Induction Linacs for Heavy-Ion Fusion

  • Denis Keefe
Part of the NATO ASI Series book series (NSSB, volume 178)


Inertial Confinement Fusion (ICF) is an alternative approach to magnetic Confinement Fusion for a future source of fusion electrical energy based on virtually inexhaustible fuel sources. The ICF method relies on supplying a large beam energy (3 MJ) in a short time (10 nsec) to ignite and burn a spherical capsule containing a few milligrams of deuterium and tritium; ablation of the surface—as a plasma—drives an implosion of the fuel, and leads to ignition at the center when the compression has reached an appropriate value (about 1000 times normal liquid density). The energy can be supplied directly; in that case a large number of beams must be brought in to illuminate the capsule in a spherically symmetric manner, which complicates the final focusing. Alternatively, the beam energy can be used to produce high temperature radiation which can be contained within a hohlraum to implode a separately placed capsule.


Inertial Confinement Fusion Emittance Growth High Current Beam Accelerator Driver System Driver Design 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Badger, B. et al., 1984, “HIBALL-II, An Improved Heavy Ion Beam Driven Fusion Reactor Study,” Univ. of Wise Rep. No. UWFDM-625.Google Scholar
  2. Bangerter, R. O., T. G. Godlove, and M. P. Reiser, 1986, Proc. Int. Symp. on Heavy Ion Fusion, AIP Conference Proceedings No. 152.Google Scholar
  3. Brown, I., and J. Galvin, 1986, in Ref. 2.Google Scholar
  4. Celata, C M., I. Haber, L. J. Laslett, L. Smith, and M. G. Tiefenback, 1985, IEEE Trans. Nuc. Sci. 32:2480.ADSCrossRefGoogle Scholar
  5. Celata, C. M., 1986, in Ref. 2.Google Scholar
  6. Faltens, A., E. Hoyer, D. Keefe and L. J. Laslett, 1979, Proc. Workshop on Heavy Ion Fusion, Argonne 1978, Argonne Natl. Lab. Rep. ANL-79–41, p. 31.Google Scholar
  7. Faltens, A., E. Hoyer, D. Keefe, 1981, Proc. 4th Int. Top. Conf. on High-Power Electron and Ion-Beam Res, and Techn., Palaiseau, (ed. H. J. Doucet and J. M. Buzzi) 751.Google Scholar
  8. Fessenden, T. J., D. L. Judd, D. Keefe, C. Kim, L. J. Laslett, L. Smith and A. I. Warwick, 1986, in Ref. 2.Google Scholar
  9. Hofmann, I., L. J. Laslett, L. Smith and I. Haber, 1983, Particle Accelerators 13:165.Google Scholar
  10. Humphries, S., Jr., 1986, Particle Accelerators, 20 (in press).Google Scholar
  11. Keefe, D., 1976, Proc. 1976 Proton Linear Accel. Conf. (Chalk River) Atomic Energy of Canada, Ltd., Rep. No. AECL-5677, 272,Google Scholar
  12. Keefe, D., 1982, Ann. Rev. Nuc. Part. Phys. 32:391.ADSCrossRefGoogle Scholar
  13. Lee, E. P., 1986, in Ref. 2.Google Scholar
  14. Reiser, M., 1978, Particle Accelerators, 8:167.Google Scholar
  15. Tiefenback, M. G., and D. Keefe, 1985, IEEE Trans. Nuc. Sci. 32:2483.ADSCrossRefGoogle Scholar
  16. Tiefenback, M. G., 1986, “Space-charge Limits on the Transport of Ion Beams in a Long A. G. System” (Ph.D. Thesis) Lawrence Berkeley Laboratory Report No. LBL-21611.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Denis Keefe
    • 1
  1. 1.Lawrence Berkeley LaboratoryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations