Advertisement

Future Physical Environments and Concurrent Computation

  • S. K. Tewksbury
  • L. A. Hornak
  • P. Franzon

Abstract

Using graph-based representations of computation problems [1]–[3], the communication function of a “pseudo-general purpose,” massively parallel computing environment is discussed to help define technology-focussed realizations of that communication function. Compatible computation problems are neither constrained to highly regular structures (such as systolic arrays and their generalizations [4]) nor extended to the globally non-deterministic behavior of many general purpose problems [5]. A fully distributed [6], data driven [7] computing environment is assumed, emphasizing the impact of communications on algorithm execution [8]. Evolution of such massively concurrent computing environments is necessary to sustain the growth of computing power as device technologies approach fundamental limits on dimensional scaling and higher device performance [9],[10].

Keywords

Mesh Network Communication Function Systolic Array Communication Delay Guarantee Time Slot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Zeman and G.S. Moschytz Systematic design and programming of signal processors using project management techniques, IEEE Trans. Acoust., Speech, Sig. Proc. vol. ASSP-31, pp. 1536–1549 (1983).CrossRefGoogle Scholar
  2. [2]
    S.K. Tewksbury, Hierarchically localized mapping of signal processing algorithms onto programmable DSP’s, to be published.Google Scholar
  3. [3]
    H.V. Jagadish, T. Kailath, J.A. Newkirk and R.G. Mathews On hardware description from block diagrams, Proc. 1984 Int. Conf. Acoust., Speech, Sig. Proc., pp. 8.4.1–8.4.4 (1984).Google Scholar
  4. [4]
    S-Y. Kung, K.S. Arun, R.J. Gal-Ezer and D.V. Bhaskar RaoWavefront array processor: language, architectures and applications, IEEE Trans. Comp., vol. C-31, pp. 1054–1066 (1982).CrossRefGoogle Scholar
  5. [5]
    M. Broy, A theory for non determinism,parallelism, communication and con-currency, Theoretical Computer Science, vol. 45, pp. 1–61 (1987).CrossRefGoogle Scholar
  6. [6]
    P.H. Enslow and T.G. Saponas, Distributed and decentralized control in fully distributed processing systems: a survey of applicable models, Techn. Report GIT-ICS-81/02, Georgia Inst. of Technol. (Feb 1981).Google Scholar
  7. [7]
    P.C. Trelevan, D.R. Brownbridge and R.P. Hopkins, Data-driven and demand-driven computer architectures, Comp. Surveys, vol. 14, pp. 93–143 (1982).CrossRefGoogle Scholar
  8. [8]
    D.B. Gannon and J. van Rosendale, On the impact of communication complexity on the design of parallel numerical algorithms,IEEE Trans. Comp., vol. C-33, pp. 1180–1194 (1984).CrossRefGoogle Scholar
  9. [9]
    J.D. Meindl, Ultra-large scale integration, IEEE Trans. Elect. Dev., vol. ED-31, pp. 1555–1561 (1984).CrossRefGoogle Scholar
  10. [10]
    R.W. Keyes, Fundamental limits in digital information processing, Proc. IEEE, vol. 69, pp. 267–278 (1981).CrossRefGoogle Scholar
  11. [11]
    R.C. Aubusson and I. Catt, Wafer-scale integration - a fault tolerant procedure, IEEE J. Solid-State Circuits, vol. SC-13, pp. 339–344 (1973).Google Scholar
  12. [12]
    T. Mangir, Sources of failure and yield improvement for RVLSI and WSI: Part I, Proc. IEEE, vol. 72, pp. 690–708 (1984).CrossRefGoogle Scholar
  13. [13]
    J.W. Greene and A. El Gamal, Configuuration of VLSI arrays in the presence of defects, J. ACM, vol. 31, pp. 694–717 (1984).CrossRefGoogle Scholar
  14. [14]
    J.I. Raffel, et al., A wafer-scale integrator using restructurable VLSI, IEEE Trans. Elect. Dev., vol. ED-32, pp. 479–486 (1986).Google Scholar
  15. [15]
    W.R. Moore and M.J. Day, Yield-enhancement of a large systolic array chip,Microelectronic Reliability, vol. 24, pp. 511–526 (1984).CrossRefGoogle Scholar
  16. [16]
    T. Leighton and C.E. Leiserson, Wafer-scale integration of systolic arrays, IEEE Trans. Comp., vol. C-34, pp. 448–461 (1981).CrossRefGoogle Scholar
  17. [17]
    C.D. Chesley, Main memory wafer-scale integration, VLSI Design, vol. 6(3), pp. 54–58 (1985).Google Scholar
  18. [18]
    R.K. Spielberger, et al., Silicon-on-silicon packaging,IEEE Trans Compon., Hybr. and Manuf. Techn., vol. CHMT-7, pp. 193–196 (1984).CrossRefGoogle Scholar
  19. [19]
    S.K. Tewksbury, et al., Chip alignment templates for multichip module assembly, IEEE Trans. Compon., Hybr. and Manuf. Techn., vol. CHMT-10, pp. 111–121 (1987).CrossRefGoogle Scholar
  20. [20]
    M. Hatamian, S.K. Tewksbury, P. Franzon, L.A. Hornak, C.A. Siller and V.B. Lawrence, FIR filters for high sample rate applications,IEEE Communications, July 1987.Google Scholar
  21. [21]
    P. Franzon, M. Hatamian, L.A. Hornak, T. Little and S.K. Tewksbury, Fundamental Interconnection Issues, AT&T Techn. J., Aug. 1987.Google Scholar
  22. [22]
    P. Franzon and S.K. Tewksbury, ’Chip frame’ scheme for reconfigurable mesh connected arrays, Proc. IFIP Workshop on Wafer Scale Integration, Brunel Univ., (Sept. 1987).Google Scholar
  23. [23]
    J. Grinberg, R.G.R. Mudd and R.D. Etchells, A cellular VLSI architecture, IEEE Computer, pp. 69–81 (Dec. 1984).Google Scholar
  24. [24]
    A.V. Brown, An overview of Josephson packaging, IBM J. Res. Dev., vol. 24, pp. 167–171 (1980).CrossRefGoogle Scholar
  25. [25]
    J.W. Goodman, Optical interconnects in microelectronics, Proc. SPIE, vol. 456, pp. 72–85 (1984).Google Scholar
  26. [26]
    J.W. Goodman, F.J. Leonberger, S-Y. Kung and R.A. Athale, Optical interconnections for VLSI systems, Proc. IEEE, vol. 72, pp. 850–866 (1984).CrossRefGoogle Scholar
  27. [27]
    L.A. Hornak and S.K. Tewksbury, On the feasibility of through-wafer optical interconnects for hybrid wafer-scale integrated architectures, IEEE Trans. Elect. Dev., vol. ED-34, pp. 1557–1563 (1987).CrossRefGoogle Scholar
  28. [28]
    S.R. Forrest, Monolithic optoelectronic integration: a new component technology for lightwave communications, J. Lightwave Technol, vol. LT-3, pp. 1248–1263 (1985).CrossRefGoogle Scholar
  29. [29]
    A. Rosenberg, Three-dimensional VLSI: a case study, J. ACM, vol. 30, pp. 397–416 (1983).CrossRefGoogle Scholar
  30. [30]
    F.P. Preparata, Optimum three dimensional VLSI layouts, Math Systems Theory, vol. 16, pp. 1–8 (1983).CrossRefGoogle Scholar
  31. [31]
    P.H. Hor, et al., Superconductivity above 90K in the square-planar compound system ABa 2 Cu 3 O 6+= with X = Y, La, Sm, Eu, Gd, Ho, Er and Lu, Phys. Rev. Lett., vol. 58, pp. 1891–1894 (1987).CrossRefGoogle Scholar
  32. [32]
    A. Khurana, Superconductivity seen above the boiling point of nitrogen, Physics Today, vol. 40(4), pp. 17–23 (1987).CrossRefGoogle Scholar
  33. [33]
    J.T. Chen et al., Observation of the reverse ac Josephson effect in Y-Ba-CU-O at 240K Phys. Rev. Lett., vol. 58, pp. 1972–1975 (1987).CrossRefGoogle Scholar
  34. [34]
    Eds, Superconductivity at room temperature, Nature, vol. 327, pg. 357 (June 4, 1987).Google Scholar
  35. [35]
    T.R. Gheewala, Josephson-logic devices and circuits, IEEE Trans. Elect. Dev., vol. ED-27, pp. 1857–1869 (1980).CrossRefGoogle Scholar
  36. [36]
    R.L. Kautz, Picosecond pulses on superconducting striplines, J. Appl. Phys, vol. 49, pp. 308–314 (1978).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • S. K. Tewksbury
    • 1
  • L. A. Hornak
    • 1
  • P. Franzon
    • 1
  1. 1.AT&T Bell LaboratoriesHolmdelUSA

Personalised recommendations