Future Physical Environments and Concurrent Computation

  • S. K. Tewksbury
  • L. A. Hornak
  • P. Franzon


Using graph-based representations of computation problems [1]–[3], the communication function of a “pseudo-general purpose,” massively parallel computing environment is discussed to help define technology-focussed realizations of that communication function. Compatible computation problems are neither constrained to highly regular structures (such as systolic arrays and their generalizations [4]) nor extended to the globally non-deterministic behavior of many general purpose problems [5]. A fully distributed [6], data driven [7] computing environment is assumed, emphasizing the impact of communications on algorithm execution [8]. Evolution of such massively concurrent computing environments is necessary to sustain the growth of computing power as device technologies approach fundamental limits on dimensional scaling and higher device performance [9],[10].


Mesh Network Communication Function Systolic Array Communication Delay Guarantee Time Slot 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Zeman and G.S. Moschytz Systematic design and programming of signal processors using project management techniques, IEEE Trans. Acoust., Speech, Sig. Proc. vol. ASSP-31, pp. 1536–1549 (1983).CrossRefGoogle Scholar
  2. [2]
    S.K. Tewksbury, Hierarchically localized mapping of signal processing algorithms onto programmable DSP’s, to be published.Google Scholar
  3. [3]
    H.V. Jagadish, T. Kailath, J.A. Newkirk and R.G. Mathews On hardware description from block diagrams, Proc. 1984 Int. Conf. Acoust., Speech, Sig. Proc., pp. 8.4.1–8.4.4 (1984).Google Scholar
  4. [4]
    S-Y. Kung, K.S. Arun, R.J. Gal-Ezer and D.V. Bhaskar RaoWavefront array processor: language, architectures and applications, IEEE Trans. Comp., vol. C-31, pp. 1054–1066 (1982).CrossRefGoogle Scholar
  5. [5]
    M. Broy, A theory for non determinism,parallelism, communication and con-currency, Theoretical Computer Science, vol. 45, pp. 1–61 (1987).CrossRefGoogle Scholar
  6. [6]
    P.H. Enslow and T.G. Saponas, Distributed and decentralized control in fully distributed processing systems: a survey of applicable models, Techn. Report GIT-ICS-81/02, Georgia Inst. of Technol. (Feb 1981).Google Scholar
  7. [7]
    P.C. Trelevan, D.R. Brownbridge and R.P. Hopkins, Data-driven and demand-driven computer architectures, Comp. Surveys, vol. 14, pp. 93–143 (1982).CrossRefGoogle Scholar
  8. [8]
    D.B. Gannon and J. van Rosendale, On the impact of communication complexity on the design of parallel numerical algorithms,IEEE Trans. Comp., vol. C-33, pp. 1180–1194 (1984).CrossRefGoogle Scholar
  9. [9]
    J.D. Meindl, Ultra-large scale integration, IEEE Trans. Elect. Dev., vol. ED-31, pp. 1555–1561 (1984).CrossRefGoogle Scholar
  10. [10]
    R.W. Keyes, Fundamental limits in digital information processing, Proc. IEEE, vol. 69, pp. 267–278 (1981).CrossRefGoogle Scholar
  11. [11]
    R.C. Aubusson and I. Catt, Wafer-scale integration - a fault tolerant procedure, IEEE J. Solid-State Circuits, vol. SC-13, pp. 339–344 (1973).Google Scholar
  12. [12]
    T. Mangir, Sources of failure and yield improvement for RVLSI and WSI: Part I, Proc. IEEE, vol. 72, pp. 690–708 (1984).CrossRefGoogle Scholar
  13. [13]
    J.W. Greene and A. El Gamal, Configuuration of VLSI arrays in the presence of defects, J. ACM, vol. 31, pp. 694–717 (1984).CrossRefGoogle Scholar
  14. [14]
    J.I. Raffel, et al., A wafer-scale integrator using restructurable VLSI, IEEE Trans. Elect. Dev., vol. ED-32, pp. 479–486 (1986).Google Scholar
  15. [15]
    W.R. Moore and M.J. Day, Yield-enhancement of a large systolic array chip,Microelectronic Reliability, vol. 24, pp. 511–526 (1984).CrossRefGoogle Scholar
  16. [16]
    T. Leighton and C.E. Leiserson, Wafer-scale integration of systolic arrays, IEEE Trans. Comp., vol. C-34, pp. 448–461 (1981).CrossRefGoogle Scholar
  17. [17]
    C.D. Chesley, Main memory wafer-scale integration, VLSI Design, vol. 6(3), pp. 54–58 (1985).Google Scholar
  18. [18]
    R.K. Spielberger, et al., Silicon-on-silicon packaging,IEEE Trans Compon., Hybr. and Manuf. Techn., vol. CHMT-7, pp. 193–196 (1984).CrossRefGoogle Scholar
  19. [19]
    S.K. Tewksbury, et al., Chip alignment templates for multichip module assembly, IEEE Trans. Compon., Hybr. and Manuf. Techn., vol. CHMT-10, pp. 111–121 (1987).CrossRefGoogle Scholar
  20. [20]
    M. Hatamian, S.K. Tewksbury, P. Franzon, L.A. Hornak, C.A. Siller and V.B. Lawrence, FIR filters for high sample rate applications,IEEE Communications, July 1987.Google Scholar
  21. [21]
    P. Franzon, M. Hatamian, L.A. Hornak, T. Little and S.K. Tewksbury, Fundamental Interconnection Issues, AT&T Techn. J., Aug. 1987.Google Scholar
  22. [22]
    P. Franzon and S.K. Tewksbury, ’Chip frame’ scheme for reconfigurable mesh connected arrays, Proc. IFIP Workshop on Wafer Scale Integration, Brunel Univ., (Sept. 1987).Google Scholar
  23. [23]
    J. Grinberg, R.G.R. Mudd and R.D. Etchells, A cellular VLSI architecture, IEEE Computer, pp. 69–81 (Dec. 1984).Google Scholar
  24. [24]
    A.V. Brown, An overview of Josephson packaging, IBM J. Res. Dev., vol. 24, pp. 167–171 (1980).CrossRefGoogle Scholar
  25. [25]
    J.W. Goodman, Optical interconnects in microelectronics, Proc. SPIE, vol. 456, pp. 72–85 (1984).Google Scholar
  26. [26]
    J.W. Goodman, F.J. Leonberger, S-Y. Kung and R.A. Athale, Optical interconnections for VLSI systems, Proc. IEEE, vol. 72, pp. 850–866 (1984).CrossRefGoogle Scholar
  27. [27]
    L.A. Hornak and S.K. Tewksbury, On the feasibility of through-wafer optical interconnects for hybrid wafer-scale integrated architectures, IEEE Trans. Elect. Dev., vol. ED-34, pp. 1557–1563 (1987).CrossRefGoogle Scholar
  28. [28]
    S.R. Forrest, Monolithic optoelectronic integration: a new component technology for lightwave communications, J. Lightwave Technol, vol. LT-3, pp. 1248–1263 (1985).CrossRefGoogle Scholar
  29. [29]
    A. Rosenberg, Three-dimensional VLSI: a case study, J. ACM, vol. 30, pp. 397–416 (1983).CrossRefGoogle Scholar
  30. [30]
    F.P. Preparata, Optimum three dimensional VLSI layouts, Math Systems Theory, vol. 16, pp. 1–8 (1983).CrossRefGoogle Scholar
  31. [31]
    P.H. Hor, et al., Superconductivity above 90K in the square-planar compound system ABa 2 Cu 3 O 6+= with X = Y, La, Sm, Eu, Gd, Ho, Er and Lu, Phys. Rev. Lett., vol. 58, pp. 1891–1894 (1987).CrossRefGoogle Scholar
  32. [32]
    A. Khurana, Superconductivity seen above the boiling point of nitrogen, Physics Today, vol. 40(4), pp. 17–23 (1987).CrossRefGoogle Scholar
  33. [33]
    J.T. Chen et al., Observation of the reverse ac Josephson effect in Y-Ba-CU-O at 240K Phys. Rev. Lett., vol. 58, pp. 1972–1975 (1987).CrossRefGoogle Scholar
  34. [34]
    Eds, Superconductivity at room temperature, Nature, vol. 327, pg. 357 (June 4, 1987).Google Scholar
  35. [35]
    T.R. Gheewala, Josephson-logic devices and circuits, IEEE Trans. Elect. Dev., vol. ED-27, pp. 1857–1869 (1980).CrossRefGoogle Scholar
  36. [36]
    R.L. Kautz, Picosecond pulses on superconducting striplines, J. Appl. Phys, vol. 49, pp. 308–314 (1978).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • S. K. Tewksbury
    • 1
  • L. A. Hornak
    • 1
  • P. Franzon
    • 1
  1. 1.AT&T Bell LaboratoriesHolmdelUSA

Personalised recommendations