Advertisement

Cytogenetics and Human Neoplasia

  • Frederick Hecht
  • Barbara K. Hecht
  • Avery A. Sandberg

Abstract

While the exact role of chromosomal (karyotypic, cytogenetic) changes in the pathobiology of neoplasia has not been clearly defined in most conditions in which such changes have been observed, sufficient data have been accumulated in recent years to encourage cytogeneticists to examine even more closely the chromosomal changes associated with neoplasia in an effort to define karyotypically as many neoplastic entities as are possible with presently available techniques. What is becoming apparent is that a variety of neoplasias (leukemias, carcinomas, sarcomas, benign tumors) can be characterized cytogenetically and can also be further classified into a number of specific subtypes within each major class of tumor. This cytogenetic definition of neoplastic subtypes, beyond the information supplied by previously available diagnostic techniques, points not only to the limitations of earlier classifications but also to the need of using the chromosome data as a gateway to establishing (probably at the molecular level) further reliable criteria by which to distinguish and characterize such subtypes.

Keywords

Acute Lymphoblastic Leukemia Chronic Lymphocytic Leukemia Down Syndrome Synovial Sarcoma Ewing Sarcoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hamden, D. G., and Linger, H. P. (eds.), 1985, An International System for Human Cytogenetic Nomenclature (Cytogenet. Cell Genet.), S. Karger, Basel.Google Scholar
  2. 2.
    Birth Defects: Original Article Series,Vol. 21, No. 1, March of Dimes Birth Defects Foundation, New York.Google Scholar
  3. 3.
    Cohen, A. J., Li, F. P., Berg, S., Marchetto, D. J., Tsai, S., Jacobs, S. C., and Brown, R. S., 1979, Hereditary renal cell carcinoma associated with chromosomal translocation, N. Engl. J. Med. 301: 592–595.PubMedCrossRefGoogle Scholar
  4. 4.
    Riccardi, V. M., Hittner, H. M., Francke, U., Yunis, J. J., Ledbetter, D., and Borges, W., 1980, The aniridia—Wilms’ tumor association: The critical role of chromosome band 11p13, Cancer Genet. Cytogenet. 2: 131–137.CrossRefGoogle Scholar
  5. 5.
    Koufos, A., Hansen, M. F., Lampkin, B. C., Workman, M. L., Copeland, N. G., Jenkins, N. A., and Cavenee, W. K., 1984, Loss of alleles at loci on human chromosome 11 during genesis of Wilms’ tumour, Nature (Lond.) 309: 170–172.CrossRefGoogle Scholar
  6. 6.
    Koufos, A., Hansen, M. F., Copeland, N. G., Jenkins, N. A., Lampkin, B. C., and Cavenee, W. K., 1985, Loss of heterozygosity in three embryonal tumours suggests a common pathogenetic mechanism, Nature (Lond.) 316: 330–334.CrossRefGoogle Scholar
  7. 7.
    Scrable, H. J., Witte, D. P., Lampkin, B. C., and Cavenee, W. K., 1987, Chromosomal localization of the human rhabdomyosarcoma locus by mitotic recombination mapping, Nature (Lond.) 329: 645–647.Google Scholar
  8. 8.
    Vogel, F., 1979, Genetics of retinoblastoma, Hum. Genet. 52: 1–54.PubMedCrossRefGoogle Scholar
  9. 9.
    Dryja, T. P., Rapaport, J. M., Epstein, J., Goorin, A. M., Weichselbaum, R., Koufos, A., and Cavenee, W. K., 1986, Chromosome 13 homozygosity in osteosarcoma without retinoblastoma, Am. J. Hum. Genet. 38: 59–66.PubMedGoogle Scholar
  10. 10.
    Sandberg, A. A., 1980, The Chromosomes in Human Cancer and Leukemia, Elsevier/North-Holland, New York.Google Scholar
  11. 11.
    Nowell, P. C., and Hungerford, D. A., 1960, A minute chromosome in human chronic granulocytic leukemia, Science 132: 1497.Google Scholar
