The Role of RNA Splicing and Post-Translational Proteolytic Processing in the Biosynthesis of Neuropeptides

  • Anthony J. Harmar
  • Lindsay Sawyer


The neuropeptides are synthesised by mechanisms which closely resemble those for other secreted proteins. Transcription of a neuropeptide gene results in the synthesis of precursor RNA which is processed in the nucleus into mature messenger RNA (mRNA). Only certain segments of the precursor RNA (exons) are present in mRNA and the remaining segments of RNA (introns) are excised during RNA maturation. In some cases, more than one species of mRNA may be generated from a single gene as the result of alternative patterns of RNA splicing.


High Molecular Weight Kininogen Precursor Polypeptide Hypophysial Portal Blood Human High Molecular Weight Porcine Spinal Cord 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baskin, D.G. and Ensinck, J.W., 1984, Somatostatin in epithelial cells of intestinal mucosa is present primarily as somatostatin 28, Peptides (Fayetteville), 5: 615.CrossRefGoogle Scholar
  2. Crenshaw, E.B. III, Russo, A.F., Swanson, L.W. and Rosenfeld, M.G., 1987, Neuron-specific alternative RNA processing in transgenic mice expressing a metallothionein - calcitonin fusion gene, Cell, 49: 389.CrossRefGoogle Scholar
  3. Dockray, G.J., Dimaline, R., Pauwels, S. and Varro, A., Gastrin and CCK-related peptides, in: “Prohormones, hormones and their fragments”, J. Martinez, ed., Ellis Horwood. In press.Google Scholar
  4. Gomez, S., Morel, A., Nicolas, P. and Cohen, P., 1983, Regional distribution of the Mr15000 somatostatin precursor, somatostatin-28 and somatostatin-14 in the rat brain suggests a differential intracellular processing of the high molecular weight species, Biochem. Biophvs. Res. Commun., 112: 297.CrossRefGoogle Scholar
  5. Harmar, A.J., Armstrong, A., Pascall, J., Chapman, K., Rosie, R., Curtis, A., Going, J.J., Edwards, C.R.W. and Fink, G., 1986, cDNA sequence of human betapreprotachykinin, the common precursor to substance P and neurokinin A, FEBS Lett., 208: 67.CrossRefGoogle Scholar
  6. Harmar, A.J., Pierotti, A.R., Sanchez-Watts, G., Going, J.J. and Edwards, C.R.W., 1987, Production by a metastatic laryngeal carcinoid of peptides derived from the substance P precursor, beta-preprotachykinin, J. Endocrinol., 112: 277.Google Scholar
  7. Kawaguchi, Y., Hoshimaru, M., Nawa, H. and Nakanishi, S., 1986, Sequence analysis of cloned cDNA for rat substance P precursor existence of a third substance P precursor, Biochem. Biophvs. Res. Commun., 139: 1040.CrossRefGoogle Scholar
  8. Kimura, S., Oada, M., Sugita, Y., Kanazawa, I. and Munekata, E, 1983, Novel neuropeptides, neurokinin alpha and beta, isolated from porcine spinal cord, Proc. Jan. Acad. Ser.B, 59: 101.CrossRefGoogle Scholar
  9. Krause, J.E., Chirgwin, J.M., Carter, M.S., Xu, Z.S. and Hershey, A.D., 1987, Three rat preprotachykinin mRNAs encode the neuropeptides substance P and neurokinin A, Proc. Natl. Acad. Sci. USA, 84: 881.CrossRefGoogle Scholar
  10. Millar, R.P., Sheward, W.J., Wegener, I and Fink, G., 1983, Somatostatin-28 is a hormonally active peptide released into hypophysial portal blood, Brain Res., 260: 334.CrossRefGoogle Scholar
  11. Muller-Esterl, W., Iwanaga, S. and Nakanishi, S., 1986, Kininogens revisited, Trends Biochem. Sci., 2: 336.CrossRefGoogle Scholar
  12. Nawa, H., Hirose, T., Takashima, H., Inayama, S. and Nakanishi, S., 1983, Nucleotide sequence of cloned cDNAs for two types of bovine brain substance P precursor, Nature, 306: 32.CrossRefGoogle Scholar
  13. Nawa, H., Kotani, H. and Nakanishi, S., 1984, Tissue-specific generation of two preprotachykinin mRNAs from one gene by alternative RNA splicing, Nature, 312: 729.CrossRefGoogle Scholar
  14. Pierotti, A.R. and Harmar, A.J., 1985, Multiple forms of somatostatin-like immunoreactivity in the hypothalamus and amygdala of the rat: selective localization of somatostatin28 in the median eminence, J. Endocr., 105: 383.CrossRefGoogle Scholar
  15. Pierotti, A.R., Harmar, A.J., Tannahill, L. and Arbuthnott, G.W., 1985, Different patterns of molecular forms of somatostatin are released by the rat median eminence and hypothalamus, Neurosci. Lett., 57: 215.CrossRefGoogle Scholar
  16. Polonsky, K.S., Jaspan, J., Berelowitz, M., Pugh, W., Moossa, A. and Ling, N., 1982, The in vivo metabolism of somatostatin 28: Possible relationship between diminished metabolism and enhanced biological action, J. Endocr., 111: 1698.CrossRefGoogle Scholar
  17. Roberts, J.L., Chen, C-L.C., Dionne, F.T. and Gee, C.E., 1985, Peptide hormone gene expression in heterogeneous tissues: the pro-opiomelanocortin system, in: “Neurotransmitters in Action”, D. Bousfield, ed., Elsevier Biomedical Press, Amsterdam, pp 226.Google Scholar
  18. Rosenfeld, M.G., Amara, S.G. and Evans, R.M., 1984, Alternative RNA processing: determining neuronal phenotype, Science, 225: 1315.CrossRefGoogle Scholar
  19. Sawyer, L., Tollin, P. and Wilson, H.R., 1987, A comparison between the predicted secondary structures of potato virus X and papaya mosaic virus coat proteins, L Gen. Virol., 68: 1229.CrossRefGoogle Scholar
  20. Spindel, E.R., 1986, Mammalian bombesin-like peptides, Trends Neurosci., 9: 130.CrossRefGoogle Scholar
  21. Spindel, E.R., Zilberberg, M.D. and Chin, W.W., 1987, Analysis of the gene and multiple messenger ribonucleic acids (mRNAs) encoding human gastrin-releasing peptide: alternate RNA splicing occurs in neural and endocrine tissue, Mol. Endocrinol., 1: 224.CrossRefGoogle Scholar
  22. Takagaki, Y., Kitamura, N. and Nakanishi, S., 1985, Cloning and sequence analysis of cDNAs for human high molecular weight and low molecular weight prekininogens, J. Biol. Chem., 260: 8601.Google Scholar
  23. Tatemoto, K., Lundberg, J.M, Jornvall, H. and Mutt, V., 1985, Neuropeptide K: Isolation, structure and biological activities of a novel brain tachykinin, Biochem. Biophvs. Res. Commun., 128: 947.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Anthony J. Harmar
    • 1
  • Lindsay Sawyer
    • 2
  1. 1.MRC Brain Metabolism UnitRoyal Edinburgh HospitalEdinburghUK
  2. 2.Department of BiochemistryUniversity of EdinburghEdinburghUK

Personalised recommendations