Tumor Progression and the Clonal Evolution of Neoplasia

  • Alphonse E. Sirica


Tumor progression has for many years been recognized as an important stage in the development of malignant neoplasia. In 1935, Peyton Rous1 first used the term progression to describe the development in rabbits of carcinoma from viral-induced cutaneous papillomas. However, it was Leslie Foulds in the late 1940s who first generalized the concept of tumor progression. 2–4 According to Foulds, “the concept of progression is one of stepwise neoplastic development through qualitatively different stages.”5 In particular, he has stated that tumors gain or lose characters such as growth rate, invasiveness, powers of metastasis, hormone responsiveness, and morphologic characteristics independently. Furthermore, these changes were considered by Foulds to be essentially irreversible and to result in an increased autonomy.4 That such changes may in fact undergo apparent reversibility is discussed at the end of this chapter.


Tumor Progression Clonal Evolution Clonal Origin Diffuse Large Cell Lymphoma Human Embryonal Carcinoma Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rous, P., and Beard, J. W., 1935, The progression to carcinoma of virus-induced rabbit papillomas (Shope), J. Exp. Med. 62:523–548.PubMedCrossRefGoogle Scholar
  2. 2.
    Foulds, L., 1949, Mammary tumors in hybrid mice: Growth and progression of spontaneous tumours, Br. J. Cancer 3:345–375.PubMedCrossRefGoogle Scholar
  3. 3.
    Foulds, L., 1965, Multuple etiologic factors in neoplastic development, Cancer Res. 25:1339–1347.PubMedGoogle Scholar
  4. 4.
    Foulds, L., 1969, Neoplastic Development Vol. 1, Academic Press, London.Google Scholar
  5. 5.
    Farber, E., 1984, The multistep nature of cancer development, Cancer Res. 44:4217–4223.PubMedGoogle Scholar
  6. 6.
    Heppner, G. H., 1984, Tumor heterogeneity, Cancer Res. 44:2259–2265.PubMedGoogle Scholar
  7. 7.
    Potter, V. R., 1964, Biochemical perspectives in cancer research, Cancer Res. 24:1085–1098.PubMedGoogle Scholar
  8. 8.
    Potter, V. R., Watanabe, M., Pitot, H. C., and Morris, H. P., 1969, Systematic oscillations in metabolic activity in rat liver and hepatomas. Survey of normal diploid and other hepatoma lines, Cancer Res. 29:55–78.PubMedGoogle Scholar
  9. 9.
    Poste, G., and Greig, R., 1982, On the genesis and regulation of cellular heterogeneity in malignant tumors, Invasion Metastasis 2:137–176.PubMedGoogle Scholar
  10. 10.
    Ling, V., Chambers, A. F., Harris, J. F., and Hill, R. P., 1985, Quantitative genetic analysis of tumor progression, Cancer Metastasis Rev. 4:173–194.PubMedCrossRefGoogle Scholar
  11. 11.
    Nicolson, G. L., 1987, Tumor cell instability, diversification, and progression to the metastatic phenotype: From oncogene to oncofetal expression, Cancer Res. 47:1473–1487.PubMedGoogle Scholar
  12. 12.
    Pugh, T. D., and Goldfarb, S., 1978, Quantitative histochemical and autoradiographic studies of hepatocarcinogenesis in rats fed 2-acetylaminofluorene followed by phenobarbital, Cancer Res. 38:4450–4457.PubMedGoogle Scholar
  13. 13.
    Pitot, H. C., Goldsworthy, T., Campbell, H. A., and Poland, A., 1980, Quantitative evaluation of the promotion by 2,3,7,8-tetrachlorodibenzo-p-dioxin of hepatocarcinogenesis from diethylnitrosamine, Cancer Res. 40:3616–3620.PubMedGoogle Scholar
  14. 14.
    Peraino, C., Staffeldt, E. E., Carnes, B. A., Ludeman, V. A., Blomquist, J. A., and Vesselinovitch, S. D., 1984, Characterization of histochemically detectable altered hepatocyte foci and their relationship to hepatic tumorigenesis in rats treated once with diethylnitrosamine or benzo(a)pyrene within one day after birth, Cancer Res. 44:3340–3347.PubMedGoogle Scholar
  15. 15.
    Fialkow, P. J., 1976, Clonal origin of human tumors, Biochim. Biophys. Acta 458:283–321.PubMedGoogle Scholar
  16. 16.
    Nowell, P. C., 1986, Mechanisms of tumor progression, Cancer Res. 46:2203–2207.PubMedGoogle Scholar
  17. 17.
    Nowell, P. C., 1980, Chromosomes and tumor progression, in: Results and Problems in Cell Differentiation—Differentiation and Neoplasia, Vol. 11 (R. C. McKinnell, M. A. DiBerardino, M. Blumenfeld, and R. D. Bergad, eds.), pp. 102–106, Springer-Verlag, Berlin.Google Scholar
  18. 18.
    Rubin, H., 1985, Cancer as a dynamic developmental disorder, Cancer Res. 45:2935–2942.PubMedGoogle Scholar
  19. 19.
    Ashley, D. J. B., 1972, An Introduction to the General Pathology of Tumors, Williams & Wilkins, Baltimore.Google Scholar
  20. 20.
    Robbins, S. L., Cotran, R. S., and Kumar, V., 1984, Pathologic Basic of Disease, 3rd ed., W. B. Saunders, Philadelphia.Google Scholar
  21. 21.
    McDivitt, R. W., 1985, Breast in: Anderson’s Pathology, Vol. 2, 8th ed. (J. M. Kissane, ed.), pp. 1546–1569, C. V. Mosby, St. Louis.Google Scholar
  22. 22.
    Jones, T. C., and Hunt, R. D., 1983, Veterinary Pathology, Lea & Febiger, Philadelphia.Google Scholar
  23. 23.
    Nowell, P. C., 1976, The clonal evolution of tumor cell populations, Science 194:23–28.PubMedCrossRefGoogle Scholar
  24. 24.
    Arnold, A., Cossman, J., Bakhshi, A., Jaffe, E. S., Waldmann, T. A., and Korsmeyer, S. J., 1983, Immunoglobulin-gene rearrangements as unique clonal markers in human lymphoid neoplasms, N. England J. Med. 309:1593–1599.CrossRefGoogle Scholar
  25. 25.
    Raffeld, M., Wright, J. J., Lipford, E., Cossman, J., Longo, D. L., Bakhshi, A., and Korsmeyer, S. J., 1987, Clonal evolution of t (14; 18) follicular lymphomas demonstrated by immunoglobulin genes and the 18 q 21 major breakpoint region, Cancer Res. 47:2537–2542.PubMedGoogle Scholar
  26. 26.
    Rywlin, A. M., 1985, Hemopoietic system: reticuloendothelial system, spleen, lymph nodes, bone marrow and blood, in: Anderson’s Pathology Vol. 2, 8th ed. (J. M. Kissane, ed.), pp. 1338–1340, C. V. Mosby, St. Louis.Google Scholar
  27. 27.
    Esumi, M., Aritaka, T., Arii, M., Suzuki, K., Tanikawa, K., Mizuo, H., Mima, T., and Shikata, T., 1986, Clonal origin of human hepatoma determined by integration of hepatitis B virus DNA, Cancer Res. 46:5767–5771.PubMedGoogle Scholar
  28. 28.
    Condamine, H., Custer, R. P., and Mintz, B., 1971, Pure-strain and genetically mosaic liver tumors histochemically identified with the ß-glucuronidase marker in allophenic mice, Proc. Natl. Acad. Sci. USA 68:2032–2036.PubMedCrossRefGoogle Scholar
  29. 29.
    Rabes, H. M., Bücher, T., Hartmann, A., Linke, I., and Dünnwald, M., 1982, Clonal growth of carcinogen-induced enzyme-deficient proneoplastic cell populations in mouse liver, Cancer Res. 42:3220–3227.PubMedGoogle Scholar
  30. 30.
    Williams, E. D., Wareham, K. A., and Howell, S., 1982, Direct evidence for the single cell origin of mouse liver tumors, Br. J. Cancer 47:723–726.CrossRefGoogle Scholar
  31. 31.
    Goldfarb, S., and Pugh, T. D., 1986, Multistage rodent hepatocarcinogenesis, Prog. Liver Dis. 8:59–7620.Google Scholar
  32. 32.
    Iannaccone, P. M., Weinberg, W. C., and Deamant, F. D., 1987, Chemically-induced tumors and preneoplasias are clonal growths, Proc. Am. Assoc. Cancer Res. 28:52.Google Scholar
  33. 33.
    Weinberg, W. C., Berkwits, L., and Iannaccone, P. M., 1987, The clonal nature of carcinogen-induced altered foci of -y-glutamyl transpeptidase expression in rat liver, Carcinogenesis 8:565–570.PubMedCrossRefGoogle Scholar
  34. 34.
    Deamant, F. D., and Iannaccone, P. M., 1985, Evidence concerning the clonal nature of chemically induced tumors: phosphoglycerate kinase-1 isozyme patterns in chemically induced fibrosarcomas, J. Natl. Cancer Inst. 74:145–150.PubMedGoogle Scholar
  35. 35.
    Iannaccone, P. M., Gardner, R. L., and Harris, H., 1978, The cellular origin of chemically induced tumours. J. Cell Sci. 29:249–269.PubMedGoogle Scholar
  36. 36.
    Reddy, A. L., and Fialkow, P. J., 1983, Papillomas induced by initiation-promotion differ from those induced by carcinogen alone, Nature (Lond.) 304:69–71.CrossRefGoogle Scholar
  37. 37.
    Taguchi, T., Yokoyama, M., and Kitamura, Y., 1984, Intraclonal conversion from papilloma to carcinoma in the skin of Pgk-la/Pgk-1b mice treated by a complete carcinogenesis process or by an initiation-promotion regimen, Cancer Res. 44:3779–3782.PubMedGoogle Scholar
  38. 38.
    Talmadge, J. E., and Zbar, B., 1987, Clonality of pulmonary metastases from the bladder 6 subline of the B 16 melanoma studied by Southern hybridization, J. Natl. Cancer Inst. 78:315–320.PubMedGoogle Scholar
  39. 39.
    Sager, R., Gadi, I. K., Stephens, L., and Grabowy, C. T., 1985, Gene amplification: An example of accelerated evolution in tumorigenic cells, Proc. Natl. Acad. Sci. USA 82:7015–7019.PubMedCrossRefGoogle Scholar
  40. 40.
    Aldaz, C. M., Conti, C. J., O’Connell, J., Yuspa, S. H., Klein-Szanto, A. J. P., and Slaga, T. J., 1986, Cytogenetic evidence for gene amplification in mouse skin carcinogenesis, Cancer Res. 46:3565–3568.PubMedGoogle Scholar
  41. 41.
    Frost, P., and Kerbel, R. S., 1983, On a possible epigenetic mechanism(s) of tumor cell heterogeneity—The role of DNA methylation, Cancer Metastasis Rev. 2:375–378.PubMedCrossRefGoogle Scholar
  42. 42.
    Jones, P. A., 1986, DNA methylation and cancer, Cancer Res. 46:461–466.PubMedGoogle Scholar
  43. 43.
    Herlyn, M., Clark, W. H., Rodeck, U., Mancianti, M. L., Jambrosci, J., and Koprowski, H., 1987, Biology of disease-Biology of tumor progression in human melanocytes, Lab. Invest. 56:461–474.PubMedGoogle Scholar
  44. 44.
    Gitelman, I., Dexter, D. F., and Roder, J. C., 1987, DNA amplication and metastasis of the human melanoma cell line MeWO, Cancer Res. 47:3851–3855.PubMedGoogle Scholar
  45. 45.
    Parry, J. M., Parry, E. M., and Barrett, J. C., 1981, Tumor promoters induced mitotic aneuploidy in yeast, Nature (Lord.) 294:263–265.CrossRefGoogle Scholar
  46. 46.
    Ferguson, L. R., and Parry, J. M., 1984, Mitotic aneuploidy as a possible mechanism for tumour promoting activity in bile acids, Carcinogenesis 5:447–451.PubMedCrossRefGoogle Scholar
  47. 47.
    Kokal, W., Sheibani, K., Terz, J., and Harada, J. R., 1986, Tumor DNA content in the prognosis of colorectal carcinoma, JAMA 255:3123–3127.PubMedCrossRefGoogle Scholar
  48. 48.
    Schwartz, D., Banner, B. F., Roseman, D. L., and Coon, J. S., 1986, Origin of multiple “primary” colon carcinomas-A retrospective flow cytometric study, Cancer 58:2082–2088.PubMedCrossRefGoogle Scholar
  49. 49.
    Hedley, D. W., Rugg, C. A., Ng, A. B. P., and Taylor, I. W., 1984, Influence of cellular DNA content on disease free survival stage II breast cancer patients, Cancer Res. 44:5395–5398.PubMedGoogle Scholar
  50. 50.
    Friedlander, M. L., Russell, P., Taylor, I. W., Hedley, D. W., and Tattersall, M. H. N., 1984, Flow cytometric analysis of cellular DNA content as an adjunct to the diagnosis of ovarian tumours of borderline malignancy, Pathology 16:301–306.PubMedCrossRefGoogle Scholar
  51. 51.
    Iversen, O., and Skaarland, E., 1987, Ploidy assessment of benign and malignant ovarian tumors by flow cytometry-A clinicopathologic study, Cancer 60:82–87.PubMedCrossRefGoogle Scholar
  52. 52.
    Lundberg, S., Carstensen, J., and Rundquist, I., 1987, DNA flow cytometry and histopathological grading of paraffin-embedded prostate biopsy specimens in a survival study, Cancer Res. 47:1972–1977.Google Scholar
  53. 53.
    Stephenson, R. A., James, B. C., Gay, H., Fair, W. R., Whitmore, Jr., W. F., and Melamed, M. R., 1987, Flow cytometry of prostate cancer: Relationship of DNA content to survival, Cancer Res. 47:2504–2509.PubMedGoogle Scholar
  54. 54.
    Tribukait, B., and Esposti, P. L., 1978, Quantitative flow-microfluorometric analysis of the DNA in cells from neoplasms of the urinary bladder: Correlation of aneuploidy with histological grading and the cytological findings, Urol. Res. 6:201–205.PubMedCrossRefGoogle Scholar
  55. 55.
    Badalament, R. A., Kimmel, M., Gay, H., Cibas, E. S., Whitmore, W. F., Herr, H. W., Fair, W. R., and Melamed, M. R., 1987, The sensitivity of flow cytometry compared with conventional cytology in the detection of superficial bladder carcinoma, Cancer 59:2078–2085.PubMedCrossRefGoogle Scholar
  56. 56.
    Bauer, K. D., Merkel, D. E., Winter, J. N., Marder, R. J., Hauck, W. W., Wallemark, C. B., Williams, T. J., and Variakojis, D., 1986, Prognostic implications of ploidy and proliferative activity in diffuse large cell lymphomas, Cancer Res. 46:3173–3178.PubMedGoogle Scholar
  57. 57.
    Yokota, J., Tsunetsugu-Yokota, Y., Battifora, H., LeFevre, C., and Cline, M. J., 1986, Alterations of myc, myb, and rasHa proto-oncogenes in cancers are frequent and show clinical correlation, Science 231:261–265.PubMedCrossRefGoogle Scholar
  58. 58.
    Seeger, R. C., Brodeur, G. M., Sather, H., Dalton, A., Siegel, S. E., Wong, K. Y., and Hammond, D., 1985, Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas, N. Engl. J. Med. 313:1111–1116.PubMedCrossRefGoogle Scholar
  59. 59.
    Brodeur, G. M., Seeger, R. C., Sather, H., Dalton, A., Siegel, S. E., Wong, K. Y., and Hammond, D., 1986, Clinical implications of oncogene activation in human neuroblastomas, Cancer 58:541–545.PubMedCrossRefGoogle Scholar
  60. 60.
    Rosen, N., Reynolds, C. P., Thiele, C. J., Biedler, J. L., and Israel, M. A., 1986, Increased N-myc expression following progressive growth of human neuroblastoma, Cancer Res. 46:4139–4142.PubMedGoogle Scholar
  61. 61.
    Slamon, D. J., Clark, G. M., Wong, S. G., Levin, W. J., Ullrich, A., and McGuire, W. L., 1987, Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene, Science 235:177–182.PubMedCrossRefGoogle Scholar
  62. 62.
    Alexander, R. J., Buxbaum, J. N., and Raicht, R. F., 1986, Oncogene alterations in primary human colon tumors, Gastroenterology 91:1503–1510.PubMedGoogle Scholar
  63. 63.
    Rothberg, P. G., Spandorfer, J. M., Erisman, M. D., Staroscik, R. N., Sears, H. F., Petersen, R. O., and Astrin, S. M., 1985, Evidence that c-myc expression defines two genetically distinct forms of colorectal adenocarcinoma, Br. J. Cancer 52:629–632.PubMedCrossRefGoogle Scholar
  64. 64.
    Augenlicht, L. H., Augeron, C., Yander, G., and Laboisse, C., 1987, Overexpression of ras in mucus-secreting human colon carcinoma cells of low tumorigenicity, Cancer Res. 47:3763–3765.PubMedGoogle Scholar
  65. 65.
    Gallick, G. E., Kurzrock, P., Kloetzer, W. S., Arlinghaus, R. B., and Gutterman, J. U., Expression of P21ras in fresh primary and metastatic human colorectal tumors. Proc. Natl. Acad. Sci. USA 82:1795–1799.Google Scholar
  66. 66.
    Bos, J. L., Fearon, E. R., Hamilton, S. R., Verlaan-de Vries, M., van Boom, J. H., van der Eb, A. J., and Vogelstein, B., 1987, Prevalence of ras gene mutations in human colorectal cancers, Nature (Lond.) 327:293–297.CrossRefGoogle Scholar
  67. 67.
    Forrester, K., Almoguera, C., Han, K., Grizzle, W. E., and Perucho, M., 1987, Detection of high incidence of K-ras oncogenes during human colon tumorigenesis, Nature (Lond.) L27:298–303.CrossRefGoogle Scholar
  68. 68.
    Leibovitch, S. A., Leibovitch, M.-P., Guillier, M., Billion, J., and Harel, J., 1986, Differentiated expression of proto-oncogenes related to transformation and cancer progression in rat myoblasts, Cancer Res. 46:4097–4013.PubMedGoogle Scholar
  69. 69.
    Pegoraro, L., Palumbo, A., Erikson, J., Falda, M., Giovanazzo, B., Emanuel, B. S., Rovera, G., Nowell, P. C., and Croce, C. M., 1984, A 14; 18 and an 8;14 chromosome translocation in a cell line derived from an acute B-cell leukemia, Proc. Natl. Acad. Sci. USA 81:7166–7170.PubMedCrossRefGoogle Scholar
  70. 70.
    Zbar, B., Brauch, H., Talmadge, C., and Linehan, M., 1987, Loss of alleles of loci on the short arm of chromosome 3 in renal cell carcinoma, Nature (Lond.) 327:721–724.CrossRefGoogle Scholar
  71. 71.
    Becker, F. F., 1986, Progression of tumor histotype during mouse hepatocarcinogenesis associated with the viable yellow (AvY) gene, Cancer Res. 46:2241–2244.PubMedGoogle Scholar
  72. 72.
    Drinkwater, N. R., and Ginsler, J. J., 1986, Genetic control of hepatocarcinogenesis in C57BL/6J and C3H/HeJ inbred mice, Carcinogenesis 7:1701–1707.PubMedCrossRefGoogle Scholar
  73. 73.
    Oredsson, S. M., Billgren, M., and Heby, 0., 1985, Induction of F9 embryonal carcinoma cell differentiation by inhibition of polyamine synthesis, Eur. J. Cell Biol. 38:335–343.PubMedGoogle Scholar
  74. 74.
    Uhl, L., Kelly, M., and Schindler, J., 1986, a-Difluoromethylornithine induces differentiation of a human embryonal carcinoma cell line in vitro, Biochem. Biophys. Res. Commun. 140:66–73.PubMedCrossRefGoogle Scholar
  75. 75.
    Reiss, M., Gamba-Vitalo, C., and Sartorelli, A. C., 1986, Induction of tumor cell differentiation as a therapeutic approach: preclinical models for hematopoietic and solid neoplasms, Cancer Treat. Rep. 70:201–218.PubMedGoogle Scholar
  76. 76.
    Danon, Y. L., and Kaminsky, E., 1985, Dimethyl sulfoxide-induced differentiation does not alter tumorigenicity of neuroblastoma cells, J. Neuro-Oncol. 3:43–51.CrossRefGoogle Scholar
  77. 77.
    Yun, K., and Sugihara, H., 1986, Cell differentiation and cell cycle effects on human promyelocytic leukemia cells induced by 12-O-tetradecanoylphorbol-13-acetate, Lab. Invest. 54:336–344.PubMedGoogle Scholar
  78. 78.
    Marks, P. A., Sheffrey, M., and Rifkind, R. A., 1987, Induction of transformed cells to terminal differentiation and the modulation of gene expression, Cancer Res. 47:659–666.PubMedGoogle Scholar
  79. 79.
    Sartorelli, A. C., 1985, The Walter Hubert Lecture—Malignant cell differentiation as a potential therapeutic approach, Br. J. Cancer 52:293–302.PubMedCrossRefGoogle Scholar
  80. 80.
    Zhou, D., Battifora, H., Yokota, J., Yamamoto, T., and Cline, M. J., 1987, Association of multiple copies of the c-erb B-2 oncogene with spread of breast cancer, Cancer Res. 47:6123–6125.PubMedGoogle Scholar
  81. 81.
    Tal, M., Wetzler, M., Josefberg, Z., Deutch, A., Gutman, M., Assaf, D., Kris, R., Shiloh, Y., Givol, D., and Schlessinger, J., 1988, Sporadic amplification of the HER/neu protooncogene in adenocarcinomas of various tissues, Cancer Res. 48:1517–1520.PubMedGoogle Scholar
  82. 82.
    Hsu, T. C., 1987, Genetic predisposition to cancer with special reference to mutagen sensitivity, In Vitro Cell. Dev. Biol. 23:591–603.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Alphonse E. Sirica
    • 1
  1. 1.Department of Pathology, Medical College of VirginiaVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations