Advertisement

High-Brightness Circular Accelerators

  • Norman Rostoker
Part of the NATO ASI Series book series (NSSB, volume 178)

Abstract

In plasma physics the magnetic fields are usually sufficiently large that the gyro-radius of particles is small compared to any characteristic dimension so that the adiabatic or drift approximation is valid. This is illustrated in Fig. 1 where the particles follow the helical field lines except for slow drifts of the guiding center. The small oscillations shown are the cyclotron motion which is averaged out, i.e., it does not appear in the approximate equations of motion.

Keywords

Stellarator Winding Adiabatic Approximation Runaway Electron Toroidal Field Toroidal Magnetic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barak, G., and Rostoker, N., 1983, Orbital Stability of the High Current Betatron, Phys. Fluids, 26:856.ADSMATHCrossRefGoogle Scholar
  2. Blaugrund, A. E., Fisher, A., Prohaska, R., and Rostoker, N., 1985, J. Appl. Phys., 57:2474.ADSCrossRefGoogle Scholar
  3. Cavenago, M., and Rostoker, N., 1986, Modified Elongated Betatron Accelerator, “Proc. 6th Int. Conf. on High Power Particle Beams”, June 9–12, 1986, Kobe, Japan.Google Scholar
  4. Clark, W., Korn, P., Mondelli, A., and Rostoker, N., 1976, Experiments on Electron Injection into a Toroidal Magnetic Field, Phys. Rev. Lett., 37:592.ADSCrossRefGoogle Scholar
  5. Daugherty, J. D., Eninger, J., and Janes, G. S., 1971, “AVCO Everett Research Report 375” (unpublished).Google Scholar
  6. Davidson, R., and Uhm, H., 1982, Stability Properties of an Intense Relativistic Non-neutral Electron Ring in a Modified Betatron Accelerator, Phys. Fluids, 25:2089.ADSMATHCrossRefGoogle Scholar
  7. Fisher, A., Rostoker, N., Pearlman, J., and Whitham, K., 1985, Laser Extraction of an Electron Beam from MEBA, “Particle Accelerator Conference, Vancouver, B.C.”, May 13–15.Google Scholar
  8. Godfrey, B. B., and Hughes, T. P., 1985, Long Wavelength Negative Mass Instabilities in High Current Betatrons, Phys. Fluids, 28:669.ADSMATHCrossRefGoogle Scholar
  9. Golden, J., Mako, F., Floyd, L., McDonald, K., Smith, T., Dialetis, D., Marsh, S. J., and Kapetanakos, C. A., 1986, Progress in the Development of the NRL Modified Betatron Accelerator, “Proc 6th Int. Conf. on High Power Particle Beams”, June 9–12, 1986, Kobe, Japan.Google Scholar
  10. Hui, B., and Lau, Y. Y., 1984, Injection and Extraction of a Relativistic Electron Beam in a Modified Betatron, Phys. Rev. Lett., 53:2024.ADSCrossRefGoogle Scholar
  11. Ishizuka, H., Lindley, G., Mandelbaum, B., Fisher, A., and Rostoker, N., 1984, Formation of a High Current Electron Beam in Modified Betatron Fields, Phys. Rev. Lett., 53:266.ADSCrossRefGoogle Scholar
  12. Ishizuka, H., Saul, J., Fisher, A., and Rostoker, N., 1986, Beam Acceleration in the UCI Stellarator, “Proc. 6th Int. Conf. on High Power Particle Beams”, June 9–12, 1986, Kobe, Japan.Google Scholar
  13. Kerst, D. W., Adams, G. D., Koch, H. W., and Robinson, C. S., 1949/50, An 80 Mev Model of a 300 Mev Betatron and a 300 Mev Betatron. Phys. Rev. Lett., 75:330;Google Scholar
  14. Kerst, D. W., Adams, G. D., Koch, H. W., and Robinson, C. S., 1949/50, An 80 Mev Model of a 300 Mev Betatron and a 300 Mev Betatron. Phys. Rev. Lett., 78:297.Google Scholar
  15. Kerst, D. W., Adams, G. D., Koch, H. W., and Robinson, C. S., 1949/50, An 80 Mev Model of a 300 Mev Betatron and a 300 Mev Betatron. Rev. Sci. Inst., 21:462.ADSCrossRefGoogle Scholar
  16. Kapetanakos, C. A., Sprangle, D., Chernin, D. P., Marsh, S. J., and Haber, I., 1983, Equilibrium of a High Current Electron Ring in a Modified Betatron Accelerator, Phys. Fluids, 26:1634.ADSMATHCrossRefGoogle Scholar
  17. Landau, R., 1968, Negative Mass Instability with Bft Field, Phys. Fluids, 11:205.ADSCrossRefGoogle Scholar
  18. Landau, R., and Neil, V., 1966, Negative Mass Instability, Phys. Fluids, 9:2412.ADSCrossRefGoogle Scholar
  19. Mandelbaum, B., 1985, A Study of a Modified Betatron with Stellarator Windings, Ph.D. thesis, University of California, Irvine.Google Scholar
  20. Manheimer, W., 1985, The Plasma Assisted Modified Betatron, Particle Accel.Google Scholar
  21. Martin, W. E., Caporaso, C. J. Fawley, W. M., Prosnitz, D., and Cole, A. G., 1985, Electron Beam Guiding and Phase Mix Damping by a Laser-Ionized Channel, Phys. Rev. Lett., 54:685.ADSCrossRefGoogle Scholar
  22. Roberson, C. W., Mondelli, A., and Chernin, D., 1983, High-current Betatron with Stellarator Fields, Phys. Rev. Lett., 50:507.ADSCrossRefGoogle Scholar
  23. Roberson, C. W., Mondelli, A., and Chernin, D., 1985, The Stellatron Accelerator, Particle Accel., 17:29.Google Scholar
  24. Roberts, G. A., and Rostoker, N., 1985, Adiabatic Beam Dynamics in a Modified Betatron, Phys. Fluids, 28:1968.ADSMATHCrossRefGoogle Scholar
  25. Roberts, G., and Rostoker, N., 1986, Effect of Quasi-Confined Particles and 1 = 2 Stellarator Fields on the Negative Mass Instability in a Modified Betatron; Phys. Fluids, 29:333.ADSCrossRefGoogle Scholar
  26. Robertson, S., Ishizuka, H., Peter, W., and Rostoker, N., 1981, Propagation of an Intense Ion Beam Transverse to a Magnetic Field, Phys. Rev. Lett., 47:508.ADSCrossRefGoogle Scholar
  27. Sprangle, D., and Chernin, D., 1984, Beam Current Limitation Due to Instabilities in Modified and Conventional Betatrons, Particle Accel., 15:2089.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Norman Rostoker
    • 1
  1. 1.Department of PhysicsUniversity of CaliforniaIrvineUSA

Personalised recommendations