F., Muller, R., Curran, T., Beveren, C. V., and Verma, I. M., 1983, Complete nucleotide sequence of a human c-onc gene: Deduced amino acid sequence of the human c-fos protein, Proc. Natl. Acad. Sci. USA 80: 3183–3187.PubMedCrossRefGoogle Scholar
  53. 52.
    Sambucetti, L. C., and Curran, T., 1986, The fos protein complex is associated with DNA in isolated nuclei and binds to DNA cellulose, Science 234: 1417–1419.Google Scholar
  54. 53.
    Leprince, D., Saule, S., de Taisne, C., Gegonne, A., Begue, A., Righi, M., and Stehelin, D., 1983, The human DNA locus related to the oncogene myb of avian myeloblastosis virus (AMV): Molecular cloning and structural characterization, EMBO J. 2: 1073–1078.Google Scholar
  55. 54.
    Slamon, D. J., Boone, T. C., Murdock, D. C., Keith, D. E., Press, M. F., Larson, R. A., and Souza, L. M., 1986, Studies of the human c-myb gene and its product in human acute leukemias, Science 233: 347–351.PubMedCrossRefGoogle Scholar
  56. 55.
    Majello, B., Kenyon, L. C., and Dalla Favera, R., 1986, Human c-myb protooncogene: Nucleotide sequence of cDNA and organization of the genomic locus, Proc. Natl. Acad. Sci. USA 83: 9636–9640.PubMedCrossRefGoogle Scholar
  57. 56.
    Boyle, W. J., Lampert, M. A., Li, A. C., and Baluda, M. A., 1985, Nuclear compartmentalization of the v-myb oncogene product, Mol. Cell. Biol. 5: 3017–3023.PubMedGoogle Scholar
  58. 57.
    Studzinski, G. P., Brelvi, Z. S., Feldman, S. C., and Watt, R. A., 1986, Participation of c-myc protein in DNA synthesis of human cells, Science 234: 467–470.PubMedCrossRefGoogle Scholar
  59. 58.
    lshikura, H., Honma, Y., Honma, C., Hozumi, M., Black, J. D., Kieber-Emmons, T., and Bloch, A., 1987, Inhibition of messenger RNA transcriptional activity in ML-1 human myeloblastic leukemia cell nuclei by antiserum to a c-myb-specific peptide, Cancer Res. 47: 1052–1057.Google Scholar
  60. 59.
    Gilman, M. Z., Wilson, R. N., and Weinberg, R. A., 1986, Multiple protein binding sites in the 5’-flanking region regulate c-fos expression, Mol. Cell. Biol. 6: 4305–4316.PubMedGoogle Scholar
  61. 60.
    Holt, J. T., Venkat Gopal, T., Moulton, A. D., and Nienhuis, A. W., 1986, Inducible production of c-fos antisense RNA inhibits 3T3 cell proliferation, Proc. Natl. Acad. Sci. USA 83: 4794–4798.PubMedCrossRefGoogle Scholar
  62. 60a.
    Aaronson, S. A., and Tronick, S. R., 1987, Oncogenes, in: Medical Genetics: 1987 ( D. Camerini-Otero, J. J. Mulvihill, and A. N. Schechter, eds.), pp. 101–132, Foundation for Advanced Education in the Sciences, Bethesda, Maryland.Google Scholar
  63. 61.
    Groudine, M., and Weintraub, H., 1980, Activation of cellular genes by avian RNA tumor viruses, Proc. Natl. Acad. Sci. USA 77: 5351–5354.PubMedCrossRefGoogle Scholar
  64. 62.
    Neel, B. J., Hayward, W. S., Robinson, H. L., Fang, J., and Astrin, S. M., 1981, Avian leukosis virus-induced tumors have common proviral integration sites and synthesize discrete new RNAs: Oncogenesis by promoter insertion, Cell 23: 323–334.PubMedCrossRefGoogle Scholar
  65. 63.
    Hayward, W. S., Neel, B. G., and Astrin, S. M., 1981, Activation of a cellular onc gene by promoter insertion in ALV-induced lymphoid leukosis, Nature (Loud.) 290: 475–480.CrossRefGoogle Scholar
  66. 64.