  12. 12.
    Rowley, J. D., 1973, A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining, Nature (Lond.) 243: 290–293.CrossRefGoogle Scholar
  13. 13.
    Sandberg, A. A., Gemmill, R. M., Hecht, B. K., and Hecht, F., 1986, The Philadelphia chromosome: A model of cancer and molecular cytogenetics, Cancer Genet. Cytogenet. 21: 129–146.PubMedCrossRefGoogle Scholar
  14. 14.
    Hermans, A., Heisterkamp, N., von Lindern, M., van Baal, S., Meijer, D., van der Plas, D., Wiedemann, L. M., Groffen, J., Bootsma, D., and Grosveld, G., 1987, Unique fusion of bcr and c-abl genes in Philadelphia chromosome positive acute lymphoblastic leukemia, Cell 51: 33–40.PubMedCrossRefGoogle Scholar
  15. 15.
    Heisterkamp, N., Stam, K., Groffen, J., de Klein, A., and Grosveld, G., 1985, Structural organization of the bcr gene and its role in the Ph’ translocation, Nature (Lond.) 315: 758–761.Google Scholar
  16. 16.
    Heisterkamp, N., Stephenson, J., Grosveld, G., and Groffen, J., 1984, The involvement of human c-abl and bcr in the Philadelphia translocation, in: Genes and Cancer ( J. M. Bishop, J. D. Rowley, and M. Greaves, eds.), pp. 547–567, Liss, New York.Google Scholar
  17. 17.
    Boehm, T. L. J., and Drahovsky, D., 1987, Application of a bcr-specific probe in the classification of human leukaemia, J. Cancer Res. Clin. Oncol. 113: 267–272.PubMedCrossRefGoogle Scholar
  18. 18.
    Collins, S. J., 1986, Breakpoints on chromosomes 9 and 22 in Philadelphia chromosome-positive chronic myelogenous leukemia (CML), J. Clin. Invest. 78: 1392–1396.PubMedCrossRefGoogle Scholar
  19. 19.
    Torelli, G., Selleri, L., Emilia, G., Narni, F., Colò, A., Zucchini, P., Donelli, A., Venturelli, D., and Torelli, U., 1987, Molecular study of the Philadelphia translocation in chronic myelogenous leukemia in different stages of disease, Haematologica 72: 201–208.PubMedGoogle Scholar
  20. 20.
    Rodenhuis, S., Smets, L. A., Slater, R. M., Behrendt, H., and Veerman, A. J. P., 1985, Distinguishing the Philadelphia chromosome of acute lymphoblastic leukemia from its counterpart in chronic myelogenous leukemia, N. Engl. J. Med. 313: 51–52.PubMedCrossRefGoogle Scholar
  21. 21.
    Sandberg, A. A., 1987, The usefulness of chromosome analysis in clinical oncology, Oncology 1: 21–33.PubMedGoogle Scholar
  22. 22.
    Bennett, J. M., Catovsky, D., Daniel, M.-T., Flandrin, G., Galton, D. A. G., Gralnick, H. R., and Sultan, C., 1976, Proposals for the classification of the acute leukaemias, Br. J. Haematol. 33: 451–458.PubMedCrossRefGoogle Scholar
  23. 23.
    Bennett, J. M., Catovsky, D., Daniel, M.-T., Flandrin, G., Galton, D. A. G., Gralnick, H. R., and Sultan, C., 1982, Proposals for the classification of the myelodysplastic syndromes, Br. J. Haematol. 51: 189–199.PubMedGoogle Scholar
  24. 24.
    Bennett, J. M., Catovsky, D., Daniel, M.-T., Flandrin, G., Galton, D. A. G., Gralnick, H. R., and Sultan, C., 1985, Criteria for the diagnosis of acute leukemia of megakaryocyte lineage (M7), Ann. Intern. Med. 103: 460–462.PubMedGoogle Scholar
  25. 24.
    Bennett, J. M., Catovsky, D., Daniel, M.-T., Flandrin, G., Galton, D. A. G., Gralnick, H. R., and Sultan, C., 1985, Criteria for the diagnosis of acute leukemia of megakaryocyte lineage (M7), Ann. Intern. Med. 103: 460–462.PubMedGoogle Scholar
  26. 26.
    Bernstein, R., Pinto, M. R., Behr, A., and Mendelow, B., 1982, Chromosome 3 abnormalities in acute nonlymphocytic leukemia (ANLL) with abnormal thrombopoiesis: Report of three patients with a “new” inversion anomaly and a further case of homologous translocation, Blood 60: 613–617.PubMedGoogle Scholar
  27. 27.
    Bernstein, R., Bagg, A., Pinto, M., Lewis, D., and Mendelow, B., 1986, Chromosome 3q21 abnormalities associated with hyperactive thrombopoiesis in acute blastic transformation of chronic myeloid leukemia, Blood 68: 652–657.PubMedGoogle Scholar
  28. 28.
    Sweet, D. L., Golomb, H. M., Rowley, J. D., and Vardiman, J. M., 1979, Acute myelogenous leukemia and thrombocythemia associated with an abnormality of chromosome No. 3, Cancer Genet. Cytogenet. 1: 33–37.CrossRefGoogle Scholar
  29. 29.
    Bitter, M. A., Neilly, M. E., Le Beau, M. M., Pearson, M. G., and Rowley, J. D., 1985, Rearrangements of chromosome 3 involving bands 3g21 and 3q26 are associated with normal or elevated platelet counts in acute nonlymphocytic leukemia, Blood 66: 1362–1370.PubMedGoogle Scholar
  30. 30.
    Berger, R., Bernheim, A., Daniel, M.-T., Valensi, F., and Flandrin, G., 1981, Karyotypes and cell phenotypes in acute leukemia following other diseases, Blood Cells 7: 293–299.PubMedGoogle Scholar
  31. 31.
    Sandberg, A. A., 1986, The chromosomes in human leukemia, Semin. Hematol. 23: 201.PubMedGoogle Scholar
  32. 32.
    First MIC Cooperative Study Group, 1986, Morphologic, immunologic, and cytogenetic (MIC) working classification of acute lymphoblastic leukemias, Cancer Genet. Cytogenet. 23: 189–197.CrossRefGoogle Scholar
  33. 33.
    Sandberg, A. A., Morgan, R., McCallister, J. A., Kaiser-McCaw, B., and Hecht, F., 1983, Acute myeloblastic leukemia (AML) with t(6;9)(p23;q34): A specific subgroup of AML?, Cancer Genet. Cytogenet. 10: 139–142.PubMedCrossRefGoogle Scholar
  34. 34.
    Schwartz, S., Jiji, R., Kerman, S., Meekins, J., and Cohen, M. M., 1983, Translocation (6;9)(p23;q34) in acute nonlymphocytic leukemia, Cancer Genet. Cytogenet. 10: 133–138.PubMedCrossRefGoogle Scholar
  35. 35.
    Vermaelen, K., Michaux, J.-L., Louwagie, A., and Van Den Berghe, H., 1983, Reciprocal translocation t(6;9)(p21;g33): A new characteristic chromosome anomaly in myeloid leukemias, Cancer Genet. Cytogenet. 10: 125–131.PubMedCrossRefGoogle Scholar
  36. 36.
    Bennett, J. M., Catovsky, D., Daniel, M.-T., Flandrin, G., Galton, D. A. G., Gralnick, H. R., and Sultan, C., 1981, Morphological classification of acute lymphoblastic leukemia: Concordance among observers and clinical correlations, Br. J. Haematol. 47: 553–561.PubMedCrossRefGoogle Scholar
  37. 37.
    Yunis, J. J., Oken, M. M., Theologides, A., Howe, R. B., and Kaplan, M. E., 1984, Recurrent chromosomal defects are found in most patients with non-Hodgkin’s-lymphoma, Cancer Genet. Cytogenet. 13: 17–28.PubMedCrossRefGoogle Scholar
  38. 38.
    Yunis, J. J., Frizzera, G., Oken, M. M., McKenna, J., Theologides, A., and Arnesen, M., 1987, Multiple recurrent genomic defects in follicular lymphoma: A possible model for cancer, N. Engl. J. Med. 316: 7984.CrossRefGoogle Scholar
  39. 39.
    First International Workshop on Chromosomes in Leukemia 1977, 1978, Chromosomes in Ph’-positive chronic granulocytic leukaemia, Br. J. Haematol. 39: 305–309.Google Scholar
  40. 40.
    First International Workshop on Chromosomes in Leukemia 1977, 1978, Chromosomes in acute nonlymphocytic leukaemia, Br. J. Haematol. 39: 311–316.Google Scholar
  41. 41.
    Second International Workshop on Chromosomes in Leukemia 1979, 1980: Morphological analysis of acute promyelocytic leukemia (M3) and t(8;21) cases, Cancer Genet. Cytogenet. 2: 97–98.Google Scholar
  42. 42.
    Third International Workshop on Chromosomes in Leukemia 1980, 1981: Chromosomal abnormalities in acute lymphoblastic leukemia, Cancer Genet. Cytogenet. 4: 101–110.Google Scholar
  43. 43.
    Third International Workshop on Chromosomes in Leukemia 1980, 1981: Clinical significance of chromosomal abnormalities in acute lymphoblastic leukemia, Cancer Genet. Cytogenet. 4: 111–137.Google Scholar
  44. 44.
    Fourth International Workshop on Chromosomes in Leukemia 1982, 1984: A prospective study of acute nonlymphocytic leukemia, Cancer Genet. Cytogenet. 11: 249–360.Google Scholar
  45. 45.
    Croce, C. M., 1986, Chromosome translocations in human cancer, Cancer Res. 46: 6019–6023.PubMedGoogle Scholar
  46. 46.
    The Non-Hodgkin’s Lymphoma Pathologic Classification Project, 1982, National Cancer Institute-sponsored study of classification of non-Hodgkin’s lymphomas, 1982, Summary and description of a working formulation for clinical usage, Cancer 49: 2112.Google Scholar
  47. 47.
    Sandberg, A. A., 1986, Cytogenetics of the leukemias and lymphomas, in: The Human Oncogenic Viruses ( A. A. Luderer and H. H. Weetall, eds.), pp. 1–41, Humana Press, Clifton, New Jersey.Google Scholar
  48. 48.
    Dalla-Favera, R., Bregni, M., Erikson, J., Patterson, D., Gallo, R. C., and Croce, C. M., 1982, Human cmyc one gene is located in the region of chromosome 8 that is translocated in Burkitt lymphoma cells, Proc. Natl. Acad. Sci. USA 79: 7824–7827.PubMedCrossRefGoogle Scholar
  49. 49.
    Croce, C. M., and Nowell, P. C., 1985, Molecular basis of human B cell neoplasia, Blood 65: 1–7.PubMedGoogle Scholar
  50. 50.
    Croce, C. M., Erikson, J., Tsujimoto, Y., and Nowell, P.C., 1987, Molecular basis of human B- and T-cell neoplasia, in: Advances in Viral Oncology, Vol. 7 ( G. Klein, Ed.), pp. 35–51, Raven, New York.Google Scholar
  51. 51.
    Sandberg, A. A., and Turc-Carel, C., 1987, The cytogenetics of solid tumors: Relation to diagnosis, classification and pathology, Cancer 59: 387–395.PubMedCrossRefGoogle Scholar
  52. 52.
    Cavazzana, A., Ross, R., Miser, J. S., Triche, T. J., 1987, Experimental evidence for a neural origin of Ewing’s sarcoma, Am. J. Pathol. 127: 507–518.PubMedGoogle Scholar
  53. 53.
    Sandberg, A. A., 1986, Chromosome changes in bladder cancer: Clinical and other correlations, Cancer Genet. Cytogenet. 19: 163–175.PubMedCrossRefGoogle Scholar
  54. 54.
    Turc-Carel, C., Limon, J., Dal CM, P., Rao, U., Karakousis, C., and Sandberg, A. A., 1986, Cytogenetic studies of adipose tissue tumors. I. A benign lipoma with reciprocal translocation t(3;I2)(g28;g14), Cancer Genet. Cytogenet. 23: 283–289.PubMedCrossRefGoogle Scholar
  55. 55.
    Turc-Carel, C., Limon, J., Dal CM, P., Rao, U., Karakousis, C., and Sandberg, A. A., 1986, Cytogenetic studies of adipose tissue tumors. II. Recurrent reciprocal translocation t(12;16)(g13;p11) in myxoid liposarcomas, Cancer Genet. Cytogenet. 23: 291–299.PubMedCrossRefGoogle Scholar
  56. 56.
    Mandahl, N., Heim, S., Johansson, B., Bennet, K., Mertens, F., Olsson, G., Rööser, B., Rydholm, A., Willén, H., and Mitelman, F., 1987, Lipomas have characteristic structural chromosomal rearrangements of 12q13-q14, /nt. J. Cancer 39: 685–688.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Frederick Hecht
    • 1
  • Barbara K. Hecht
    • 1
  • Avery A. Sandberg
    • 1
  1. 1.The Genetics Center and The Cancer CenterSouthwest Biomedical Research InstituteScottsdaleUSA

Personalised recommendations