Advertisement

Fundamental Features of Superconducting Cavities for High-Brightness Accelerators

  • Guenter Mueller
Part of the NATO ASI Series book series (NSSB, volume 178)

Abstract

It is now more than 20 years ago since the first electrons were accelerated in a superconducting lead-plated copper cavity at Stanford (Pierce et al, 1965). Between 1968 and 1970 very successful experiments were performed with X-band resonators fabricated from bulk niobium (Turn-eaure et al, 1968 and 1970) which is the element with the highest critical temperature. These experiments together with the predictions based on the microscopic BCS theory of superconductivity (Bardeen, Cooper and Schrieffer, 1957) lead to the early expectation that accelerating fields of at least 30 MV/m and quality factors above 1010 could be achieved with superconducting cavities in a continuous wave mode (cw).

Keywords

Continuous Wave Mode Prototype Structure Magnetic Surface Field Accelerate Structure Beam Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrikosov, A.A., 1957, Zh.Eksp. Teor. Fiz., 32:1442.Google Scholar
  2. Abrikosov, A.A., Gorkov, L.P., and Khalatnikov, I.M., 1958, Sov. Phys. JETP 8:182.Google Scholar
  3. Alrutz-Ziemssen, K., Gräf, H.D., Huck, V., Hummel, K.O., Raster, G., Knirsch, M., Richter, A., Schanz, M., Simrock, S., Spamer, E., Titze, O., Grundey, Th., Heinrichs, H., and Piel, H., 1986, Proc. of the Lin. Acc. Conf., Stanford.Google Scholar
  4. Arnolds-Mayer, G., and Chiaveri, E., 1986, CERN/ER/RF 86–2.Google Scholar
  5. Axel, P., Cardman, L.S., Graf, H.D., Hanson, A.O., Hoffswell, R.A., Jamnik, D., Sutton, D.C., Taylor, R.H., and Young, L.H., 1979, IEEE Trans. NS-26:3143.ADSGoogle Scholar
  6. Bardeen, J., Cooper, L.N., and Schrieffer, J.R., 1957, Phys. Rev., 108:1175.MathSciNetADSMATHCrossRefGoogle Scholar
  7. Bensiek, W., Garner, G., Hager, J., Biallas, G., Chargin, A., Moss, B., Parkinson, J., Amato, J., Brawley, J., Coulombe, D., Morse, D., Heidt, A., Herb, S., Kirchgessner, J., Nakajima, K., Padamsee, H., Palmer, F., Phillips, H.L., Reece, C., Sundelin, R., Tigner, M., Schulz, K., Klein, U., Pallussek, A., Vogel, H.P., Conner, E., Loer, S., Weller, P., Fleck, R., Grundey, Th., Heinrichs, H., Huppelsberg, D., Matheisen, A., Peiniger, M., Piel, H., and Roeth, R., 1986, Proc. of the Lin. Acc. Conf., Stanford.Google Scholar
  8. Benvenuti, C., Circelli, N., Hauer, M., and Weingarten, W., 1985, IEEE Trans. MAG-21:153.ADSGoogle Scholar
  9. Bernard, Ph., Cavallari, G., Chiaveri, E., Haebel, E., Heinrichs, H., Lengeler, H., Picasso, E., Picciarelli, V., and Piel, H., 1980, Proc. of the 11th Int. Conf. on High Energy Acc, Geneva, p.878.Google Scholar
  10. Bernard, Ph., Cavallari, G., Chiaveri, E., Haebel, E., Lengeler, H., Padamsee, H., Picciarelli, V., Proch, D., Schwettman, A., Tuckmantel, J., Weingarten W., and Piel, H., 1983, Nucl. Instr. Meth. 206:47.CrossRefGoogle Scholar
  11. Bernard, Ph., Lengeler, H., and Picasso, E., 1985, CERN LEP note 524 and CERN/EF/RF 85–1.Google Scholar
  12. Blaschke, R., 1981, Recent Developments in Condensed Matter Physics Vol. 4:425, ed. by J.T. Devreese et al., (Plenum Press, New York).Google Scholar
  13. Bollinger, L.M., 1983, IEE Trans. NS-30:2065.ADSGoogle Scholar
  14. Bollinger, L.M., 1986, Nucl. Instr. Meth., A244:246.ADSGoogle Scholar
  15. Citron, A., Dammertz, G., Grundner, M., Husson, L., Lehm, R., and Lengeler, H., 1979, Nucl. Instr. Meth., 164:31.CrossRefGoogle Scholar
  16. Citron, A., 1980, Proc. of the 1st Workshop on RF Superconductivity, Karlsruhe, KfK 3019.Google Scholar
  17. Deacon, D.A.G., Elias, L.R., Madey, J.M.J., Ramian, G.J., Schwettman, H.A., and Smith, T.I., 1977, Phys. Rev. Lett., 38:892.ADSCrossRefGoogle Scholar
  18. Elias H., 1985, University of Wuppertal, WUD 85–12.Google Scholar
  19. Furuya, T., Hara, K., Hosoyama, K., Kojima, Y., Mitsonubo, S., Noguchi, S., Nakazato, T., and Saito, K., 1984, Proc. of the 5th Symp. on Acc. Sc, and Techn., KEK.Google Scholar
  20. Ginzburg, V.L., and Landau, L.D., 1950, Zh. Eks. Teor. Fiz., 20:1064.Google Scholar
  21. Grundey, Th., Heinrichs, H., Klein, U., Mueller, G., Nissen, G., Piel, H., Genz, H., Graf, H.D., Janke, M., Richter, A., Schanz, M., Spamer, E., and Titze, O., 1984, Nucl. Instr. Meth., 224:5.CrossRefGoogle Scholar
  22. Haebel, E., 1984, Proc. of the 2nd Workshop on RF Superconductivity, CERN, ed. by H. Lengeler.Google Scholar
  23. Haebel, E., Marchard, P., and Tückmantel, J., 1984, CERN/EF/RF 84–2.Google Scholar
  24. Haebel, E., Stierlin, R., and Tückmantel, J., 1985, CERN/EF/RF 85–7.Google Scholar
  25. Haebel, E., and Sekutowicz, J., 1986, DESY M-86–06.Google Scholar
  26. Halbach, K., and Holsinger, R.F., 1976, Part. Acc. 7:213.Google Scholar
  27. Halbritter, J., 1970, Kernforschungszentrum Karlsruhe KfK 3/70–6.Google Scholar
  28. Heinrichs, H., Klein, U., Mueller, G., Piel, H., Proch, D., Weigarten, W., Genz, H., Gräf, H.D., Grundey, Th., Richter, A., and Spamer, E., 1979, Proc. of the Conf. on Nucl. Phys. with Electromagn.Interact., Mainz 1979, Lecture Notes in Phys. 108:176.CrossRefGoogle Scholar
  29. Hess, C.E., Schwettman, H.A., and Smith, T.I., 1985, IEE Trans. NS-32:2924.ADSGoogle Scholar
  30. Huppelsberg, D., 1985, University of Wuppertal, Wu D 85–3.Google Scholar
  31. Klein, U., 1981, University of Wuppertal, WU DI 81–2.Google Scholar
  32. Klein, U., and Proch, D., 1979, Proc. of the Conf. on Future Poss. Of Electron Acc., Charlottesville/USA.Google Scholar
  33. Klein, U., and Turneaure, J.P., 1983, IEEE Trans. MAG-19:1330.ADSGoogle Scholar
  34. Kneisel, P., Vincon, R., and Halbritter, J., 1981, Nucl. Instr. Meth., 188:669.CrossRefGoogle Scholar
  35. Kneisel, P., Nakajima, K., Kirchgessner, J., Mioduszewski, J., Pickup, M., Sundelin, R., and Tignor, M., 1983, IEEE Trans. NS-30:3348.ADSGoogle Scholar
  36. Kneisel, P., 1984, Cornell University SRF 840702.Google Scholar
  37. Kneisel, P., and Mueller, G., 1985, Cornell University SRF 851201EX.Google Scholar
  38. Kneisel, P., Amato, J., Kirchgessner, J., Nakajima, K., Padamsee, H., Philipps, H.L., Reece, C., Sundelin, R., and Tigner, M., 1985, IEEE Trans. Mag-21:1000.ADSGoogle Scholar
  39. Latham, R.V., “High Voltage Vacuum Insulation, The Physical Basis” (Acad.Press, London, New York, 1981).Google Scholar
  40. Latham, R.V., 1984, Proc of the 2nd Workshop on RF Superconductivity, CERN ed. by H. Lengeler.Google Scholar
  41. Leeman, C.W., 1986, Proc. of the Lin. Acc. Conf., Stanford.Google Scholar
  42. Lengeler, H., Weingarten, W., Mueller, G. and Piel, H., 1985, IEEE Trans. MAG-21.1014.ADSGoogle Scholar
  43. Lengeler, H., 1986, Proc. of the Lin. Acc. Conf., Stanford.Google Scholar
  44. London, H., 1934, Nature 133:497.ADSMATHCrossRefGoogle Scholar
  45. Lyneis, C. M., McAshan, M.S., and Nguyen Tuong Viet, 1972, Proc of the Proton Lin.AccConf., Los Alamos, p.98Google Scholar
  46. Lyneis, C. M., Schwettman, H.A. and Turneaure, J.P., 1977, Appl. Phys. Lett, 31, 541).ADSCrossRefGoogle Scholar
  47. Lyneis, C. M., 1980, Proc. of 1st Workshop on RF Superconductivity, Karlsruhe, KfK 3019Google Scholar
  48. Matricon, J., and James, D.S., 1967, Phys. Lett., 24A:241.ADSGoogle Scholar
  49. Mattis, D.C, and Bardeen, J., 1958, Phys. Rev., 111:412.ADSMATHCrossRefGoogle Scholar
  50. Meissner, W., and Ochsenfeld, R., 1933, Naturviss., 21:787.ADSGoogle Scholar
  51. Mueller, G., 1983, University of Wuppertal, WU DI 83–1.Google Scholar
  52. Mueller, G., 1984, Proc. of the 2nd Workshop on RF Superconductivity, CERN, ed. by H. LengelerGoogle Scholar
  53. Niedermann, Ph., Sankarraman, N., and Fischer, Ø., 1984, Proc of the 2 nd Workshop on RF Superconductivity, CERN, ed. by H. LengelerGoogle Scholar
  54. Niedermann, Ph., Sankarraman, N., Noer, R.J., and Fischer, Ø., 1986, J. Appl. Phys., 59:892.ADSCrossRefGoogle Scholar
  55. Padamsee, H., 1983, CERN/EF/RF 82–5 91982 and IEE Trans. MAG-19:1322.Google Scholar
  56. Padamsee, H., 1985, Cornell University SRF 830902 (1983) and IEEE Trans. Mag-21:1007.Google Scholar
  57. Padamsee, H., Tuckmantel, J., and Weingarten, W., 1983, IEEE Trans. Mag-19:1308.ADSGoogle Scholar
  58. Padamsee, H., 1984, Proc. of the 2nd Workshop on RF Superconductivity, CERN, ed. by H. LengelerGoogle Scholar
  59. Padamsee, H., 1985, IEEE Trans. MAG-21:149.ADSGoogle Scholar
  60. Peiniger, M., and Piel, H., 1985, IEEE Trans. NS-32:3612.ADSGoogle Scholar
  61. Pfister, H., 1976, Cryogenics 16:17.CrossRefGoogle Scholar
  62. Piel, H., 1980, Proc. of the 1st Workshop on RF Superconductivity, Karlsruhe, KfK 3019.Google Scholar
  63. Piel, H., and Romijn, R., 1980, CERN/EF/RF 80–3.Google Scholar
  64. Piel, H., 1985, IEEE Trans. NS-32:3565.ADSGoogle Scholar
  65. Piel, H., Proc. of the CERN Acc. School “Advanced Accelerator Physics”, Oxford (1985) and University of Wuppertal Wu B 96–14(1986).Google Scholar
  66. Pierce, J.M., Schwettman, H.A., Fairbank, W.M., and Wilson, P.B., 1965, Proc. of the 9th Int.Conf. on Low Temp.Phys. Part A, p.396.Google Scholar
  67. Proch, D., 1986, priv. communication.Google Scholar
  68. Reuter, G.E.H., and Sondheimer, E.H., 1948, ProcRoy.Soc., A195:336.ADSCrossRefGoogle Scholar
  69. Romijn, R., Weingarten, W., and Piel, H., 1983, IEEE Trans. MAG-19:1318.ADSGoogle Scholar
  70. Sankarraman, N., Niedermann, Ph., Noer, R.J., and Fischer, Ø., 1986, Procof the 33rd Int. Field Emission Symp., Berlin.Google Scholar
  71. Schulze, K.K., 1981, J. of Metals 33:33.Google Scholar
  72. Schwettman, H.A., Turneaure, J.P., and Waites, R.F., 1974, J. Appl., Phys. 45:914.ADSCrossRefGoogle Scholar
  73. Schwettman, H.A., Smith, T.I., and Hess, C.E., 1985, IEEE Trans. NS-32:2927.ADSGoogle Scholar
  74. Shepard, K.W., 1984, Proc. of the 2nd Workshop on RF Superconductivity, CERN, ed. by H. Lengeler.Google Scholar
  75. Stierlin, R.G., 1986, CERN/EF/3233H/RGS/ed.Google Scholar
  76. Sundelin, R., Kirchgessner, J., Padamsee, H., Philipps, H.L., Rice, D., Tigner, M., and von Borstel, E., 1974, Proc. of the Int.Conf. on High Energy Acc, Stanford, p.128.Google Scholar
  77. Sundelin, R.M., 1985, IEEE Trans. NS-32:3570.ADSGoogle Scholar
  78. Susta, J., 1984, Proc. of the 2nd Workshop on RF Superconductivity, CERN, ed. by H. Lengeler.Google Scholar
  79. Tigner, M., and Padamsee, H., 1982, AIP Conf.Proc. of the SLAC Summer School, 1982, ed. by M. Month, p.801 (AIP, New York,1983) and Cornell University CLNS 82/553.Google Scholar
  80. Turneaure, J.P. 1967, Stanford University HEPL 507.Google Scholar
  81. Turneaure, J.P., and Weissman, I., 1968, J. Appl. Phys. 39:4417.ADSCrossRefGoogle Scholar
  82. Turneaure, J.P., and Nguyen Tuong Viet, 1970, Appl. Phys. Lett. 16:333.ADSCrossRefGoogle Scholar
  83. Weiland, T., 1983, Nucl. Instr. Meth. 216:329.CrossRefGoogle Scholar
  84. Weiland, T., 1983, DESY M-83–17.Google Scholar
  85. Weingarten, W., 1984, Proc. of the 2nd Workshop on Rf Superconductivity, CERN, ed. by H. Lengeler.Google Scholar
  86. Yogi, T., Dick, G.J., and Mercereau, J.E., 1977, Phys. Rev. Lett. 39:826.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Guenter Mueller
    • 1
  1. 1.Department of PhysicsUniversity of WuppertalWuppertal 1West Germany

Personalised recommendations