    Fung, Y. K. T., Fadly, A. M., Crittenden, L. B., and Kung, H. J., 1981, On the mechanism of retrovirusinduced avian lymphoid leukosis: Deletion and integration of the provimses, Proc. Natl. Acad. Sci. USA 78: 3418–3422.PubMedCrossRefGoogle Scholar
  67. 65.
    Raines, M. A., Lewis, W. G., Crittenden, L. B., and Kung, H. J., 1985, c-erbB activation in avian leukosis virus-induced erythroblastosis: Clustered integration sites and the arrangement of provirus in the c-erbB alleles, Proc. Natl. Acad. Sci. USA 82: 2287–2291.Google Scholar
  68. 66.
    Nusse, R., and Varmus, H. E., 1982, Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome, Cell 31: 99–109.PubMedCrossRefGoogle Scholar
  69. 67.
    Dickson, C., Smith, R., Brookes, S., and Peters, G., 1984, Tumorigenesis by mouse mammary tumor virus: Proviral activation of a cellular gene in the common integration region int-2, Cell 37: 529–536.PubMedCrossRefGoogle Scholar
  70. 68.
    van Ooyen, A., and Nusse, R., 1984, Structure and nucleotide sequence of the putative mammary oncogene int-1; Proviral insertions leave the protein-encoding domain intact, Cell 39: 233–240.PubMedCrossRefGoogle Scholar
  71. 69.
    Rhodewohld, H., Weiher, H., Reik, W., Jaenisch, R., and Breindl, M., 1987, Retrovirus integration and chromatin structure: Moloney murine leukemia proviral integration sites map near DNase I-hypersensitive.,ites, J. Virol. 61: 336–343.Google Scholar
  72. 70.
    Shih, C., Shilo, B. Z., Goldfarb, M. P., Dannenberg, A., and Weinberg, R. A., 1979, Passage of phenotypes of chemically transformed cells via transfection of DNA and chromatin, Proc. Natl. Acad. Sci. USA 76: 5714–5718.PubMedCrossRefGoogle Scholar
  73. 71.
    Blair, D. G., Cooper, C. S., Oskarsson, M. K., Eader, L. A., and Vande Woude, G., 1982, New method for detecting cellular transforming genes, Science 218: 1122–1125.PubMedCrossRefGoogle Scholar
  74. 72.
    Shih, C., Padhy, L. C., Murray, M., and Weinberg, R. A., 1981, Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts, Nature (Lond.) 290: 261–264.CrossRefGoogle Scholar
  75. 73.
    Krontiris, T. G., and Cooper, G. M., 1981, Transforming activity of human tumor DNAs, Proc. Natl. Acad. Sci. USA 78: 1181–1184.PubMedCrossRefGoogle Scholar
  76. 74.
    Murray, M. J., Shilo, B. Z., Shih, C., Cowing, D., Hsu, H. W., and Weinberg, R. A., 1981, Three different human tumor cell lines contain different oncogenes, Cell 25: 355–361.PubMedCrossRefGoogle Scholar
  77. 75.
    Perucho, M., Goldfarb, M., Shimizu, K., Lama, C., Fogh, J., and Wigler, M., 1981, Human tumor derived cell lines contain common and different transforming genes, Cell 27: 467–476.PubMedCrossRefGoogle Scholar
  78. 76.
    Goldfarb, M., Shimizu, K., Perucho, M., and Wigler, M., 1982, Isolation and preliminary characterization of a human transforming gene from T24 bladder carcinoma cells, Nature (Lond.) 296: 404–409.CrossRefGoogle Scholar
  79. 77.
    Parada, L. F., Tabin, C. J., Shih, C., and Weinberg, R. A., 1982, Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene, Nature (Lond.) 297: 474–478.CrossRefGoogle Scholar
  80. 78.
    Taparowsky, E., Suard, Y., Fasano, O., Shimizu, K., Goldfarb, M., and Wigler, M., 1982, Activation of the T24 bladder carcinoma transforming gene is linked to a single amino acid change, Nature (Lond.) 300: 762–765.CrossRefGoogle Scholar
  81. 79.
    Shimizu, K., Birnbaum, D., Ruley, M. A., Fasano, O., Suard, Y., Edlund, L., Taparowsky, E., Goldfarb, M., and Wigler, M., 1983, Structure of the Ki-ras gene of the human lung carcinoma cell line Calu-1, Nature (Lond.) 304: 497–500.CrossRefGoogle Scholar
  82. 80.
    Capon, D. J., Seeburg, P. H., McGrath, J. P., Hayflick, J. S., Edman, U., Levinson, A. D., and Goeddel, D. V., 1983, Activation of Ki-ras2 gene in human colon and lung carcinomas by two different point mutations, Nature (Lond.) 304: 507–513.CrossRefGoogle Scholar
  83. 81.
    Sukumar, S., Notano, V., Martin-Zanca, D., and Barbacid, M., 1983, Induction of mammary carcinomas in rats by nitrosomethylurea involves malignant activation of H-ras-1 locus by single point mutations, Nature (Lond.) 306: 658–661.CrossRefGoogle Scholar
  84. 82.
    Taparowsky, E., Shimizu, K., Goldfarb, M., and Wigler, M., 1983, Structure and activation of the human N-ras gene, Cell 34: 581–586.PubMedCrossRefGoogle Scholar
  85. 83.
    Yuasa, Y., Gol, R. A., Chang, A., Chiu, I. M., Reddy, E. P., Tronick, S. R., and Aaronson, S. A., 1984, Mechanism of activation of an N-ras oncogene of SW-1271 human lung carcinoma cells, Proc. Natl. Acad. Sci. USA 81: 3670–3674.PubMedCrossRefGoogle Scholar
  86. 84.
    Santos, E., Martin-Zanca, D., Reddy, E. P., Pierotti, M. A., Porta, G. D., and Barbacid, M., Malignant activation of a K-ras oncogene in lung carcinoma but not in normal tissue of the same patient, Science 223: 661–664.Google Scholar
  87. 85.
    Kraus, M., Yuasa, Y., and Aaronson, S. A., 1984, A position 12-activated H-ras oncogene in all HS578T mammary carcinosarcoma cells but not normal mammary cells of the same patient, Proc. Natl. Acad. Sci. USA 81: 5384–5388.PubMedCrossRefGoogle Scholar
  88. 86.
    McGrath, J. P., Capon, D. J., Goeddel, D. V., and Levinson, A. D., Comparative biochemical properties of normal and activated human ras p21 protein. Nature (Lond.) 310: 644–649.Google Scholar
  89. 87.
    Srivastava, S. K., Yuasa, Y., Reynolds, S. H., and Aaronson, S. A., 1985, Effects of two major activating lesions on the structure and conformation of human ras oncogene products, Proc. Natl. Acad. Sci. USA 82: 38–42.PubMedCrossRefGoogle Scholar
  90. 88.
    Barbacid, M., 1987, ras Genes, Annu. Rev. Biochem. 56: 779–827.Google Scholar
  91. 89.
    Bos, J. L., Fearon, E. R., Hamilton, S. R., Verlaan-de Vries, M., van Boom, J. H., van der Eb, A. J., and Vogelstein, B., Prevalence of ras gene mutuations in human colorectal cancers, Nature (Lond.) 327: 293–297.Google Scholar
  92. 90.
    Forrester, K., Almoguera, C., Han, K., Grizzle, W. E., and Perucho, M., Detection of high incidence of K-ras oncogenes during human colon tumorigenesis, Nature (Lond.) 327: 298–303.Google Scholar
  93. 91.
    Alitalo, K., and Schwab, M., 1986, Oncogene amplification in tumor cells, Adv. Cancer Res. 47: 235–281.PubMedCrossRefGoogle Scholar
  94. 92.
    Biedler, J. L., Henson, L., and Spengler, B. A., 1973, Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture, Cancer Res. 33: 2643–2652.PubMedGoogle Scholar
  95. 93.
    Biedler, J. L., and Spengler, B. A., 1976, Metaphase chromosome anomaly: Association with drug resistance and cell-specific products, Science 191: 185–187.PubMedCrossRefGoogle Scholar
  96. 94.
    Sandberg, A. A., Sakurai, M., Holdsworth, R. N., 1972, Chromosomes and causation of human cancer and leukemia I: DMS chromosomes in a neuroblastoma, Cancer 29: 1671–1678.PubMedCrossRefGoogle Scholar
  97. 95.
    Westin, E. H., Wong-Staal, F., Gelmann, E. P., Dalla Favera, R., Papas, T. S., Lautenberger, J. A., Eva, A., Reddy, E. P., Tronick, S. R., Aaronson, S. A., and Gallo, R. C., 1982, Expression of the cellular homologues of retroviral one genes in human hematopoietic cells, Proc. Natl. Acad. Sci. USA 79: 2490–2494.PubMedCrossRefGoogle Scholar
  98. 96.
    Collins, S., and Groudine, M., 1982, Amplification of endogenous myc related DNA sequences in a human myeloid leukemia cell line, Nature (Lond.) 298: 679–681.CrossRefGoogle Scholar
  99. 97.
    Dalla Favera, R., Wong-Staal, F., and Gallo, R. C., 1982, Onc gene amplification in promyelocytic leukemia cell line HL-60 and primary leukemic cells of the same patient, Nature (Lond.) 299: 61–63.CrossRefGoogle Scholar
  100. 98.
    Alitalo, K., Schwab, M., Lin, C. C., Varmus, H. E., and Bishop, J. M., 1983, Homogeneously staining chromosomal regions contain amplified copies of an abundantly expressed cellular oncogene (c-myc) in malignant neuroendocrine cells from a human colon carcinoma, Proc. Natl. Acad. Sci. USA 80: 1707–1711.PubMedCrossRefGoogle Scholar
  101. 99.
    Little, C. D., Nau, M. M., Carney, D. N., Gazdar, A. F., and Minna, J. D., 1983, Amplification and expression of the c-myc oncogene in human lung cancer cell lines, Nature (Lond.) 306: 194–196.CrossRefGoogle Scholar
  102. 100.
    Schwab, M., Alitalo, K., Klempnauer, K. H., Varmus, H. E., Bishop, J. M., Gilbert, F., Brodeur, G., Goldstein, M., and Trent, J., 1983, Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumour, Nature (Lond.) 305: 245–248.CrossRefGoogle Scholar
  103. 101.
    Kohl, N. E., Legouy, E., DePinho, R. A., Nisen, P. D., Smith, R. K., Gee, C. E., and Alt, F. W., 1986, Human N-myc is closely related in organization and nucleotide sequence to c-myc, Nature (Lond.) 319: 73–77.CrossRefGoogle Scholar
  104. 102.
    Brodeur, G. M., Seeger, R. C., Schwab, M., Varmus, H. E., and Bishop, J. M., 1984, Amplification of Nmyc in untreated human neuroblastomas correlate with advanced disease stage, Science 224: 1121–1124.PubMedCrossRefGoogle Scholar
  105. 103.
    Schwab, M., Ellison, J., Busch, M., Rosenau, W., Varmus, H. E., and Bishop, J. M., 1984, Enhanced expression of the human gene N-myc consequent to amplification of DNA may contribute to malignant progression of neuroblastoma, Proc. Natl. Acad. Sci. USA 81: 4940–4944.PubMedCrossRefGoogle Scholar
  106. 104.
    Collins, S. J., and Groudine, M., 1983, Rearrangement and amplification of c-abl sequences in the human chronic myelogenous leukemia cell line K-562, Proc. Natl. Acad. Sci. USA 80: 4813–4817.PubMedCrossRefGoogle Scholar
  107. 105.
    Libermann, T. A., Nusbaum, H. R., Razon, N., Kris, R., Laz, I., Soreg, H., Whittle, N., Waterfield, M. D., Ullrich, A., and Schlessinger, J., 1985, Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumours of glial origin, Nature (Lond.) 313: 144–147.CrossRefGoogle Scholar
  108. 106.
    King, C. R., Kraus, M. H., Williams, L. T., Merlino, G. T., Pastan, I. H., and Aaronson, S. A., 1985, Human tumor cell lines with EGF receptor gene amplification in the absence of aberrant sized mRNAs, Nucleic Acids Res. 13: 8477–8486.PubMedCrossRefGoogle Scholar
  109. 107.
    Akiyama, T., Sudo, C., Ogawara, H., Toyoshima, K., and Yamamoto, T., 1986, The product of the human c-erb B-2 gene: A 185-kilodalton glycoprotein with tyrosine kinase activity, Science 232: 1644–1646.PubMedCrossRefGoogle Scholar
  110. 108.
    Yamamoto, T., Ikawa, S., Akiyama, T., Semba, K., Nomura, N., Miyajima, N., Saito, T., and Toyoshima, K., 1986, Similarity of protein encoded by the human c-erbB-2 gene to epidermal growth factor receptor, Nature (Lond.) 319: 230–234.CrossRefGoogle Scholar
  111. 109.
    Kraus, M. H., Popescu, N. C., Amsbaugh, S. C., and King, C. R., 1987, Overexpression of the EGF receptor-related proto-oncogene erbB-2 in human mammary tumor cell lines by different molecular mechanisms, EMBO J. 6: 605–610.PubMedGoogle Scholar
  112. 110.
    van de Vijver, M., van de Bersselaar, R., Devilee, P., Comelisse, C., Peterse, J., and Nusse, R., 1987, Amplification of the neu (c-erbB-2) oncogene in human mammary tumors is relatively frequent and is often accompanied by amplification of the linked c-erbA oncogene, Mol. Cell. Biol. 7: 2019–2023.Google Scholar
  113. 111.
    Slamon, D. J., Clarke, G. M., Wong, S. G., Levin, W. J., Ullrich, A., and McGuire, W. L., 1987, Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene, Science 235: 177–182.PubMedCrossRefGoogle Scholar
  114. 112.
    Nau, M. M., Brooks, B. J., Battey, J., Sausville, E., Gazdar, A. F., Kirsch, I. R., McBride, O. W., Bertness, V., Hollis, G. F., and Minna, J. D., 1985, L-myc, a new myc-related gene amplified and expressed in human small cell lung cancer, Nature (Lond.) 318: 69–73.CrossRefGoogle Scholar
  115. 113.
    Yunis, J. J., 1983, The chromosomal basis of human neoplasia, Science 221: 227–236.PubMedCrossRefGoogle Scholar
  116. 114.
    Dalla Favera, R., Bregni, M., Erikson, J., Patterson, D., Gallo, R. C., and Croce, C. M., 1982, Human c-myc one gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells, Proc. Natl. Acad. Sci. USA 79: 7824–7827.CrossRefGoogle Scholar
  117. 115.
    Hayday, A. C., Gillies, S. D., Saito, H., Wood, C., Wiman, K., Hayward, W. S., and Tonegawa, S., 1984, Activation of a translocated human c-myc gene by an enhancer in the immunoglobulin heavy-chain locus, Nature (Lond.) 307: 334–340.CrossRefGoogle Scholar
  118. 116.
    Showe, L. C., Moore, R. C., Erikson, J., and Croce, C. M., 1987, MYC oncogene involved in a t(8;22) chromosome translocation is not altered in its putative regulatory regions, Proc. Natl. Acad. Sci. USA 84: 2824–2828.PubMedCrossRefGoogle Scholar
  119. 117.
    ar-Rushdi, A., Nishikura, K., Erikson, J., Watt, R., Rovera, G., and Croce, C. M., 1983, Differential expression of the translocated and the untranslocated c-myc oncogene in Burkitt lymphoma, Science 222: 390–393.PubMedCrossRefGoogle Scholar
  120. 118.
    Davis, M., Malcolm, S., and Rabbitts, T. H., 1984, Chromosome translocation can occur on either side of the c-myc oncogene in Burkitt lymphoma cells, Nature (Lond.) 308: 286–288.CrossRefGoogle Scholar
  121. 119.
    Lanfrancone, L., Pelicci, P. G., and Dalla Favera, R., 1986, Structure and expression of translocated cmyc oncogenes: Specific differences in endemic, sporadic and AIDS-associated forms of Burkitt lymphomas, Curr. Topics Microbiol. immun!. 125: 257–265.CrossRefGoogle Scholar
  122. 120.
    Rabbitts, T. H., Hamlyn, P. H., and Baer, R., 1983, Altered nucleotide sequences of a translocated c-myc gene in Burkitt lymphoma, Nature (Load.) 306: 760–765.CrossRefGoogle Scholar
  123. 121.
    Murphy, W., Sand, J., Taub, R., Vasicek, T., Battey, J., Lenoir, G., and Leder, P., 1986, A translocated human c-myc oncogene is altered in a conserved coding sequence, Proc. Natl. Acad. Sci. USA 83: 2939–2943.PubMedCrossRefGoogle Scholar
  124. 122.
    Pelicci, P. G., Knowles, D. M., Magrath, I., and Dalla Favera, R., 1986, Chromosomal breakpoints and structural alterations of the c-myc locus differ in endemic and sporadic forms of Burkitt lymphoma, Proc. Natl. Acad. Sci. USA 83: 2984–2988.PubMedCrossRefGoogle Scholar
  125. 123.
    Lombardi, L., Newcomb, E. W., and Dalla Favera, R., 1987, Pathogenesis of Burkitt lymphoma: Expression of an activated c-myc oncogene causes the tumorigenic conversion of EBV-infected human B lymphoblaste, Cell 49: 161–170.PubMedCrossRefGoogle Scholar
  126. 124.
    Adams, J. M., Harris, A. W., Pinkert, C. A., Corcoran, L. M., Alexander, W. S., Cory, S., Palmiter, R. D., and Brinster, R. L., 1985, The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice, Nature (Lond.) 318: 533–538.CrossRefGoogle Scholar
  127. 125.
    De Klein, A., van Kessel, A. G., Grosvelg, G., Bartram, C. R., Hagemeiger, A., Bootsma, D., Spun, N. K., Heisterkamp, N., Groffen, N., and Stephenson, J. R., 1982, A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukemia, Nature (Lond.) 300: 765–767.CrossRefGoogle Scholar
  128. 126.
    Shtivelman, E., Lifshitz, B., Gale, R. P., and Canaani, E., 1985, Fused transcript of abl and bcr genes in chronic myelogenous leukaemia, Nature (Load.) 315: 550–554.CrossRefGoogle Scholar
  129. 127.
    Davis, R. L., Konopka, J. B., and Witte, O. N., 1985, Activation of the c-abl oncogene by viral transduction or chromosomal translocation generates altered c-abl proteins with similar in vitro kinase properties, Mol. Cell. Biol. 5: 204–213.PubMedGoogle Scholar
  130. 128.
    Sacchi, N., Watson, D. K., van Kessel, A. H. M., Hagemeijer, A., Kersey, J., Drabkin, H. D., Patterson, D., and Papas, T. S., 1986, Hu-ets-1 and Hu-ets-2 genes are transposed in acute leukemias with (4;11) and (8;21) translocations, Science 231: 379–382.PubMedCrossRefGoogle Scholar
  131. 129.
    Diaz, M. O., Le Beau, M. M., Pitha, P., and Rowley, J. D., 1986, Interferon and c-ets-1 genes in the translocation (9;11)(p22;g23) in human acute monocytic leukemia, Science 231: 265–267.PubMedCrossRefGoogle Scholar
  132. 130.
    Land, H., Parada, L. F., and Weinberg, R. A., 1983, Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes, Nature (Lord.) 304: 596–602.CrossRefGoogle Scholar
  133. 131.
    Ruley, H. E., 1983, Adenovirus early region IA enables viral and cellular transforming genes to transform primary cells in culture, Nature (tond.) 304: 602–606.CrossRefGoogle Scholar
  134. 132.
    Stewart, T. A., Pattengale, P. K., and Leder, P., 1984, Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes, Cell 38: 627–637.PubMedCrossRefGoogle Scholar
  135. 133.
    Brown, K., Quintanilla, M., Ramsden, M., Kerr, I. B., Young, S., and Balmain, A., 1986, v-ras Genes from Harvey and BALB murine sarcoma viruses can act as initiators of two-stage mouse skin carcinogenesis, Cell 46: 447–456.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Eric H. Westin
    • 1
  1. 1.Department of Medicine, Division of Hematology/Oncology, Medical College of VirginiaVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations