Advertisement

High-Current Electron-Beam Transport in Recirculating Accelerators

  • B. B. Godfrey
  • T. P. Hughes
Part of the NATO ASI Series book series (NSSB, volume 178)

Abstract

Interest in high current (i.e., > 1 kA) electron beam recirculating accelerators has grown greatly during the last several years. As evidence, this chapter’s bibliography includes some 110 recent reports and is by no means complete. Applications include basic research, materials processing, food sterilization, radiography, collective ion acceleration, and free electron lasers. Some of these topics are discussed elsewhere in this book.

Keywords

Drift Tube Beam Radius Naval Research Laboratory Relativistic Electron Beam Instability Growth Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barak, G., Chernin, D., Fisher, A., Ishizuka, H., and Rostoker, N., 1981, “High Current Betatron,” in: “High-Power Beams 81,” H. J. Doucet and J. M. Buzzi, ed., Ecole Polytechnique, Palaiseau.Google Scholar
  2. Barak, G., Fisher, A., Ishizuka, H., and Rostoker, N., 1981, “High Current Betatron,” IEEE Trans. Nuc. Sci., NS-28:3340.ADSGoogle Scholar
  3. Barak, G., and Rostoker, N., 1983 “Orbital Stability of the High-Current Betatron,” Phys. Fluids, 26:856.ADSMATHGoogle Scholar
  4. Briggs, R. J., 1980, “Suppression of Transverse Beam Breakup Modes in an Induction Accelerator by Gas Focusing,” Lawrence Livermore National Laboratory, Livermore.Google Scholar
  5. Briggs, R. J., and Neil, V. K., 1967, “Negative-Mass Instability in a Cylindrical Layer of Relativistic Electrons,” Plas. Phys., 9:209.ADSGoogle Scholar
  6. Blaugrund, A. E., Fisher, A., Prohaska, R., and Rostoker, N., 1985, “A Stretched Betatron,” J. Appl. Phys., 57:2474.ADSGoogle Scholar
  7. Brower, D. F., Kusse, B. R., and Meixel, G. D., 1974, “Injection of Intense Electron Beams into a Toroidal Geometry,” IEEE Plas. Sci., PS-2:193.ADSGoogle Scholar
  8. Cavenago, M., and Rostoker, N., 1985, “Modified Elongated Betatron Accelerator I — Equilibria and Space Charge Limits,” University of California, Irvine.Google Scholar
  9. Cavenago, M., and Rostoker, N., 1986, “Modified Elongated Betatron Accelerator — A Covariant and Systematic Description,” in: “Beams ′86,” to be published.Google Scholar
  10. Chernin, D., 1984, “Mode Coupling in a Modified Betatron,” Part. Accel. 14:139.Google Scholar
  11. Chernin, D., 1985, “Self-Consistent Treatment of Equilibrium Space Charge Effects in the L=2 Stellatron,” IEEE Trans. Nuc. Sci., NS-32:2504.ADSGoogle Scholar
  12. Chernin, D., 1986, “Beam Stability in the L=2 Stellatron,” Phys. Fluids, 29:556.ADSMATHGoogle Scholar
  13. Chernin, D., 1986, “Orbital Resonances and Energy and Current Limits in High Current Cyclic Accelerators,” Science Applications Int. Corp., Washington.Google Scholar
  14. Chernin, D., and Lau, Y. Y., 1984, “Stability of Laminar Electron Layers,” Phys. Fluids, 27:2319.ADSMATHGoogle Scholar
  15. Chernin, D., Mondelli, A., and Roberson, C., 1984, “A Bumpy-Torus Betatron,” Phys. Fluids, 27:2378.ADSGoogle Scholar
  16. Chernin, D., and Sprangle, P., 1982, “Transverse Beam Dynamics in a Modified Betatron,” Part. Accel. 12:85.Google Scholar
  17. Davidson, R. C., 1974, “Theory of Nonneutral Plasmas,” Benjamin, Reading.Google Scholar
  18. Davidson, R. C., and Uhm, H. S., 1982, “Stability Properties of an Intense Relativistic Nonneutral Electron Ring in a Modified Betatron Accelerator,” Phys. Fluids, 25:2089.ADSMATHGoogle Scholar
  19. Dialetis, D., Marsh, S. J., and Kapetanakos, C. A., 1986, “The Rebatron as a High Energy Accelerator,” Naval Research Laboratory, Washington.Google Scholar
  20. Felber, F. S., Mitrovich, D., Vomvoridis, J., Cooper, R. K. Fisher, A., Hughes, T. P., and Godfrey, B. B., 1983, “Relativistic Injection into a High Current Betatron,” IEEE Trans. Nuc. Sci., NS-30:2781.ADSGoogle Scholar
  21. Finn, J. M., and Manheimer, W. M., 1983, “Self Consistent Equilibrium and Adiabatic Evolution of a High Current Electron Ring in a Modified Betatron,” Phys. Fluids, 26:3400.ADSMATHGoogle Scholar
  22. Frost, C. A., Shope, S. L., Ekdahl, C. A., Poukey, J. W., Freeman, J. R., Leifeste, G. T., Mazarakis, M. G., Miller, R. B., Tucker, W. K., and Godfrey, B. B., 1986, “Ion Focused Transport Experiments,” Proc. 1986 Linear Accelerator Conf., to be published.Google Scholar
  23. Getmanov, B. S., and Makhankov, V. G., 1977, “Study of the Longitudinal Instability of Relativistic Electron Rings,” Part. Accel. 8:49.Google Scholar
  24. Gisler, G. R., 1986, “PIC Simulations of Azimuthal Instabilities in Relativistic Electron Layers,” submitted to Phys. Fluids.Google Scholar
  25. Gisler, G., and Faehl, R., 1983, “Self-Trapping Electron Ring Accelerators,” IEEE Trans. Nuc. Sci., NS-30:3204.ADSGoogle Scholar
  26. Godfrey, B. B., and Hughes, T. P., 1982, “Resistive Wall Instabilities in the Modified Betatron,” Mission Research Corporation, Albuquerque.Google Scholar
  27. Godfrey, B. B., and Hughes, T. P., 1983, “Beam Breakup Instabilities in High Current Electron Beam Racetrack Induction Accelerators,” IEEE Trans. Nuc. Sci., NS-30:2531.ADSGoogle Scholar
  28. Godfrey, B. B., and Hughes, T. P., 1985, “Long-Wavelength Negative Mass Instability in High Current Betatrons,” Phys. Fluids, 28:669.ADSMATHGoogle Scholar
  29. Godfrey, B. B., and Hughes, T. P. 1985, “The Negative Mass Instability in High Current Modified Betatrons at Low Energies,” IEEE Trans. Nuc. Sci., NS-32:2495.ADSGoogle Scholar
  30. Godfrey, B. B., and Hughes, T. P., 1986, “An Improved Negative Mass Instability Dispersion Relation for High Current Modified Betatrons,” Part. Accel., to be published.Google Scholar
  31. Godfrey, B. B., Newberger, B. S., Wright, L. A., and Campbell, M. M., 1985, “IFR Transport in Recirculating Accelerators,” Mission Research Corporation, Albuquerque.Google Scholar
  32. Golden, J., Pasour, J., Pershing, D. E., Smith, K., Mako, F., Slinker, S., Mora, F., Orrick, N., Altes, R., Fliflet, A., Chapney, P., and Kapetanakos, C. A., 1983, “Preliminary Design of the NRL Modified Betatron,” IEEE Trans. Nuc. Sci., NS-30:2114.ADSGoogle Scholar
  33. Golden, J., Mako, F., Floyd, L., McDonald, K., Smith, T., Dialetis, D., Marsh, S. J., and Kapetanakos, C. A., 1986, “Progress in the Development of the NRL Modified Betatron Accelerator,” in: “Beams ′86,” to be published.Google Scholar
  34. Grossmann, J. M., Manheimer, W. M., and Finn, J. M., 1983, “Self-Consistent Modified Betatron Equilibria and Their Adiabatic Evolution,” in: “Beams ′83,” R. J. Briggs and A. J. Toepfer, ed., San Francisco.Google Scholar
  35. Grossmann, J. M., Finn, J. M., and Manheimer, W. M., 1985, “Acceleration of an Electron Ring in a Modified Betatron with Transverse Pressure,” Phys. Fluids, 28:695.ADSMATHGoogle Scholar
  36. Haber, I., Marsh, S. J., and Sprangle, P., 1983, “Emittance Growth in a Modified Betatron Crossing the Orbit-Turning-Point Transition,” in: “Beams ′83,” R. J. Briggs and A. J. Toepfer, ed., San Francisco.Google Scholar
  37. Hughes, T. P., 1985, “Estimates of Negative-Mass Instability Growth for the NRL Betatron,” Mission Research Corporation, Albuquerque.Google Scholar
  38. Hughes, T. P., 1986, “Theory and Simulations of High-Current Betatrons,” in: “Beams ′86,” to be published.Google Scholar
  39. Hughes, T. P., Campbell, M. M., and Godfrey, B. B., 1983, “Analytic and Numerical Studies of the Modified Betatron,” IEEE Trans. Nuc. Sci., NS-30:2528.ADSGoogle Scholar
  40. Hughes, T. P., Campbell, M. M., and Godfrey, B. B., 1983, “Linear and Nonlinear Development of the Negative Mass Instability in a Modified Betatron Accelerator,” in: “Beams ′83,” R. J. Briggs and A. J. Toepfer, ed., San Francisco.Google Scholar
  41. Hughes, T. P., and Godfrey, B. B., 1982, “Linear Stability of the Modified Betatron,” Mission Research Corporation, Albuquerque.Google Scholar
  42. Hughes, T. P., and Godfrey, B. B., 1984, “Single-Particle Orbits in the Stellatron Accelerator,” Mission Research Corporation, Albuquerque.Google Scholar
  43. Hughes, T. P., and Godfrey, B. B., 1984, “Modified Betatron Accelerator Studies,” Mission Research Corporation, Albuquerque.Google Scholar
  44. Hughes, T. P., and Godfrey, B. B., 1985, “Instability in a Relativistic Electron Layer with a Strong Azimuthal Magnetic Field,” Appl. Phys. Lett., 46:473.ADSGoogle Scholar
  45. Hughes, T. P., and Godfrey, B. B., 1985, “Equilibrium and Stability Properties of the Solenoidal Lens Betatron,” IEEE Trans. Nuc. Sci., NS-32:2498.ADSGoogle Scholar
  46. Hughes, T. P., and Godfrey, B. B., 1986, “Electromagnetic Instability in a Quadrupole-Focusing Accelerator,” Phys. Fluids, 29:1698.ADSGoogle Scholar
  47. Hughes, T. P., Godfrey, B. B., and Campbell, M. M., 1983, “Modified Betatron Accelerator Studies,” Mission Research Corporation, Albuquerque.Google Scholar
  48. Hui, B., and Lau, Y. Y., 1984, “Injection and Extraction of a Relativistic Electron Beam in a Modified Betatron,” Phys. Rev. Lett., 53:2024.ADSGoogle Scholar
  49. Ishizuka, H., Leslie, G., Mandelbaum, B., Fisher, A., and Rostoker, N., 1985, “Injection and Capture of Electrons in the UCI Stellatron,” IEEE Trans. Nuc. Sci., NS-32:2727.ADSGoogle Scholar
  50. Ishizuka, H., Lindley, G., Mandelbaum, B., Fisher, A., and Rostoker, N., 1984, “Formation of a High Current Electron Beam in Modified Betatron Field,” Phys. Rev. Lett., 53:266.ADSGoogle Scholar
  51. Kapetanakos, C. A., Dialetis, D., and Marsh, S. J., 1986, “Beam Trapping in a Modified Betatron with Torsatron Windings,” Part. Accel., to be published.Google Scholar
  52. Kapetanakos, C. A., and Marsh, S. J., 1985, “Non-Linear Transverse Electron Beam Dynamics in a Modified Betatron Accelerator,” Phys. Fluids, 28:2263.ADSGoogle Scholar
  53. Kapetanakos, C. A., Marsh, S. J., and Sprangle, P., 1984, “Dynamics of a High-Current Electron Ring in a Conventional Accelerator,” Part. Accel., 14:261.Google Scholar
  54. Kapetanakos, C. A., and Sprangle, P., 1984, “Self-Potentials of an Electron Ring in a Torus for Large Ring Displacement from the Minor Axis,” Naval Research Laboratory, Washington.Google Scholar
  55. Kapetanakos, C. A., and Sprangle, P., 1985, “Ultra-High-Current Electron Induction Accelerators,” Phys. Today, 38(2):58.Google Scholar
  56. Kapetanakos, C. A., Sprangle, P., Chernin, D. P., Marsh, S. J., and Haber, I., 1983, “Equilibrium of a High Current Electron Ring in a Modified Betatron,” Phys. Fluids, 26:1634.ADSMATHGoogle Scholar
  57. Kapetanakos, C. A., Sprangle, P., and Marsh, S. J., 1982, “Injection of a High-Current Beam into a Modified Betatron,” Phys. Rev. Lett., 49:741.ADSGoogle Scholar
  58. Kapetanakos, C. A., Sprangle, P., Marsh, S. J., Dialetis, D., Agritellis, C, and Prakash, A., 1985, “Rapid Electron Beam Accelerators,” Naval Research Laboratory, Washington.Google Scholar
  59. Kapetanakos, C. A., Sprangle, P., Marsh, S. J., and Haber, I., 1981, “Injection into a Modified Betatron,” Naval Research Laboratory, Washington.Google Scholar
  60. Kerst, D. W., 1983, “Conventional and Modified Betatrons,” in: “Beams ′83,” R. J. Briggs and A. J. Toepfer, ed., San Francisco.Google Scholar
  61. Kleva, R. G., Ott, E., and Sprangle, P., 1983, “Resistive Wall Flute Stability of Magnetically Guided Relativistic Electron Beams,” Phys. Fluids, 26:2689ADSMATHGoogle Scholar
  62. Landau, R. W., 1968, “Negative Mass Instability with Bθ Field,” Phys. Fluids, 11:205.ADSGoogle Scholar
  63. Landau, R. W., and Neil, V. K., 1966, “Negative Mass Instability,” Phys. Fluids, 9:2412.ADSGoogle Scholar
  64. Lawson, J. D., 1978, “The Physics of Charged-Particle Beams,” Clarendon Press, Oxford.Google Scholar
  65. Lee, E. P., Faltens, A., Laslett, L. J., and Smith L., 1983, “Stabilization of Longitudinal Modes in a High Current Betatron,” IEEE Trans. Nuc. Sci., NS-30:2504.ADSGoogle Scholar
  66. Mako, F., Golden, J., Floyd, L., McDonald, K., Smith, T., and Kapetanakos, C. A., 1985, “Internal Injection into the NRL Modified Betatron,” IEEE Trans. Nuc Sci., NS-32:3027.Google Scholar
  67. Mako, F., Manheimer, W., Kapetanakos, C. A., Chernin, D., and Sandel, F., 1984, “External Injection into a High Current Modified Betatron Accelerator,” Phys. Fluids, 27:1815.ADSMATHGoogle Scholar
  68. Mandelbaum, B., 1985, “A Study of a Modified Betatron with Stellarator Windings,” University of California, Irvine.Google Scholar
  69. Mandelbaum, B., Ishizuka, H., Fisher, A., and Rostoker, N., 1983, “Behavior of Electron Beam in a High Current Betatron,” in: “Beams ′83,” R. J. Briggs and A. J. Toepfer, ed., San Francisco.Google Scholar
  70. Manheimer, W. M., 1983, “Electron-Ion Instabilities in a High Current Modified Betatron,” Part. Accel., 13:209.Google Scholar
  71. Manheimer, W. M., 1984, “The Plasma Assisted Modified Betatron,” Naval Research Laboratory, Washington.Google Scholar
  72. Manheimer, W. M., and Finn, J. M., 1983, “Self-Consistent Theory of Equilibrium and Acceleration of a High Current Electron Ring in a Modified Betatron,” Part. Accel., 14:29.Google Scholar
  73. Martin, W. E., Caporaso, G. J., Fawley, W. M., Prosnitz, D., and Cole, A. G., 1985, “Electron Beam Guiding and Phase-Mix Damping by a Laser-Ionized Channel,” Phys. Rev. Lett. 54:685.ADSGoogle Scholar
  74. Miller, R. B., 1985, “RADLAC Technology Review,” IEEE Trans. Nuc. Sci., NS-32:3149.ADSGoogle Scholar
  75. Mondelli, A., and Chernin, D., 1984, “Envelope Stability for L=0 Focusing Systems,” Science Applications Int. Corp., Washington.Google Scholar
  76. Mondelli, A., and Chernin, D., 1985, “Plasma Focused Cyclic Accelerators,” IEEE Trans. Nuc. Sci., NS-32:3521.ADSGoogle Scholar
  77. Mondelli, A., Chernin, D., Putnam, S. D., Schlitt, L., and Bailey, V., 1986, “A Strong-Focused Spiral-Line Recirculating Induction Linac,” in: “Beams ′86,” to be published.Google Scholar
  78. Mondelli, A., Chernin, D., and Roberson, C. W., 1983, “The Stellatron Accelerator,” in: “Beams ′83,” R. J. Briggs and A. J. Toepfer, ed., San Francisco.Google Scholar
  79. Mondelli, A., and Roberson, C. W., 1983, “A High-Current Race Track Induction Accelerator,” IEEE Trans. Nuc. Sci., NS-30:3212.ADSGoogle Scholar
  80. Mondelli, A., and Roberson, C. W., 1984, “Energy Scaling Laws for the Race Track Induction Accelerator,” Part. Accel., 15:221.Google Scholar
  81. Mostrom, M. A., and Newberger, B. S., 1986, “Beam Energy Loss to a Background Plasma in an Ion Focused Recirculating Accelerator,” in: “Beams ′86,” to be published.Google Scholar
  82. Neil, V. K., and Briggs, R. J., 1967, “Stabilization of Non-Relativistic Beams by Means of Inductive Walls,” Plas. Phys., 9:631.ADSGoogle Scholar
  83. Neil, V. K., and Heckrotte, W. 1965, “Relation between Diocotron and Negative Mass Instability,” J. Appl. Phys., 36:2761.ADSMATHGoogle Scholar
  84. Newberger, B, S., and Mostrom, M. A., 1986, “Current Loss in an Ion Focused Recirculating Accelerator,” in: “Beams ′86,” to be published.Google Scholar
  85. Pavlovsky, A. I., Kuleshov, G. D., Sklizkov, G. V., et al., 1967, “High Current Ironless Betatrons,” Sov. Phys. Dok., 10:30.Google Scholar
  86. Pavlovsky, A. I., Kuleshov, G. D., Gerasimov, A. I., Klementiev, A. P., Kuznetsov, V. O., Tananakin, V. A., and Tarasov, A. D., 1977, “Injection of an Electron Beam into a Betatron,” Sov. Phys. Tech. Phys., 22:218.Google Scholar
  87. Peter, W., Faehl, R. J., and Mako, F., 1983, “Simulation Studies of a Novel Betatron Injection Scheme,” in: “Beams ′83,” R. J. Briggs and A. J. Toepfer, ed., San Francisco.Google Scholar
  88. Peterson, J. M., 1982, “Betatrons with Kiloampere Beams,” Lawrence Berkeley Laboratory, Berkeley.Google Scholar
  89. Prakash, A., Marsh, S. J., Dialetis, D., Agritellis, C., Sprangle, P., and Kapetanakos, C. A., 1985, “Recent Rebatron Studies,” IEEE Trans.Nuc. Sci., NS-32:3265.ADSGoogle Scholar
  90. Prohaska, R., Blaugrund, A. E., Fisher, A., Honea, E., Schneider, J., and Rostoker, N., 1983, “A Stretched Betatron,” in: “Beams ′83,” R. J. Briggs and A. J. Toepfer, ed., San Francisco.Google Scholar
  91. Prono, D. S., and the Beam Research Group, 1985, “Recent Progress of the Advanced Test Accelerator,” IEEE Trans. Nuc. Sci., NS-32:3144.ADSGoogle Scholar
  92. Rienstra, W. W., and Sloan, M. L., 1985, “Recirculating Accelerator Magnet Design,” Science Applications Int. Corp., Albuquerque.Google Scholar
  93. Roberson, C W., 1981, “The Race Track Induction Accelerator,” IEEE Trans. Nuc. Sci., NS-28:3433.ADSGoogle Scholar
  94. Roberson, C. W., Mondelli, A., and Chernin, D., 1983, “The Stellatron - A Strong-Focusing, High-Current Betatron,” IEEE Trans. Nuc. Sci., NS-30:3162.ADSGoogle Scholar
  95. Roberson, C. W., Mondelli, A., and Chernin, D., 1983, “The Stellatron - A High-current Betatron with Stellarator Fields,” Phys. Rev. Lett., 50:507.ADSGoogle Scholar
  96. Roberson, C. W., Mondelli, A., and Chernin, D., 1985, “The Stellatron Accelerator,” Part. Accel., 17:79.Google Scholar
  97. Roberts, G. A., and Rostoker, N., 1983, “Analysis of a Modified Betatron with Adiabatic Particle Dynamics,” in: “Beams ′83,” R. J. Briggs and A. J. Toepfer, ed., San Francisco.Google Scholar
  98. Roberts, G. A., and Rostoker, N., 1985, “Adiabatic Beam Dynamics in a Modified Betatron,” Phys. Fluids, 28:1968.ADSMATHGoogle Scholar
  99. Roberts, G. A., and Rostoker, N., 1986, “Effect of Quasi-Confined Particles and L=2 Stellarator Fields on the Negative Mass Instability in a Modified Betatron,” Phys. Fluids, 29:333.ADSGoogle Scholar
  100. Rostoker, N., 1973, “High ν/γ Electron Beam in a Torus,” Part. Accel., 5:93.Google Scholar
  101. Rostoker, N., 1981, “High Current Betatron,” IEEE Trans. Nuc. Sci., NS-28:3340.ADSGoogle Scholar
  102. Rostoker, N., 1983, “High Current Betatron Experiments and Theory,” in: “Beams ′83,” R. J. Briggs and A. J. Toepfer, ed., San Francisco.Google Scholar
  103. Shope, S. L., Frost, C. A., Leifeste, G. T., Crist, C. E., Kiekel, P. D., Poukey, J. W., and Godfrey, B. B., 1985, “Laser Generation and Transport of a Relativistic Electron Beam,” IEEE Trans. Nuc. Sci., NS-32:3091.ADSGoogle Scholar
  104. Siambis, J. G., 1983, “Intense Beam Recirculation,” IEEE Trans. Nuc. Sci., NS-30:3195.ADSGoogle Scholar
  105. Sprangle, P. and Chernin, D., 1983, “Current Limitations Due to Instabilities in Modified and Conventional Betatrons,” in: “Beams ′83,” R. J. Briggs and A. J. Toepfer, ed., San Francisco.Google Scholar
  106. Sprangle, P. and Chernin, D., 1984, “Beam Current Limitations Due to Instabilities in Modified and Conventional Betatrons,” Part. Accel., 15:35.Google Scholar
  107. Sprangle, P., and Kapetanakos, C. A., 1983, “Drag Instability in the Modified Betatron,” Naval Research Laboratory, Washington.Google Scholar
  108. Sprangle, P., and Kapetanakos, C. A., 1985, “Beam Trapping in High Current Cyclic Accelerators,” Naval Research Laboratory, Washington.Google Scholar
  109. Sprangle, P., and Kapetanakos, C. A., and Marsh, 1981, “Dynamics of an Intense Electron Ring in a Modified Betatron Field,” in: “High-Power Beams 81,” H. J. Doucet and J. M. Buzzi, ed., Ecole Polytechnique, Palaiseau.Google Scholar
  110. Sprangle, P., and Vomvoridis, J. L., 1981, “Longitudinal and Transverse Instabilities in a High Current Modified Betatron Electron Accelerator,” Naval Research Laboratory, Washington.Google Scholar
  111. Taggart, D., Parker, M. R., Hopman, H., and Fleischmann, H. H., 1981, “Successful Betatron Acceleration of Kiloampere Electron Rings in RECE-Christa,” IEEE Trans. Nuc Sci., NS-30:3165.ADSGoogle Scholar
  112. Uhm, H. S., 1981, “Grad-B Drift of an Electron Beam in the High Current Betatron,” Naval Surface Weapons Center, White Oak.Google Scholar
  113. Uhm, H. S., and Davidson, R. C., 1977, “Kinetic Description of Negative-Mass Instability in an Intense Relativistic Nonneutral E Layer,” Phys. Fluids, 20:771.ADSGoogle Scholar
  114. Uhm, H. S., and Davidson, R. C., 1978, “Influence of Axial Energy Spread on the Negative-Mass Instability in a Relativistic Nonneutral E Layer,” Phys. Fluids, 21:265.ADSGoogle Scholar
  115. Uhm, H. S., and Davidson, R. C., 1982, “Stability Properties of an Intense Relativistic Non-Neutral Electron Ring in a Modified Betatron Accelerator,” Phys. Fluids. 25:2089.ADSMATHGoogle Scholar
  116. Uhm, H. S., and Davidson, R. C., 1982, “Ion-Resonance Instability in a Modified Betatron Accelerator,” Phys. Fluids, 25:2334.ADSMATHGoogle Scholar
  117. Uhm, H. S., and Davidson, R. C., 1985, “Influence of Electromagnetic Effects on Stabilities Properties of a High-Current Betatron Accelerator,” IEEE Trans. Nuc. Sci., NS-32:2383.ADSGoogle Scholar
  118. Uhm, H. S., Davidson, R. C, and Petillo, J. J., 1985, “Kinetic Properties of an Intense Relativistic Electron Ring in a High-Current Betatron Accelerator,” Phys. Fluids, 28:2537.ADSMATHGoogle Scholar
  119. Wilson, M. A., 1981, “Recirculation Acceleration of High Current Relativistic Electron Beams - A Feasibility Study,” IEEE Trans. Nuc. Sci., NS-28:3375.ADSGoogle Scholar
  120. Zieher, K. W., Fishbine, B., Humphries, S., and Woodall, D. M., 1985, “Beam Measurements on the Electron Injector for a High Current Betatron,” IEEE Trans. Nuc. Sci., NS-32:3274.ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • B. B. Godfrey
    • 1
  • T. P. Hughes
    • 1
  1. 1.Mission Research CorporationAlbuquerqueUSA

Personalised recommendations