Introduction Chronology of Significant Events in the Study of Neoplasia

  • Alphonse E. Sirica


The purpose of this chronology is to provide both an historic and a current perspective related to the subject matter detailed in this book. No doubt, some omissions have been made, partly due to oversight, but mostly as a result of limited space. For a more detailed account of many of the earlier discoveries listed here, the reader is referred to the excellent work of Michael B. Shimkin, 1977, Contrary to Nature, U.S. Department of Health, Education and Welfare Publication, Washington, D. C., as well as to the specific references cited for each event.


Crown Gall Xeroderma Pigmentosum Rous Sarcoma Virus Skin Carcinogenesis Familial Polyposis Coli 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Breasted, J. H., 1930, The Edwin Smith Surgical Papyrus, University of Chicago Press, Chicago.Google Scholar
  2. 2.
    Ebbell, B. 1937, The Papyrus Ebers: The Greatest Egyptian Medical Document, Levin and Munksgaard, Copenhagen.Google Scholar
  3. 3.
    Diamandopoulos, G. T., and Meissner, W. A., 1985, Neoplasia, in: Anderson’s Pathology, Vol. 1 ( J. M. Kissane, ed.), pp. 514–559, C. V. Mosby, St. Louis.Google Scholar
  4. 4.
    Bett, W. R., 1957, Historical aspects of cancer, in: Cancer, Vol. 1 ( R. W. Raven, ed.), pp. 1–5, Butterworth, London.Google Scholar
  5. 5.
    Willis, R. A., 1960, Pathology of Tumors, 3rd ed., Butterworth, Washington, D.C.Google Scholar
  6. 6.
    Wright, W. C., 1940, De Morbis Artificum by Bernardino Ramazzini, The Latin Text of 1713, University of Chicago Press, Chicago.Google Scholar
  7. 7.
    Wright, W. C., 1964, Ramazzini, B: De Morbis Artificum Diatriba, Hafner, New York.Google Scholar
  8. 8.
    LeDran, H. F., 1757, Memoire avec un précis de plusieurs observations sur le cancer, Mem. Acad. R. Chir. 3: 1–54.Google Scholar
  9. 9.
    Redmond, D. E., Jr., 1970, Tobacco and cancer: The first clinical report, 1761, N. Engl. J. Med. 282: 1823.CrossRefGoogle Scholar
  10. 10.
    Pott, P., 1775, Chirurgical Observations Relative to the Cataract, the Polypus of the Nose, the Cancer of the Scrotum, the Different Kinds of Ruptures, and the Mortification of the Toes and Feet, Hawes, Clark and Collins, London.Google Scholar
  11. 11.
    Bichat, X., 1801, Anatomie générale appliquée à la physiologic et à la médecine, Brosson, Gabon et Cie, Paris.Google Scholar
  12. 12.
    Récamier, J. C. A., 1829, Recherches sur le traitement du cancer, par la compression méthodique simple ou combinée et sur l’histoire générale de la même maladie, Vol. 2, Gabon, Paris.Google Scholar
  13. 13.
    Müller, J., 1838, Ueber den feinem Bau and die Formen der krankhaften Geschwülste, G. Reimer, Berlin.Google Scholar
  14. 14.
    Virchow, R., 1863, Die Krankhaften Geschwülste, August Hirschwald, Berlin.Google Scholar
  15. 15.
    Thiersch, C. 1865, Der Epitheliakrebs namentlich der Haut, Engelmann, Leipzig.Google Scholar
  16. 16.
    Shimkin, M. B., 1955, A note on the history of transplantation of tumors, Cancer 8: 653–655.PubMedCrossRefGoogle Scholar
  17. 17.
    Härting, G. H., and Hesse, W., 1879, Der Lungenkrebs, die Bergkrankheit in den Schneeberger Gruben, Vrtljschr. Gerlichtl. Med. 30: 296–309.Google Scholar
  18. 18.
    Coley, W. B., 1893, The treatment of malignant tumors by repeated inoculations of erysipelas: With a report of ten original cases, Am. J. Med. Sci. 105: 447–511.CrossRefGoogle Scholar
  19. 19.
    Coley, W. B., 1896, The therapeutic value of the mixed toxins of the streptococcus of erysipelas and bacillus prodigiosus in the treatment of inoperable malignant tumors, with a report of one hundred and sixty cases, Am. J. Med. Sci. 112: 251–281.CrossRefGoogle Scholar
  20. 20.
    Rehn, L., 1895, Blasengeschwülste bei Fuchsin-Arbeitern, Arch. K1in. Chir. 50: 588–600.Google Scholar
  21. 21.
    Beatson, G. T., 1896, On the treatment of inoperable cases of carcinoma of the mamma: Suggestions for a new method of treatment with illustrative cases, Lancet 2: 104–107.CrossRefGoogle Scholar
  22. 22.
    Clifton, K. H., 1893, Ionizing radiation carcinogenesis in man, in: Concepts in Cancer Medicine ( S. B. Kahn, R. R. Love, C. Sherman, Jr., and R. Chakravorty, eds.), pp. 67–88, Grune & Stratton, New York.Google Scholar
  23. 23.
    Borrel, A., 1907, Le problème du cancer, Bull. Inst. Pasteur 5: 497–512.Google Scholar
  24. 24.
    Smith, E. F., and Townsend, C. O., 1907, A plant tumor of bacterial origin, Science 25: 671–673.PubMedCrossRefGoogle Scholar
  25. 25.
    Ellermann, V., and Bang, O., 1908, Experimentelle Leukämie bie Hühnern, Centralbl. Bakteriol. 46: 595–609.Google Scholar
  26. 26.
    Clunet, J., 1910, Recherches expérimentales sur les tumeurs malignés, Steinheil, Paris.Google Scholar
  27. 27.
    Rous, P., 1911, A sarcoma of the fowl transmissible by an agent separable from the tumor cells, J. Exp. Med. 13: 397–411.PubMedCrossRefGoogle Scholar
  28. 28.
    Schottlaender, J., and Kermauner, F., 1912, Zur Kenntnis des Uterus Karzinoms: monographische Studie über Morphologie, Entwicklung, Wachstum, nebst Beitragen zur Klinik der Erkrankung, Karger, Berlin.Google Scholar
  29. 29.
    Tyzzer, E. E., 1913, Factors in the production and growth of tumor metastases, J. Med. Res. 28: 309–332.PubMedGoogle Scholar
  30. 30.
    Boveri, T., 1914, Zur Frage der Entstehung maligner Tumoren, Gustav Fisher, Jena.Google Scholar
  31. 31.
    Yamagiwa, K., and Ichikawa, K., 1918, Experimental study of the pathogenesis of carcinoma, J. Cancer Res. 3: 1–29.Google Scholar
  32. 32.
    Kennaway, E. L., and Hieger, I., 1930, Carcinogenic substances and their fluorescence spectra, Br. Med. J. 1: 1044–1046.PubMedCrossRefGoogle Scholar
  33. 33.
    Cook, J. W., Hieger, I., Kennaway, E. L., and Mayneord, W. V., 1932, The production of cancer by pure hydrocarbons. Part 1, Proc. R. Soc. B 3: 455–484.CrossRefGoogle Scholar
  34. 34.
    Warburg, O., 1930, The Metabolism of Tumors (translated by F. Dickens) Arnold Constable, London.Google Scholar
  35. 35.
    Findlay, G. M., 1928, Ultra-violet light and skin cancer, Lancet 2: 1070–1073.CrossRefGoogle Scholar
  36. 36.
    Maitland, H. S., and Humphries, R. E., 1929, Osteogenic sarcoma in dial painters using luminous paint, Arch. Pathol. Lab. Med. 7: 406–417.Google Scholar
  37. 37.
    Lacassagne, A., 1932, Apparition de cancers de la mamelle chez la souris mâle soumise à des injections de folliculine, C. R. Acad. Sci. 195: 630–632.Google Scholar
  38. 38.
    Shope, R. E., 1933, Infectious papillomatosis of rabbits, J. Exp. Med. 58: 607–624.PubMedCrossRefGoogle Scholar
  39. 39.
    Yoshida, T., 1933, Uber die serienweise Verfolgung der Veränderungen der Leber bei der experimentellen Hepatomerzeugung durch o-Aminoazotoluol, Trans. Jpn. Pathol. Soc. 23: 636–638.Google Scholar
  40. 40.
    Sasaki, T., and Yoshida, T., 1935, Experimentelle Erzeugung des Leber karcinoms durch Fütterung mit o-Aminoazotoluol, Virchows Arch. Pathol. Anat. 295: 175–200.CrossRefGoogle Scholar
  41. 41.
    Lucké, B., 1938, Carcinoma in the leopard frog. Its probable causation by a virus, J. Exp. Med. 68: 457–468.Google Scholar
  42. 42.
    Kinosita, R., 1936, Research on the carcinogenesis of the various chemical substances, Gann 30: 423–426.Google Scholar
  43. 43.
    Dmochowski, L., 1957, The part played by viruses in the origin of tumors, in Cancer, Vol. 1 ( R. W. Raven, ed.), pp. 214–305, Butterworth, London.Google Scholar
  44. 44.
    Heuper, W. C., Wiley, F. H., and Wolfe, H. D., 1938, Experimental production of bladder tumors in dogs by administration of beta-naphthylamine, J. Indust. Hyg. Toxicol. 20: 46–84.Google Scholar
  45. 45.
    Haddow, A., 1938, The influence of carcinogenic substances on sarcomata induced by the same and other compounds, J. Pathol. 47: 581–591.CrossRefGoogle Scholar
  46. 46.
    Wilson, R. H., DeEds, F., and Cox, A. J., 1941, Toxicity and carcinogenic activity of 2acetaminofluorene, Cancer Res. 1: 595–608.Google Scholar
  47. 47.
    Rusch, H. P., Kline, B. E., and Baumann, C. A., 1941, Carcinogenesis by ultraviolet rays with reference to wavelength and energy, Arch. Pathol. Lab. Med. 31: 135–146.Google Scholar
  48. 48.
    Berenblum, I., 1941, The cocarcinogenic action of croton resin, Cancer Res. 1: 44–50.Google Scholar
  49. 49.
    Rous, P., and Kidd, J. G., 1941, Conditional neoplasms and subthreshold neoplastic states. A study of the tar tumors of rabbits, J. Exp. Med. 73: 365–389.PubMedCrossRefGoogle Scholar
  50. 50.
    Friedewald, W. F., and Rous, P., 1944, The initiating and promoting elements in tumor production. An analysis of the effects of tar, benzpyrene, and methylcholanthrene on rabbit skin, J. Exp. Med. 80: 101–130.PubMedCrossRefGoogle Scholar
  51. 51.
    White, P. R., and Braun, A. C., 1942, A cancerous neoplasm of plants—Autonomous bacterial-free crown-gall tissue, Cancer Res. 2: 597–617.Google Scholar
  52. 52.
    Earle, W. R., 1943, Production of malignancy in vitro, J. Natl. Cancer Inst. 4: 131–248.Google Scholar
  53. 53.
    Mottram, J. C., 1944, A developing factor in experimental blastogenesis, J. Path 56: 181–187.CrossRefGoogle Scholar
  54. 54.
    Coman, D. R., 1944, Decreased mutual adhesiveness, a property of cells from squamous cell carcinomas, Cancer Res. 4: 625–629.Google Scholar
  55. 55.
    Berenblum, I., and Shubik, P., 1947, The role of croton oil applications associated with a single painting of a carcinogen in tumour induction of the mouse’s skin, Br. J. Cancer 1: 379–382.PubMedCrossRefGoogle Scholar
  56. 56.
    Berenblum, I., and Shubik, P., 1947, A new, quantitative, approach to the study of the stages of chemical carcinogenesis in the mouse’s skin, Br. J. Cancer 1: 383–391.PubMedCrossRefGoogle Scholar
  57. 57.
    Miller, E. C., and Miller, J. A., 1947, The presence and significance of bound aminoazo dyes in the livers of rats fed p-dimethylaminoazobenzene, Cancer Res. 7: 468–480.Google Scholar
  58. 58.
    Gey, G. O., Gey, M. K., Frior, W. M., and Self, W. O., 1949, Cultural and cytologic studies on autologous normal and malignant cells of specific in vitro origin. Conversion of normal into malignant cells, Acta Univ. Int. Contra. Cancrum 6: 706–712.Google Scholar
  59. 59.
    Gey, G. O., 1954–55, Some aspects of the constitution and behavior of normal and malignant cells maintained in continuous culture, Harvey Lect. 50: 154–229.Google Scholar
  60. 60.
    Foulds, L., 1949, Mammary tumours in hybrid mice: Growth and progression of spontaneous tumours, Br. J. Cancer 3: 345–375.PubMedCrossRefGoogle Scholar
  61. 61.
    Foulds, L., 1965, Multiple etiologic factors in neoplastic development, Cancer Res. 25: 1339–1347.PubMedGoogle Scholar
  62. 62.
    Wynder, E. L., and Graham, E. A., 1950, Tobacco smoking as a possible etiologic factor in bronchiogenic carcinoma. A study of six hundred and eighty-four proved cases, DAMA 143: 329–336.Google Scholar
  63. 63.
    Doll, R., and Hill, A. B., 1956, Lung cancer and other causes of death in relation to smoking, Br. Med. J. 2: 1071–1081.PubMedCrossRefGoogle Scholar
  64. 64.
    Hammond, E. C., and Horn, D., 1958, Smoking and death rates—Report of forty-four months of follow up of 187,783 men, DAMA 166: 1159–1172.Google Scholar
  65. 65.
    Dorn, H. F., 1959, Tobacco consumption and mortality from cancer and other diseases, Publ. Health Rep. USA 74: 581–593.CrossRefGoogle Scholar
  66. 66.
    Gross, L., 1951, Spontaneous leukemia developing in C3H mice following inoculation, in infancy, with AK-leukemic extracts, or AK-embryos, Proc. Soc. Exp. Biol. Med. 76: 27–32.PubMedGoogle Scholar
  67. 67.
    Folley, J. H., Borges, W., and Yamawaki, T., 1952, Incidence of leukemia in survivors of the atomic bomb in Hiroshima and Nagasaki, Japan, Am. J. Med. 13: 311–321.PubMedCrossRefGoogle Scholar
  68. 68.
    Foley, E. J., 1953, Antigenic properties of methylcholanthrene-induced tumors in mice of the strain of origin, Cancer Res. 13: 835–837.PubMedGoogle Scholar
  69. 69.
    Greenstein, J. P., 1954, Biochemistry of Cancer, 2nd ed., Academic, New York.Google Scholar
  70. 70.
    Magee, P. N., and Barnes, J. M., 1956, The production of malignant primary hepatic tumors in the rat by feeding dimethylnitrosamine, Br. J. Cancer 10: 114–122.PubMedCrossRefGoogle Scholar
  71. 71.
    Berenblum, I., and Haran-Ghera, N., 1957, A quantitative study of the systemic initiating action of urethane (ethyl carbamate) in mouse skin carcinogenesis, Br. J. Cancer 11: 77–84.PubMedCrossRefGoogle Scholar
  72. 72.
    Pitot, H. C., and Sirica, A. E., 1980, The stages of initiation and promotion in hepatocarcinogenesis, Biochim. Biophys. Acta 605: 191–215.PubMedGoogle Scholar
  73. 73.
    Stewart, S. E., Eddy, B. E., and Borgese, N. G., 1958, Neoplasms in mice inoculated with a tumor agent carried in tissue culture, J. Natl. Cancer Inst. 20: 1223–1243.PubMedGoogle Scholar
  74. 74.
    Eddy, B. E., Stewart, S. E., and Berkeley, W., 1958, Cytopathogenicity in tissue cultures by a tumor virus from mice, Proc. Soc. Exp. Biol. Med. 98: 848–851.PubMedGoogle Scholar
  75. 75.
    Weisburger, E. K., and Weisburger, J. H., 1958, Chemistry, carcinogenicity, and metabolism of 2fluorenamine and related compounds, Adv. Cancer Res. 5: 331–431.PubMedCrossRefGoogle Scholar
  76. 76.
    Miller, J. A., Cramer, J. W., and Miller, E. C., 1960, The N- and ring-hydroxylation of 2-acetylaminofluorene during carcinogenesis in the rat, Cancer Res. 20: 950–962.PubMedGoogle Scholar
  77. 77.
    Cramer, J. W., Miller, J. A., and Miller, E. C., 1960, N-hydroxylation: A new metabolic reaction observed in the rat with the carcinogen 2-acetylaminofluorene, J. Biol. Chem. 235: 885–888.PubMedGoogle Scholar
  78. 78.
    Braun, A. C., 1959, A demonstration of the recovery of the crown-gall tumor cell with the use of complex tumors of single-cell origin, Proc. Natl. Acad. Sci. USA 45: 932–938.PubMedCrossRefGoogle Scholar
  79. 79.
    Pierce, G. B., Dixon, F. J., and Verney, E. L., 1960, Teratocarcinogenic and tissue forming potentials of the cell types comprising embryoid bodies, Lab Invest. 9: 583–602.PubMedGoogle Scholar
  80. 80.
    Braun, A. C., 1974, The Biology of Cancer, Addison-Wesley, Reading, Massachusetts.Google Scholar
  81. 81.
    Nowell, P. C., and Hungerford, D. A., 1960, Chromosome studies on normal and leukemic human leukocytes, J. Natl. Cancer Inst. 25: 85–109.PubMedGoogle Scholar
  82. 82.
    Nowell, P. C., and Hungerford, D. A., 1960, A minute chromosome in human chronic granulocytic leukemia, Science 132: 1497.Google Scholar
  83. 83.
    Vogt, M., and Dulbecco, R., 1960, Virus–cell interaction with a tumor-producing virus, Proc. Natl. Acad. Sci. USA 46: 365–370.PubMedCrossRefGoogle Scholar
  84. 84.
    Dulbecco, R., and Vogt, M., 1960, Significance of continued virus production in tissue cultures rendered neoplastic by polyoma virus, Proc. Natl. Acad. Sci. USA 46: 1617–1632.PubMedCrossRefGoogle Scholar
  85. 85.
    Sachs, L., and Medina, D., 1961, In vitro transformation of normal cells by polyoma virus, Nature (Lond.) 189: 457–458.CrossRefGoogle Scholar
  86. 86.
    Stoker, M., and MacPherson, I., 1961, Studies on the transformation of hamster cells by polyoma virus in vitro, Virology 14: 359–370.CrossRefGoogle Scholar
  87. 87.
    Temin, H. M., 1976, The DNA provirus hypothesis, Science 192: 1075–1080.PubMedCrossRefGoogle Scholar
  88. 88.
    Wagner, J. C., Sleggs, C. A., and Marchand, P., 1960, Diffuse pleural mesothelioma and asbestos exposure in the north western cape province, Br. J. Indust. Med. 17: 260–271.Google Scholar
  89. 89.
    Newhouse, M. L., and Thomson, H., 1965, Mesothelioma of pleura and peritoneum following exposure to asbestos in the London area, Br. J. Indust. Med. 22: 261–269.Google Scholar
  90. 90.
    King, T. J., and McKinnell, R. G., 1960, An attempt to determine the developmental potentialities of the cancer cell nucleus by means of transplantation, in: Cell Physiology of Neoplasia, pp. 591–671, University of Texas Press, Austin.Google Scholar
  91. 91.
    King, T. J., and DiBerardino, M. A., 1965, Transplantation of nuclei from frog renal adenocarcinoma. I. Development of tumor-nuclear-transplant embryos, Ann. NY Acad. Sci. 126: 115–126.PubMedCrossRefGoogle Scholar
  92. 92.
    DiBerardino, M. A., and Hoffner, N. J., 1980, The current status of cloning and nuclear reprograming in amphibian eggs, in: Differentation and Neoplasia ( R. G. McKinnell, M. A. DiBerardino, M. Blumenfeld, and R. D. Bergad, eds.), pp. 53–64, Springer-Verlag, Berlin.Google Scholar
  93. 93.
    Morris, H. P., and Wagner, B. P., 1968, Induction and transplantation of rat hepatomas with different growth rate (including “minimal deviation” hepatomas), in: Methods in Cancer Research, Vol. 4 ( H. Busch, ed.), pp. 125–152, Academic, New York.Google Scholar
  94. 94.
    Potter, V. R., Watanabe, M., Pitot, H. C., and Moms, H. P., 1969, Systematic oscillations in metabolic activity in rat liver and hepatomas. Survey of normal diploid and other hepatoma lines, Cancer Res. 29: 55–78.PubMedGoogle Scholar
  95. 95.
    Weinhouse, S., 1972, Glycolysis, respiration, and anomalous gene expression in experimental hepatomas: G.H.A. Clowes Memorial Lecture, Cancer Res. 32: 2007–2016.PubMedGoogle Scholar
  96. 96.
    Weber, G., 1983, Biochemical strategy of cancer cells and the design of chemotherapy: G.H.A. Clowes Memorial Lecture, Cancer Res. 43: 3466–3492.PubMedGoogle Scholar
  97. 97.
    Prehn, R. T., 1960, Tumor-specific immunity to transplanted dibenz(a,h)anthracene-induced sarcomas, Cancer Res. 20: 1614–1617.Google Scholar
  98. 98.
    Sjögren, H. O., 1965, Transplantation methods as a tool for the detection of tumor-specific antigens, Prog. Exp. Tumor. Res. 6: 289–322.PubMedGoogle Scholar
  99. 99.
    Hellström, I., and Sjögren, H. O., 1966, Demonstration of common specific antigens in mouse and hamster polyoma tumors, Int. J. Cancer 1: 481–489.PubMedCrossRefGoogle Scholar
  100. 100.
    Klein, G., 1968, Tumor-specific transplantation antigens, Cancer Res. 28: 625–635.PubMedGoogle Scholar
  101. 101.
    Gellhorn, A., 1969, Ectopic hormone production in cancer and its implications for basic research on abnormal growth, Adv. Intern. Med. 15: 299–316.PubMedGoogle Scholar
  102. 102.
    Pearse, A. G. E., 1969, The cytochemistry and ultrastructure of polypeptide hormone-producing cells of the APUD series and the embryologic, physiologic and pathologic implications of the concept, J. Histochem Cytochem. 17: 303–313.PubMedCrossRefGoogle Scholar
  103. 103.
    Smith, L. H., 1976, The APUD cell concept, J. Surg. Oncol. 8: 137–142.PubMedCrossRefGoogle Scholar
  104. 104.
    Wallach, D. F., 1972, The Plasma Membrane: Dynamic Perspectives, Genetics and Pathology, The English Universities Press, London.Google Scholar
  105. 105.
    Lancaster, M. C., Jenkins, F. P., and McLphip, J., 1961, Toxicity associated with certain samples of ground nuts, Nature (Lond.) 192: 1095–1096.CrossRefGoogle Scholar
  106. 106.
    Sargeant, K., Sheridan, A., O’Kelly, J., and Carnaghan, R. B. A., 1961, Toxicity associated with certain samples of ground nuts, Nature (Lond.) 192: 1096–1097.CrossRefGoogle Scholar
  107. 107.
    Newberne, P. M., and Butler, W. H., 1969, Effects of aflatoxin on the liver of domestic and laboratory animals: A review, Cancer Res. 29: 236–250.PubMedGoogle Scholar
  108. 108.
    Alpert, M. E., Hutt, M. S. R., Wogan, G. N., and Davidson, C. S., 1971, Association between aflatoxin content of food and hepatoma frequency in Uganda, Cancer 28: 253–260.PubMedCrossRefGoogle Scholar
  109. 109.
    Cohen, S., 1962, Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal, J. Biol Chem. 237: 1555–1562.PubMedGoogle Scholar
  110. 110.
    Miller, E. C., and Miller, J. A., 1966, Mechanisms of chemical carcinogenesis: Nature of proximate carcinogens and interactions with macromolecules, Pharmacol. Rev. 18: 805–838.PubMedGoogle Scholar
  111. 111.
    Abelev, G. I., 1971, Alpha-fetoprotein in oncogenesis and its association with malignant tumors, Adv. Cancer Res. 14: 295–358.PubMedCrossRefGoogle Scholar
  112. 112.
    Gold, P., and Freedman, S. O., 1965, Demonstration of tumor-specific antigens in human colonic carcinomata by immunological tolerance and absorption techniques, J. Exp. Med. 121: 439–462.PubMedCrossRefGoogle Scholar
  113. 113.
    Boutwell, R. K., 1964, Some biological aspects of skin carcinogenesis, Prog. Exp. Tumor Res. 4: 207–250.PubMedGoogle Scholar
  114. 114.
    Berwald, Y., and Sachs, L., 1965, In vitro transformation of normal cells to tumor cells by carcinogenic hydrocarbons, J. Natl. Cancer Inst. 35: 641–661.PubMedGoogle Scholar
  115. 115.
    Blumberg, B. S., Alter, H. J., and Visnich, S., 1965, A new antigen in leukemia sera, JAMA 191: 541–546.Google Scholar
  116. 116.
    Van Duuren, B. L., and Orris, L., 1965, The tumor-enhancing principles of Crown tiglium L., Cancer Res. 25: 1871–1875.PubMedGoogle Scholar
  117. 117.
    Hecker, E., 1968, Cocarcinogenic principles from the seed oil of Croton tiglium and from other Euphorbiaceae, Cancer Res. 28: 2338–2349.PubMedGoogle Scholar
  118. 118.
    Van Duuren, B. L., 1969, Tumor-promoting agents in two-stage carcinogenesis. Prog. Exp. Tumor Res. 11: 31–68.PubMedGoogle Scholar
  119. 119.
    Cleaver, J. E., 1968, Defective repair replication of DNA in xeroderma pigmentosum, Nature (Lond.) 218: 652–656.CrossRefGoogle Scholar
  120. 120.
    Cleaver, J. E., 1969, Xeroderma pigmentosum: a human disease in which an initial stage of DNA repair is defective, Proc. Natl. Acad. Sci. USA 63: 428–435.PubMedCrossRefGoogle Scholar
  121. 121.
    Setlow, R. B., Regan, J. D., German, J., and Carrier, W. L., 1969, Evidence that xeroderma pigmentosum cells do not perform the first step in the repair of ultraviolet damage to their DNA, Proc. Natl. Acad. Sci. USA 64: 1035–1041.PubMedCrossRefGoogle Scholar
  122. 122.
    Huebner, R. J., and Todaro, G. J., 1969, Oncogenes of RNA tumor viruses as determinants of cancer, Proc. Natl. Acad. Sci. USA 64: 1087–1094.PubMedCrossRefGoogle Scholar
  123. 123.
    Huebner, R. J., and Todaro, G. J., 1972, The viral oncogene hypothesis: New evidence, Proc. Natl. Acad. Sci. USA 69: 1009–1015.PubMedCrossRefGoogle Scholar
  124. 124.
    Baltimore, D., 1970, Viral RNA-dependent DNA polymerase in virions of RNA tumour viruses, Nature (Lord.) 226: 1209–1211.CrossRefGoogle Scholar
  125. 125.
    Temin, H. M., and Mizutani, S., 1970, RNA-dependent DNA polymerase in virions of Rous sarcoma virus, Nature (Lond.) 226: 1211–1213.CrossRefGoogle Scholar
  126. 126.
    Herbst, A. L., and Scully, R. E., 1970, Adenocarcinoma of the vagina in adolescence, Cancer 25: 745–757.PubMedCrossRefGoogle Scholar
  127. 127.
    Herbst, A. L., Ulfelder, H., and Poskanzer, D. C., 1971, Adenocarcinoma of the vagina. Association of maternal stilbestrol therapy with tumor appearance in young women, N. Engl. J. Med. 284: 878–881.PubMedCrossRefGoogle Scholar
  128. 128.
    McFarlane, M. J., Feinstein, A. R., and Horwitz, R. I., 1986, Diethylstilbestrol and clear cell vaginal carcinoma—Reappraisal of the epidemiologic evidence, Am. J. Med. 81: 855–863.PubMedCrossRefGoogle Scholar
  129. 129.
    Melnick, S., Cole, P., Anderson, D., and Herbst, A., 1987, Rates and risks of diethylstilbestrol-related clear-cell adenocarcinoma of the vagina and cervix. An update, N. Engl. J. Med. 316: 514–516.PubMedCrossRefGoogle Scholar
  130. 130.
    Martin, G. S., 1970, Rous sarcoma virus: A function required for the maintenance of the transformed state, Nature (Lond.) 227: 1021–1023.CrossRefGoogle Scholar
  131. 131.
    Vogt, P. K., 1971, Spontaneous segregation of nontransforming viruses from cloned sarcoma viruses, Virology, 46: 939–951.PubMedCrossRefGoogle Scholar
  132. 132.
    Duesberg, P. H., 1983, Retroviral transforming genes in normal cells? Nature (Lond.) 304: 219–226.CrossRefGoogle Scholar
  133. 133.
    Folkman, J., Merler, E., Abernathy, C., and Williams, G., 1971, Isolation of a tumor factor responsible for angiogenesis, J. Exp. Med. 133: 275–288.PubMedCrossRefGoogle Scholar
  134. 134.
    Friend, C., Scher, W., Holland, J. G., and Sato, T., 1971, Hemoglobin synthesis in murine virus-induced leukemic cells in vitro: Stimulation of erythroid differentiation by dimethyl sulfoxide, Proc. Natl. Acad. Sci. USA 68: 378–382.PubMedGoogle Scholar
  135. 135.
    Collins, S. J., Ruscetti, F. W., Gallagher, R. E., and Gallo, R. C., 1978, Terminal differentiation of human promyelocytic leukemia cells induced by dimethyl sulfoxide and other polar compounds, Proc. Natl. Acad. Sci. USA 75: 2458–2462.PubMedCrossRefGoogle Scholar
  136. 136.
    Breitman, T. R., Selonick, S. E., and Collins, S. J., 1980, Induction of differentiation of the human promyelocytic leukemia cell line (HL-60) by retinoic acid, Proc. Natl. Acad. Sci. USA 77: 2936–2940.PubMedCrossRefGoogle Scholar
  137. 137.
    Sachs, L., 1980, Activation of normal differentiation genes and the origin and development of myeloid leukemia, in: Differentiation and Neoplasia ( R. G. McKinnell, M. A. DiBerardino, M. Blumenfeld, and R. D. Bergad, eds.), pp. 212–216, Springer-Verlag, Berlin.Google Scholar
  138. 138.
    Peraino, C., Fry, R. J. M., and Staffeldt, E., 1971, Reduction and enhancement by phenobarbital and hepatocarcinogenesis induced in the rat by 2-acetylaminofluorene, Cancer Res. 31: 1506–1512.PubMedGoogle Scholar
  139. 139.
    Solt, D., and Farber, E., 1976, New principle for the analysis of chemical carcinogenesis, Nature (Lond.) 263: 701–703.CrossRefGoogle Scholar
  140. 140.
    Pitot, H. C., Barsness, L., Goldsworthy, T., and Kitagawa, T., 1978, Biochemical characterization of hepatocarcinogenesis after a single dose of diethylnitrosamine, Nature (Lond.) 271: 456–458.CrossRefGoogle Scholar
  141. 141.
    Peraino, C., Staffeldt, E. F., and Ludeman, V. A., 1981, Early appearance of histochemically altered hepatocyte foci and liver tumors in female rats treated with carcinogens one day after birth, Carcinogenesis 2: 463–465.PubMedCrossRefGoogle Scholar
  142. 142.
    Balk, S. D., 1971, Calcium as a regulator of the proliferation of normal but not of transformed,-chicken fibroblasts in a plasma-containing medium, Proc. Natl. Acad. Sci. USA 68: 271–275.PubMedCrossRefGoogle Scholar
  143. 143.
    Ross, R., Glomset, J., Kariya, B., and Harker, L., 1974, A platelet-dependent serum factor that stimulates the proliferation of arterial smooth muscle cells in vitro, Proc. Natl. Acad. Sci. USA 71: 1207–1210.PubMedCrossRefGoogle Scholar
  144. 144.
    Kohler, N., and Lipton, A., 1974, Platelets as a source of fibroblast growth-promoting activity, Exp. Cell Res. 87: 297–301.PubMedCrossRefGoogle Scholar
  145. 145.
    Antoniades, H. N., Stathakos, D., and Scher, C. D., 1975, Isolation of a cationic polypeptide from human serum that stimulates proliferation of 3T3 cells, Proc. Natl. Acad. Sci. USA 72: 2635–2639.PubMedCrossRefGoogle Scholar
  146. 146.
    Antoniades, H. N., Scher, C. D., and Stiles, C. D., 1979, Purification of human platelet-derived growth factor, Proc. Natl. Acad. Sci. USA 76: 1809–1813.PubMedCrossRefGoogle Scholar
  147. 147.
    Antoniades, H. N., and Hunkapiller, M. W., 1983, Human platelet-derived growth factor (PDGF): Amino-terminal amino acid sequence, Science 220: 963–965.PubMedCrossRefGoogle Scholar
  148. 148.
    Baum, J. K., Holtz, F., Bookstein, J. J., and Klein, E. W., 1973, Possible association between benign hepatomas and oral contraceptives, Lancet 2: 926–929.PubMedCrossRefGoogle Scholar
  149. 149.
    Ames, B. N., Durston, W. E., Yamasaki, E., and Lee, F. D., 1973, Carcinogens as mutagens: A simple test system combining liver homogenates for activation and bacteria for detection, Proc. Natl. Acad. Sci. USA 70: 2281–2285.PubMedCrossRefGoogle Scholar
  150. 150.
    McCann, J., Choi, E., Yamasaki, E., and Ames, B. N., 1975, Detection of carcinogens as mutagens in the Salmonella/microsome test: Assay of 300 chemicals, Proc. Natl. Acad. Sci. USA 72: 5135–5139.PubMedCrossRefGoogle Scholar
  151. 151.
    Stehelin, D., Varmus, H. E., Bishop, J. M., and Vogt, P. K., 1976, DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA, Nature (Lond.) 260: 170–173.CrossRefGoogle Scholar
  152. 152.
    Spector, D. H., Baker, B., Varmus, H. E., and Bishop, J. M., 1978, Characteristics of cellular RNA related to the transforming gene of avian sarcoma virus, Cell 13: 381–386.PubMedCrossRefGoogle Scholar
  153. 153.
    Bishop, J. M., 1981, Enemies within: The genesis of retrovirus oncogenes, Cell 23: 5–6.PubMedCrossRefGoogle Scholar
  154. 154.
    Bishop, J. M., 1983, Cancer genes come of age, Cell 32: 1018–1020.PubMedCrossRefGoogle Scholar
  155. 155.
    Bishop, J. M., 1985, Viral oncogenes, Cell 42: 23–38.PubMedCrossRefGoogle Scholar
  156. 156.
    Creech, J. L., Jr., and Johnson, M. N., 1974, Angiosarcoma of the liver in manufacture of polyvinyl chloride, J. Occup. Med. 16: 150–151.PubMedGoogle Scholar
  157. 157.
    Fialkow, P. J., 1974, The origin and development of human tumors studied with cell markers, N. Engl. J. Med. 291: 26–35.PubMedCrossRefGoogle Scholar
  158. 158.
    Köhler, G., and Milstein, C., 1975, Continuous cultures of fused cells secreting antibody of predefined specificity, Nature (Lond.) 256: 495–497.CrossRefGoogle Scholar
  159. 159.
    Mintz, B., Illmensee, K., and Gearhart, J. D., 1975, Development and experimental potentialities of mouse teratocarcinoma cells from embryoid body cores, in: Teratomas and Differentiation ( M. I. Sherman and D. Solter, eds.), pp. 59–82, Academic, New York..Google Scholar
  160. 160.
    Mintz, B., and Illmensee, K., 1975, Normal genetically mosaic mice produced from teratocarcinoma cells, Proc. Natl. Acad. Sci. USA 72: 3585–3589.PubMedCrossRefGoogle Scholar
  161. 161.
    Blumberg, B. S., Larouze, B., London, W. T., Werner, B., Hesser, J. E., Millman, I., Saimot, G., and Payet, M., 1975, The relation of infection with hepatitis B agent to primary hepatic carcinoma, Am. J. Pathol. 81: 669–682.PubMedGoogle Scholar
  162. 162.
    Szmuness, W., 1978, Hepatocellular carcinoma and hepatitis B virus: Evidence for a causal association, Prog. Med. Virol. 24: 40–69.PubMedGoogle Scholar
  163. 163.
    de-Thé, G., Geser, A., Day, N. E., Tukei, P. M., Williams, E. H., Beri, D. P., Smith, P. G., Dean, A. G., Bornkamm, G. W., Feorino, P., and Henle, W., 1978, Epidemiological evidence for causal relationship between Epstein-Barr virus and Burkitt’s lymphoma from Ugandan prospective study, Nature (Lond.) 274: 756–761.CrossRefGoogle Scholar
  164. 164.
    Summers, J., Smolec, J. M., and Snyder, R. A., 1978, A virus similar to hepatitis B virus associated with hepatitis and hepatoma in woodchucks, Proc. Natl. Acad. Sci. USA 75: 4533–4537.PubMedCrossRefGoogle Scholar
  165. 165.
    Marion, P. L., Oshiro, L. S., Regnery, D. C., Scullard, G. H., and Robinson, W. S., 1980, A virus of Beechey ground squirrels that is related to hepatitis B virus of humans, Proc. Natl. Acad. Sci. USA 77: 2941–2945.PubMedCrossRefGoogle Scholar
  166. 166.
    Mason, W. S., Seal, G., and Summers, J., 1980, Virus of Pekin duck with structural and biological relatedness to human hepatitis B virus, J. Virol. 36: 829–836.PubMedGoogle Scholar
  167. 167.
    Gallo, R. C., and Wong-Staal, F., 1984, Current thoughts on the viral etiology of certain human cancers: The Richard and Hinda Rosenthal Foundation Award Lecture, Cancer Res. 44: 2743–2749.PubMedGoogle Scholar
  168. 168.
    Kurman, R. J., Jenson, A. B., and Lancaster, W. D., 1984, Papilloma virus infection and squamous neoplasia of the cervix, Pathol. Res. Pract. 179: 24–30.PubMedCrossRefGoogle Scholar
  169. 169.
    Carswell, E. A., Old, L. J., Kassel, R. L., Green, S., Fiore, N., and Williamson, B., 1975, An endotoxin-induced serum factor that causes necrosis of tumors, Proc. Natl. Acad. Sci. USA 72: 3666–3670.PubMedCrossRefGoogle Scholar
  170. 170.
    Beutler, B., Mahoney, J., LeTrang, N., Pekala, P., and Cerami, A., 1985, Purification of cachectin, a lipoprotein lipase-suppressing hormone secreted by endotoxin-induced RAW 264.7 cells, J. Exp. Med. 161: 984–995.PubMedCrossRefGoogle Scholar
  171. 171.
    Beutler, B., and Cerami, A., 1986, Cachectin and tumor necrosis factor as two sides of the same biological coin, Nature (Lord.) 320: 584–588.CrossRefGoogle Scholar
  172. 172.
    Hewitt, H. B., 1978, The choice of animal tumors for experimental studies of cancer therapy, Adv. Cancer Res. 27: 149–200.PubMedCrossRefGoogle Scholar
  173. 173.
    Fidler, I. J., and Kripke, M. L., 1977, Metastasis results from preexisting variant cells within a malignant tumor, Science 197: 893–895.PubMedCrossRefGoogle Scholar
  174. 174.
    Liotta, L. A., Kleinerman, J., Catanzaro, P., and Rynbrandt, D., 1977, Degradation of basement membrane by murine tumor cells, J. Natl. Cancer Inst. 58: 1427–1431.PubMedGoogle Scholar
  175. 175.
    Brugge, J. S., and Erikson, R. L., 1977, Identification of a transformation-specific antigen induced by an avian sarcoma virus, Nature (Lond.) 269: 346–348.CrossRefGoogle Scholar
  176. 176.
    Collett, M. S., and Erikson, R. L., 1978, Protein kinase activity associated with the avian sarcoma virus src gene product, Proc. Natl. Acad. Sci. USA 75: 2021–2024.PubMedCrossRefGoogle Scholar
  177. 177.
    Hunter, T., and Sefton, B. M., 1980, Transforming gene product of Rous sarcoma virus phosphorylates tyrosine, Proc. Natl. Acad. Sci. USA 77: 1311–1315.PubMedCrossRefGoogle Scholar
  178. 178.
    Collett, M. S., Purchio, A. F., and Erikson, R. L., 1980, Avian sarcoma virus-transforming protein pp60s« shows protein kinase activity specific for tyrosine, Nature (Lond.) 285: 167–169.CrossRefGoogle Scholar
  179. 179.
    Das, M., Miyakawa, T., Fox, C. F., Pruss, R. M., Aharonov, A., and Herschman, H., 1977, Specific radiolabeling of a cell surface receptor for epidermal growth factor, Proc. Natl. Acad. Sci. USA 74: 2790–2794.PubMedCrossRefGoogle Scholar
  180. 180.
    Carpenter, G., and Cohen, S., 1979, Epidermal growth factor, Annu. Rev. Biochem. 48: 193–216.PubMedCrossRefGoogle Scholar
  181. 181.
    Ushiro, H., and Cohen, S., 1980, Identification of phosphotyrosine as a product of epidermal growth factor-activated protein kinase in A-431 cell membranes, J. Biol. Chem. 255: 8363–8365.PubMedGoogle Scholar
  182. 182.
    Cohen, S., Carpenter, G., and King, L., Jr., 1980, Epidermal growth factor—receptor—protein kinase interactions. Co-purification of receptor and epidermal growth factor-enhanced phosphorylation activity, J. Biol. Chem. 255: 4834–4842.PubMedGoogle Scholar
  183. 183.
    Hunter, T., and Cooper, J. A., 1981, Epidermal growth factor induces rapid tyrosine phosphorylation of proteins in A 431 human tumor cells, Cell 24: 741–752.PubMedCrossRefGoogle Scholar
  184. 184.
    Cohen, S., Ushiro, H., Stoscheck, C., and Chinkers, M., 1982, A native 170,000 epidermal growth factor receptor-kinase complex from shed plasma membrane vesicles, J. Biol. Chem. 257: 1523–1531.PubMedGoogle Scholar
  185. 185.
    Cooper, J. A., Bowen-Pope, D. F., Raines, E., Ross, R., and Hunter, T., 1982, Similar effects of platelet-drived growth factor and epidermal growth factor on the phosphorylation of tyrosine in cellular proteins, Cell 31: 263–273.PubMedCrossRefGoogle Scholar
  186. 186.
    Kasuga, M., Zick, Y., Blithe, D. L., Crettaz, M., and Kahn, C. R., 1982, Insulin stimulates tyrosine phosphorylation of the insulin receptor in a cell-free system, Nature (Lond.) 298: 667–669.CrossRefGoogle Scholar
  187. 187.
    Heldin, C-H., Ek, B., and Rönnstrand, L., 1983, Characterization of the receptor for platelet-derived growth factor on human fibroblasts, J. Biol. Chem. 258: 10054–10061.PubMedGoogle Scholar
  188. 188.
    Rubin, J. B., Shia, M. A., and Pilch, P. F., 1983, Stimulation of tyrosine-specific phosphorylation in vitro by insulin-like growth factor 1, Nature (Lond.) 305: 438–440.CrossRefGoogle Scholar
  189. 189.
    Jacobs, S., Kull, F. C., Jr., Earp, H. S., Svoboda, M. E., Van Wyk, J. J., and Cuatrecasas, P., 1983, Somatomedin-C stimulates the phosphorylation of the I3-subunit of its own receptor, J. Biol. Chem. 258: 9581–9584.PubMedGoogle Scholar
  190. 190.
    DeLarco, J. E., and Todaro, G. J., 1978, Growth factors from murine sarcoma virus-transformed cells. Proc. Natl. Acad. Sci. USA 75: 4001–4005.CrossRefGoogle Scholar
  191. 191.
    Todaro, G. J., Fryling, C., and DeLarco, J. G., 1980, Transforming growth factors produced by certain human tumor cells: Polypeptides that interact with epidermal growth factor receptors, Proc. Natl. Acad. Sci. USA 77: 5258–5262.PubMedCrossRefGoogle Scholar
  192. 192.
    Roberts, A. B., Lamb, L. C., Newton, D. L., Sporn, M. B., DeLarco, J. E., and Todaro, G. J., 1980, Transforming growth factors: Isolation of polypeptides from virally and chemically transformed cells by acid/ethanol extraction, Proc. Natl. Acad. Sci. USA 77: 3494–3498.PubMedCrossRefGoogle Scholar
  193. 193.
    Anzano, M. A., Roberts, A. B., Smith, J. M., Spom, M. B., and DeLarco, J. E., 1983, Sarcoma growth factor from conditioned medium of virally transformed cells is composed of both type a and 3 transforming growth factors, Proc. Natl. Acad. Sci. USA 80: 6264–6268.PubMedCrossRefGoogle Scholar
  194. 194.
    Poiesz, B. J., Ruscetti, F. W., Gazdar, A. F., Bunn, P. A., Minna, J. D., and Gallo, R. C., 1980, Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma, Proc. Natl. Acad. Sci. USA 77: 7415–7419.PubMedCrossRefGoogle Scholar
  195. 195.
    Murray, A. W., and Fitzgerald, D. J., 1979, Tumor promoters inhibit metabolic cooperation in cocultures of epidermal and 3T3 cells, Biochem. Biophys, Res. Commun. 91: 395–401.Google Scholar
  196. 196.
    Yotti, L. P., Chang, C. C., and Trosko, J. E., 1979, Elimination of metabolic cooperation in Chinese hamster cells by tumor promoters, Science 206: 1089–1091.PubMedCrossRefGoogle Scholar
  197. 197.
    Shih, C., Shilo, B-Z., Goldfarb, M. P., Dannenberg, A., and Weinberg, R. A., 1979, Passage of phenotypes of chemically transformed cells via transfection of DNA and chromatin, Proc. Natl. Acad. Sci. USA 76: 5714–5718.PubMedCrossRefGoogle Scholar
  198. 198.
    Cooper, G. M., Okenquist, S., and Silverman, L., 1980, Transforming activity of DNA of chemically transformed and normal cells, Nature (Lond.) 281: 418–421.CrossRefGoogle Scholar
  199. 199.
    Krontiris, T. G., and Cooper, G. M., 1981, Transforming activity of human tumor DNAs, Proc. Natl. Acad. Sci. USA 78: 1181–1184.PubMedCrossRefGoogle Scholar
  200. 200.
    Santos, E., Tronick, S. R., Aaronson, S. A., Pulciani, S., and Barbacid, M., 1982, T24 human bladder carcinoma oncogene is an activated form of the normal human homologue of BALB-and Harvey-MSV transforming genes, Nature (Lond.) 298: 343–347.CrossRefGoogle Scholar
  201. 201.
    Shimizu, K., Goldfarb, M., Syard, Y., Perucho, M., Li, Y., Kamata, T., Feramisco, J., Stavnezer, E., Fogh, J., and Wigler, M. H., 1983, Three human transforming genes are related to the viral ras oncogenes, Proc. Natl. Acad. Sci. USA 80: 2112–2116.PubMedCrossRefGoogle Scholar
  202. 202.
    Weinberg, R. A., 1983, A molecular basis of cancer, Sci. Am. 249: 126–142.PubMedCrossRefGoogle Scholar
  203. 203.
    Taparowsky, E., Shimizu, K., Goldfarb, M., and Wigler, M., 1983, Structure and activation of the human N-ras gene, Cell 34: 581–586.PubMedCrossRefGoogle Scholar
  204. 204.
    Shih, T. Y., Weeks, M. O., Young, H. A., and Scolnick, E. M., 1979, Identification of a sarcoma virus-coded phosphoprotein in nonproducer cells transformed by Kirsten or Harvey murine sarcoma virus, Virology 96: 64–79.PubMedCrossRefGoogle Scholar
  205. 205.
    Shih, T. Y., Weeks, M. O., Young, H. A., and Scolnick, E. M., 1979, p21 of Kirsten murine sarcoma virus is thermolabile in a viral mutant temperature sensitive for the maintenance of transformation, J. Virol. 31: 546–556.Google Scholar
  206. 206.
    Shih, T. Y., Papageorge, A. G., Stokes, P. E., Weeks, M. O., and Scolnick, E. M., 1980, Guanine nucleotide-binding and autophosphorylating activities associated with p21src protein of Harvey murine sarcoma virus, Nature (Lond.) 287: 686–691.CrossRefGoogle Scholar
  207. 207.
    McGrath, J. P., Capon, D. J., Goeddel, D. V., and Levinson, A. D., 1984, Comparative biochemical properties of normal and activated human ras p21 protein, Nature (Lord.) 301: 644–649.CrossRefGoogle Scholar
  208. 208.
    Sweet, R. W., Yokoyama, S., Kamata, T., Feramisco, J. R., Rosenberg, M., and Gross, M., 1984, The product of ras is a GTPase and the T24 oncogenic mutant is deficient in this activity, Nature (Lond.) 311: 273–275.CrossRefGoogle Scholar
  209. 209.
    Gibbs, J. B., Sigal, I. S., Poe, M., and Scolnick, E. M., 1984, GTPase activity distinguishes normal and oncogenic ras p21 molecules, Proc. Natl. Acad. Sci. USA 81: 5704–5708.PubMedCrossRefGoogle Scholar
  210. 210.
    Driedger, P. E., and Blumberg, P. M., 1980, Specific binding of phorbol ester tumor promoters, Proc. Natl. Acad. Sci. USA 77: 567–571.PubMedCrossRefGoogle Scholar
  211. 211.
    Castagna, M., Takai, Y., Kaibuchi, K., Sano, K., Kikkawa, U., and Nishizuka, Y., 1982, Direct activation of calcium-activated phospholipid-dependent protein kinase by tumor-promoting phobol esters, J. Biol. Chem. 257: 7847–7851.PubMedGoogle Scholar
  212. 212.
    Niedel, J. E., Kuhn, L. J., and Vandenbark, G. R., 1983, Phorbol diester receptor copurifies with protein kinase C, Proc. Natl. Acad. Sci. USA 80: 36–40.PubMedCrossRefGoogle Scholar
  213. 213.
    Sporn, M. B., and Todaro, G. J., 1980, Autocrine secretion and malignant transformation of cells, N. Engl. J. Med. 303: 878–880.PubMedCrossRefGoogle Scholar
  214. 214.
    Sporn, M. B., and Roberts, A. B., 1985, Autocrine growth factors and cancer, Nature (Lond.) 313: 745–747.CrossRefGoogle Scholar
  215. 215.
    Land, H., Parada, L. F., and Weinberg, R. A., 1983, Cellular oncogenes and multistep carcinogenesis, Science 222: 771–778.PubMedCrossRefGoogle Scholar
  216. 216.
    Murphree, A. L., and Benedict, W. F., 1984, Retinoblastoma: clues to human oncogenesis, Science 223: 1028 - -1033.PubMedCrossRefGoogle Scholar
  217. 217.
    Sager, R., 1986, Genetic suppression of tumor formation: A new frontier in cancer research, Cancer Res. 46: 1573–1580.PubMedGoogle Scholar
  218. 218.
    Doolittle, R. F., Hunkapiller, M. W., Hood, L. E., Devare, S. G., Robbins, K. C., Aaronson, S. A., and Antoniades, H. N., 1983, Simian sarcoma virus on gene, v-sis, is derived from the gene (or genes) encoding a platelet-derived growth factor, Science 221: 275–277.PubMedCrossRefGoogle Scholar
  219. 219.
    Waterfield, M. D., Scrace, G. T., Whittle, N., Stroobant, P., Johnsson, A., Wasteson, A., Westermark, B., Heldin, C-H., Huang, J. S., and Deuel, T. F., 1983, Platelet-derived growth factor is structurally related to the putative transforming protein p28515 of simian sarcoma virus, Nature (Lond.) 304: 35–39.CrossRefGoogle Scholar
  220. 220.
    Downward, J., Yarden, Y., Mayes, E., Scrace, G., Totty, N., Stockwell, P., Ullrich, A., Schlessinger, J., and Waterfield, M. D., 1984, Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences, Nature (Lond.) 307: 521–527.CrossRefGoogle Scholar
  221. 221.
    Stiles, C. D., 1985, The biological role of oncogenes-Insights from platelet-derived growth factor: Rhoads Memorial Award Lecture, Cancer Res. 45: 5215–5218.PubMedGoogle Scholar
  222. 222.
    Weinberg, R. A., 1985, The action of oncogenes in the cytoplasm and nucleus, Science 230: 770–776.PubMedCrossRefGoogle Scholar
  223. 223.
    Eisenman, R. N., Tachibana, C. Y., Abrams, H. D., and Hann, S. R., 1985, v-myc-and c-myc-encoded proteins are associated with the nuclear matrix, Mol. Cellul. Biol. 5: 114–126.Google Scholar
  224. 224.
    Goyette, M., Petropoulos, C. J., Shank, P. R., and Fausto, N., 1983, Expression of a cellular oncogene during liver regeneration, Science 219: 510–512.PubMedCrossRefGoogle Scholar
  225. 225.
    Schartl, M., and Bamekow, A., 1984, Differential expression of the cellular src gene during vertebrate development, Dey. Biol. 105: 415–422.CrossRefGoogle Scholar
  226. 226.
    Pfeifer-Ohlsson, S., Rydnert, J., Goustin, A. S., Larsson, E., Besholtz, C., and Ohlsson, R., 1985, Celltype-specific pattern of myc proto-oncogene expression in developing human embyros, Proc. Natl. Acad. Sci. USA 82: 5050–5054.PubMedCrossRefGoogle Scholar
  227. 227.
    Corral, M., Tichonicky, L., Gugen-Guillouzo, C., Corcos, D., Raymondjean, M., Paris, B., Kmh, J., and Defer, N., 1985, Expression of c-fos oncogene during hepatocarcinogenesis, liver regeneration, and in synchronized HTC cells, Exp. Cell Res. 160: 427–434.PubMedCrossRefGoogle Scholar
  228. 228.
    Brinster, R. L., Chen, H. Y., Messing, A., van Dyke, T., Levin, A. J., and Palmiter, R. D., 1984, Transgenic mice harboring SV40 T-antigen genes develop characteristic brain tumors, Cell 37: 367–379.PubMedCrossRefGoogle Scholar
  229. 229.
    Stewart, T. A., Pattengale, P. K., and Leder, P., 1984, Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes, Cell 38: 627–637.PubMedCrossRefGoogle Scholar
  230. 230.
    Hanahan, D., 1985, Heritable formation of pancreatic 3-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes, Nature (Gond.) 315: 115–122.CrossRefGoogle Scholar
  231. 231.
    Fett, J. W., Strydom, D. J., Lobb, R. R., Alderman, E. M., Bethune, J. L., Riordan, J. F., and Vallee, B. L., 1985, Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells, Biochemistry 24: 5480–5486.PubMedCrossRefGoogle Scholar
  232. 232.
    Muschel, R. J., Williams, J. E., Lowy, D. R., and Liotta, L. A., 1985, Harvey ras induction of metastatic potential depends upon oncogene activation and the type of recipient cell, Am. J. Pathol. 121: 11–8.Google Scholar
  233. 233.
    Friend, S. H., Bernards, R., Rogel, J. S., Weinberg, R. A., Rapaport, J. M., Albert, D. M., and Dryja, T. P., 1986, A human DNA segment with properties of the gene that predisposes to retinoblastoma and osterosarcoma, Nature (Load.) 323: 643–646.CrossRefGoogle Scholar
  234. 234.
    Finger, L. R., Harvey, R. C., Moore, R. C. A., Showe, L. C., and Croce, C. M., 1986, A common mechanism of chromosomal translocation in T- and B-cell neoplasia, Science 234: 982–985.PubMedCrossRefGoogle Scholar
  235. 235.
    Thorgeirsson, S. S., Huber, B. E., Sorrell, S., Fojo, A., Pastan, I., and Gottesman, M. M., 1987, Expression of the multidrug-resistant gene in hepatocarcinogenesis and regenerating rat liver, Science 236: 1120–1122.PubMedCrossRefGoogle Scholar
  236. 236.
    Mathew, C. G. P., Chin, K. S., Easton, D. F., Thorpe, K., Carter, C., Liou, G. I., Fong, S.-L., Bridges, C. D. B., Haak, H., Nieuwenhuijzen Kruseman, A. C., Schifter, S., Hansen, H. H., Telenius, H., Telenius-Berg, M., and Ponder, B. A. J., 1987, A linked genetic marker for multiple endocrine neoplasia type 2A on chromosome 10, Nature (Lond.) 238: 527–528.CrossRefGoogle Scholar
  237. 237.
    Simpson, N. E., Kidd, K. K., Goodfellow, P. J., McDermid, H., Myers, S., Kidd, J. R., Jackson, C. E., Duncan, A. M. V., Farrer, L. A., Brasch, K., Castiglione, C., Genel, M., Gertner, J., Greenberg, C. R., Gusella, J. F., Holden, J. J. A., and White, B. N., 1987, Assignment of multiple endocrine neoplasia type 2A to chromosome 10 by linkage, Nature (Lond.) 328: 528–530.CrossRefGoogle Scholar
  238. 238.
    Bodmer, W. F., Bailey, C. J., Bodmer, J., Bussey, H. J. R., Ellis, A., Gorman, P., Lucibello, F. C., Murday, V. A., Rider, S. H., Scambler, P., Sheer, D., Solomon, E., and Spurr, N. K., 1987, Localization of the gene for familial adenomatous polyposis on chromosome 5, Nature (Lond.) 328: 614–616.CrossRefGoogle Scholar
  239. 239.
    Solomon, E., Voss, R., Hall, V., Bodmer, W. F., Jass, J. R., Jeffreys, A. J., Lucibello, F. C., Patel, I., and Rider, S. H., 1987, Chromosome 5 allele loss in human colorectal carcinomas, Nature (Lond.) 328: 616–619.CrossRefGoogle Scholar
  240. 240.
    Knudson, Jr., A. G., 1971, Mutation and cancer: Statistical study of retinoblastoma, Proc. Natl. Acad. Sci. USA 68: 820–823.PubMedCrossRefGoogle Scholar
  241. 241.
    Reynolds, S. H., Stowers, S. J., Patterson, R. M., Maronpot, R. R., Aaronson, S. A., and Anderson, M. W., 1987, Activated oncogenes in B6C3F1 mouse liver tumors: Implications for risk assessment, Science 237: 1309–1316.PubMedCrossRefGoogle Scholar
  242. 242.
    Nerenberg, M., Hinrichs, S. H., Reynolds, R. K., Khoury, G., and Jay, G., 1987, The tat gene of human T-lymphotropic virus type 1 induces mesenchymal tumors in transgenic mice, Science 237: 1324–1329.PubMedCrossRefGoogle Scholar
  243. 243.
    Hinrichs, S. H., Nerenberg, M., Reynolds, R. K., Khoury, G., and Jay, G., 1987, A transgenic mouse model for human neurofibromatosis, Science 237: 1340–1343.PubMedCrossRefGoogle Scholar
  244. 244.
    Fearon, E. R., Hamilton, S. R., and Vogelstein, B., 1987, Clonal analysis of human colorectal tumors, Science 238: 193–197.PubMedCrossRefGoogle Scholar
  245. 245.
    Egan, S. E., Wright, J. A., Jarolim, L., Yanagihara, K., Bassin, R. H., and Greenberg, A. H., 1987, Transformation by oncogenes encoding protein kinases induces the metastatic phenotype, Science 238: 202–205.PubMedCrossRefGoogle Scholar
  246. 246.
    Liu, E., Hjelle, B., Morgan, R., Hecht, F., and Bishop, J. M., 1987, Mutations of the Kirsten-ras proto-oncogene in human preleukemia, Nature (Lond.) 330: 186–188.CrossRefGoogle Scholar
  247. 247.
    Jimenez, J. J., and Yunis, A. A., 1987, Tumor cell rejection through terminal cell differentiation, Science 238: 1278–1280.PubMedCrossRefGoogle Scholar
  248. 248.
    Velu, T. J., Beguinot, L., Vass, W. C., Willingham, M. C., Merlino, G. T., Pastan, I., and Lowy, D. R., 1987, Epidermal growth factor-dependent transformation by a human EGF receptor proto-oncogene, Science 238: 1408–1410.PubMedCrossRefGoogle Scholar
  249. 249.
    Leppert, M., Dobbs, M., Scrambler, P., O’Connell, P., Nakamura, Y., Stauffer, D., Woodward, S., Burt, R., Hughes, J., Gardner, E, Lathrop, M., Wasmuth, J., Lalouel, J.-M., and White, R., 1987, The gene for familial polyposis coli maps to the long arm of chromosome 5, Science 238: 1411–1413.PubMedCrossRefGoogle Scholar
  250. 250.
    Collard, J. G., van de Poll, M., Scheffer, A., Roos, E., Hopman, A. H., Geurts van Kessel, Ad H. M., and van Dongen, J. M., 1987, Location of genes involved in invasion and metastasis on human Chromosome 7, Cancer Res. 47: 6666–6670.Google Scholar
  251. 251.
    Angel, P., Imagawa, M., Chiu, R., Stein, B., Imbra, R. J., Rahmsdorf, H., Jonat, C., Herrlich, P., and Karin, M., 1987, Phorbol ester-inducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor, Cell 49: 729–739.PubMedCrossRefGoogle Scholar
  252. 252.
    Lee, W., Mitchell, P., and Tjian, R., 1987, Purified transcription factor AP-1 interacts with TPA-inducible enhancer elements, Cell 49: 741–752.PubMedCrossRefGoogle Scholar
  253. 253.
    Lee, W., Haslinger, A., Karin, M., and Tjian, R., 1987, Activation of transcription by two factors that bind promoter and enhancer sequences of the human metallothionein gene and SV 40, Nature 325: 369–372.Google Scholar
  254. 254.
    Chiu, R., Imagawa, M., Imbra, R. J., Bockoven, J. R., and Karin, M., 1987, Multiple cis and transacting elements mediate the transcriptional response to phorbol esters, Nature 329: 648–651.PubMedCrossRefGoogle Scholar
  255. 255.
    Angel, P., Allegretto, E. A., Okino, S. T., Hattori, K., Boyle, W. J., Hunter, T., and Karin, M., 1988, Oncogene jun encodes a sequence-specific trans-activator similar to AF-1, Nature 332: 166–171.PubMedCrossRefGoogle Scholar
  256. 256.
    Zimmermann, W., Weber, B., Ortlieb, B., Rudert, F., Schempp, W., Fiebig, H. H., Shively, J. E., von Kleist, S., and Thompson, J. A., 1988, Chromosomal localization of the carcinoembryonic antigen gene family and differential expression in various tumors, Cancer Res. 48: 2550–2554.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Alphonse E. Sirica
    • 1
  1. 1.Department of Pathology, Medical of College of VirginiaVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations