Neurosecretion pp 219-226 | Cite as

Intrinsic and Synaptic Factors Regulating Mammalian Magnocellular Neurosecretory Neuron Activity

  • Leo P. Renaud


The magnocellular oxytocin-synthesizing and vasopressin-synthesizing neurons of the hypothalamic supraoptic, paraventricular and accessory magnocellular nuclei are the classical mammalian neurosecretory neurons. Although research on these special endocrine neurons continues to provide increasing information on their morphology, peptide synthesis and neurosecretory mechanisms in the neurohypophysis, data has also been rapidly accumulating on their intrinsic membrane properties and synaptic inputs. The initial part of this chapter will report intracellular current- and voltage-clamp data which illustrate several intrinsic membrane conductances of supraoptic neurons magnocellular neurosecretory cells (magnocellular neurons); the second part will focus on a few samples of the synaptic inputs that can directly influence their activity.


Synaptic Input Supraoptic Nucleus Magnocellular Neuron Phasic Burst Antidromic Activation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrew, R.D., 1987a, Endogenous bursting by rat supraoptic neuroendocrine cells is calcium dependent, J. Phvsiol. Lond., 384: 451.Google Scholar
  2. Andrew, R.D., 1987b, Isoperiodic bursting by magnocellular neuroendocrine cells in the rat hypothalamic slice, J. Phvsiol. Lond., 384: 467.Google Scholar
  3. Andrew R.D. and Dudek, F.E., 1983, Burst discharge in mammalian neuroendocrine cells involves an intrinsic regenerative mechanism, Science, 221: 1050.CrossRefGoogle Scholar
  4. Andrew, R.C. and Dudek, F.E., 1984a, Intrinsic inhibition in magnocellular neuroendocrine cells of rat hypothalamus, J. Phvsiol. Lond., 353: 171.Google Scholar
  5. Andrew, R.C. and Dudek, F.E., 1984b, Analysis of intra-cellularly recorded phasic bursting by mammalian neuroendocrine cells, J. Neuroohvsiol., 51: 552.Google Scholar
  6. Barker, J.L., Crayton, J.W. and Nicoll, R.A., 1971, Anti-dromic and orthodromic responses of paraventricular and supraoptic neurosecretory cells, Brain Res., 33: 353.CrossRefGoogle Scholar
  7. Bourque, C.W., 1986, Calcium-dependent spike after-current induces burst firing in magnocellular neurosecretory cells, Neurosci. Lett., 70: 204.Google Scholar
  8. Bourque, C.W., 1987a, Intrinsic features and control of phasic burst onset in magnocellular neurosecretory cells in: “Organization of the Autonomic Nervous System: central and peripheral mechanisms,” J. Ciriello, F.R. Calaresu, L.P. Renaud and C. Polosa, eds., A. Liss, New York.Google Scholar
  9. Bourque, C.W., 1987b, Current-and voltage-clamp studies of transient and pacemaker currents in neurosecretory neurons of the supraoptic nucleus. in: “Inactivation of Hypersensitive Neurons,”M. Chalazonitis and E. Gola, eds., A. Liss, New York.Google Scholar
  10. Bourque, C.W., 1987c, Osmotic induction of burst firing in magnocellular neuroendocrine cells: in vitro analysis using perfused hypothalamic explants, Neurosci. Lett., Suppl. 29: 516.Google Scholar
  11. Bourque, C.W., 1987d, Transient calcium-dependent potassium current in magnocellular neurosecretory cells of the rat supraoptic nucleus, J. Phvsiol. Lond., in press.Google Scholar
  12. Bourque, C.W., 1987e, Apamin and d-tubocurarine block the after hyperpolarization of rat supraoptic neurosecretory neurons, Neurosci Lett., in press.Google Scholar
  13. Bourque, C.W., Brown, D.A. and Renaud, L.P., 1986a, Bariumions induce prolonged plateau depolarizations in neurosecretory neurones of the adult rat supraoptic nucleus, L Phvsiol, Lond., 365: 573.Google Scholar
  14. Bourque, C.W., Randle, J.C.R. and Renaud, L.P., 1985, Calcium-dependent potassium conductance in rat supraoptic nucleus neurosecretory neurons, J. Neuroohvsiol.,. 54: 1375.Google Scholar
  15. Bourque, C.W., Randle, J.C.R. and Renaud, L.P., 1986b, Non-synaptic depolarizing potentials in rat supraoptic neurones recorded in vitro., J. Phvsiol. Lond., 376: 493.Google Scholar
  16. Bourque, C.W. and Renaud, L.P., 1983, A perfused in vitro preparation of hypothalamus for electrophysiological studies on neurosecretory neurons, J. Neurosci. Meth., 71: 203.Google Scholar
  17. Bourque, C.W. and Renaud, L.P., 1985a, Calcium dependent action potentials in rat supraoptic neurosecretory neurones recorded in vitro, J. Phvsiol. Lond., 363: 419.Google Scholar
  18. Bourque, C.W. and Renaud, L.P., 1985b, Activity dependence of action potential duration in rat supraoptic neurosecretory neurones recorded in vitro, J. Physiol. Lond., 363: 429.Google Scholar
  19. Buijs, R.M., Geffard, M., Pool, C.W. and Hoorneman, E.M.D., 1984, The dopaminergic innervation of the supraoptic and paraventricular nucleus. A light and electron microscopical study, Brain Res., 323: 65.Google Scholar
  20. Buijs, R.M., van Vulpen, E.H.S. and Geffard, M., 1987, Ultrastructural localization of GABA in the supraoptic nucleus and neural lobe, Neuroscience, 20: 347.CrossRefGoogle Scholar
  21. Cobbett, P., Smithson, K.G. and Hatton, G.I., 1986, Immuno-reactivity to vasopressin-but not oxytocin-associated neurophysin antiserum in phasic neurons of rat hypothalamic paraventricular nucleus, Brain Res., 362: 7.CrossRefGoogle Scholar
  22. Day, T.A., and Ciriello, J., 1987, Effects of renal receptor activation on neurosecretory vasopressin cells, Am. J. Physiol., 253: R234.Google Scholar
  23. Day, T.A., Randle, J.C.R. and Renaud, L.P., 1985, Opposing a-and ß-adrenergic mechanisms mediate dose-dependent actions of noradrenaline on supraoptic vasopressin neurones in vivo, Brain Res., 358: 171.CrossRefGoogle Scholar
  24. Day, T.A. and Renaud, L.P., 1984, Electrophysiological evidence that noradrenergic afferents selectively facilitate the activity of supraoptic vasopressin neurons, Brain Res., 303: 233.CrossRefGoogle Scholar
  25. Dreifuss, J.J. and Kelly, J.S., 1972, Recurrent inhibition of antidromically identified rat supraoptic neurones, J. Physiol. Lond., 220: 87.Google Scholar
  26. Dudek, F.E., Hatton, G.I. and MacVicar, B.A., 1980, Intracellular recordings from the paraventricular nucleus in slices of rat hypothalamus, J. Physiol. Lond., 301: 101.Google Scholar
  27. Ferguson, A.V. 1987, The subfornical organ: a central integrator in the control of neurohypophysial hormone secretion, in: “Organization of the Autonomic Nervous System: central and peripheral mechanisms”, J. Ciriello, F.R. Calaresu, L.P. Renaud and C. Polosa eds. A. Liss, New York.Google Scholar
  28. Ferguson, A.V. and Renaud, L.P., 1986, Systemic angiotensin acts at subfornical organ to facilitate activity of neurohypophysial neurons, Am. J. Physiol., 251: R712.Google Scholar
  29. Fossett, M., Schmid-Antomarchi, H., Hugues, M., Romey, G. and Lazdunski, M., (1984), The presence in pig brain of an ekdogenous equivalent of apamin, the bee venom peptide that specifically blocks CA + dependent K+ channels, Proc. Nat. Acad. Sci. USA., 81: 7228.Google Scholar
  30. Gahwiler, B.H. and Dreifuss, J.J., 1979, Phasically firing neurones in long-term cultures of the rat hypothalamic supraoptic area: pacemaker and follower cells, Brain Res., 177: 95.CrossRefGoogle Scholar
  31. Gainer, H., Wolfe, Jr., S.A., Obaid, A.L. and Salzberg, B.M., 1986, Action potentials and frequency-dependent secretion in the mouse neurohypophysis, Neuroendocrinoloav, 43: 557.CrossRefGoogle Scholar
  32. Harris, M.C., 1979, The effect of chemoreceptor and baroreceptor stimulation on the discharge of hypothalamic supraoptic neurones in rat, J. Endocrinol., 82: 115.CrossRefGoogle Scholar
  33. Honda, K., Negoro, H., Higuchi, T. and Tadokoro, Y. 1987, Activation of neurosecretory cells by osmotic stimulation of anteroventral third ventricle, Am. J. Physiol., 252: R1039.Google Scholar
  34. Jhamandas, J.H. and Renaud, L.P., 1986a, Diagonal band neurons may mediate arterial baroreceptor input to hypothalamic vasopressin secreting neurons, Neurosci. Lett., 65: 214.Google Scholar
  35. Jhamandas, J.H. and Renaud, L.P., 1986b, A r-aminobutyric-acid-mediated baroreceptor input to supraoptic vasopressin neurones in the rat, J. Phvsiol. Load., 381: 595.Google Scholar
  36. Jhamandas, J.H. and Renaud, L.P., 1987a, Saralasin diminishes subfornical organ-evoked excitation of hypothalamic supraoptic neurosecretory neurons, Can. J. Physiol, Pharm, 65:Axvii.Google Scholar
  37. Jhamandas, J.H. and Renaud, L.P., 1987, Neurophysiology of a central baroreceptor pathway projecting to hypothalamic vasopressin neurons, Can. J. Neurol. Sci., 14: 17.Google Scholar
  38. Legendre, P., Cooke, I.M. and Vincent, J.D., 1982, Regenerative responses of long duration recorded intracellularly from dispersed cell cultures of fetal mouse hypothalamus, L Neuronhvsiol., 48: 1121.Google Scholar
  39. Lincoln, D.W. and Wakerley, J.B., 1974., Electrophysiological evidence for the activation of supraoptic neurones during the release of oxytocin. J. Phvsiol. Load., 242: 533.Google Scholar
  40. Lind, R.W., Swanson, L.W. and Ganten, D., 1984, Angiotensin II immunoreactivity in the neural afferents and efferents of the subfornical organ of the rat, Brain Res., 321: 209.CrossRefGoogle Scholar
  41. Mason, W.T., 1980, Supraoptic neurones of rat hypothalamus are osmosensitive, Nature, 287: 154.CrossRefGoogle Scholar
  42. Mason, W.T., 1983, Excitation by dopamine of putative oxytocinergic neurones in the rat supraoptic nucleus in vitro: evidence for two classes of continuously firing neurones, Brain Res., 267: 113.CrossRefGoogle Scholar
  43. McAllen, R.M. and Blessing, W.W., 1987, Neurons (presumably Al cells) projecting from the caudal ventrolateral medulla to the region of the supraoptic nucleus respond to baroreceptor inputs in the rabbit, Neurosci Lett., 73: 247.CrossRefGoogle Scholar
  44. Miselis, R., 1981., The efferent projections of the subfornical organ of the rat: a circumventricular organ with a neural network subserving water balance, Brain Res., 230: 1.Google Scholar
  45. Mourre, C., Hugues, M. and Lazdunski, M., 1986, Quantitative autoradiographic mapping in rat brain of the receptor of apamin, a polypeptide toxin specific for one class of Ca2+-dependent K+ channels, Brain Res., 382: 239.CrossRefGoogle Scholar
  46. Raby, W. and Renaud, L.P., 1987, Characterization of a norepinephrine pathway from dorsomedial medulla (A2) to hypothalamic supraoptic nucleus in the rat, Can. L Physiol. Pharm., 65:Axxviii.Google Scholar
  47. Randle, J.C.R., Bourque, C.W. and Renaud, L.P., 1986a, al adrenergic receptor activation depolarizes rat supraoptic neurosecretory neurons in vitro. Am. J. Physiol., 251: R569.Google Scholar
  48. Randle, J.C.R., Bourque, C.W. and Renaud, L.P. 1986b, Characterization of spontaneous and evoked inhibitory postsynaptic potentials in rat supraoptic neurosecretory neurons in vitro, J. NeuroDhvsiol., 56: 1703.Google Scholar
  49. Randle, J.C.R., Mazurek, M., Kneifel, D., Dufresne, J. and Renaud, L.P., 1986c, a-1 adrenergic receptor activation releases vasopressin and oxytocin from perfuses hypothalamic explants, Neurosci. Lett., 65: 219.Google Scholar
  50. Randle, J.C.R., Bourque, C.W. and Renaud, L.P., 1986d, Serial reconstruction of Lucifer yellow-labelled supraoptic nucleus neurons in perfused rat hypothalamic explants, Neuroscience, 17: 453.CrossRefGoogle Scholar
  51. Randle, J.C.R. and Renaud, L.P., 1987, Actions of r-aminobutyric acid on rat supraoptic nucleus neurosecretory neurones in vitro, J. Phvsiol. Lond., 387: 629.Google Scholar
  52. Renaud, L.P., 1987, Magnocellular neuroendocrine neurons: update on intrinsic properties, synaptic inputs and neuropharmacology, TINS, in press.Google Scholar
  53. Renaud, L.P., Bourque, C.W., Day, T.A., Ferguson, A.V. and Randle, J.C.R., 1985, Electrophysiology of mammalian hypothalamic supraoptic and paraventricular neurosecretory cells, in: “The Electrophysiology of the Secretory Cell,” A. Poisner and J. Trifaro, eds., Elsevier, Amsterdam.Google Scholar
  54. Sgro, S., Ferguson, A.V. and Renaud, L.P., 1984, Subfornical organ-supraoptic nucleus connections: An electro-physiological study in the rat, Brain Res., 303: 7.Google Scholar
  55. Shaw, F.D., Bicknell, R.J. and Dyball, R.E.J., 1984, Facilitation of vasopressin release from the neurohypophysis by application of electrical stimuli in bursts, Neuroendocrinology, 39: 271.CrossRefGoogle Scholar
  56. Swanson, L.W. and Sawchenko, P.E., 1983, Hypothalamic Integration: organization of the paraventricular and supraoptic nuclei, A. Rev. Neurosci., 6: 269.Google Scholar
  57. Tribollet, E., Armstrong, W.E., Dubois-Dauphin, M. and Dreifuss, J.J., 1985, Extra-hypothalamic afferent inputs to the supraoptic nucleus area of the rat as determined by retrograde and anterograde tracer techniques, Neuroscience, 15: 135.CrossRefGoogle Scholar
  58. Willoughby, J.O., Jervois, P.M., Menadue, M.F. and Blessing, W.W., 1987, Noradrenaline, by activation of alpha-1 adrenoreceptors in the region of the supraoptic nucleus, causes secretion of vasopressin in the unanaesthetized rat, Neuroendocrinoloav, 45: 219.CrossRefGoogle Scholar
  59. Yamashita, H., Inenaga, K., Kawata, M. and Sano, Y., 1983, Phasically firing neurons in the supraoptic nucleus of the rat hypothalamus: immunocytochemical and electrophysiological studies, Neurosci. Lett., 37: 87.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Leo P. Renaud
    • 1
  1. 1.Neurosciences UnitMontreal General Hospital and McGill UniversityMontrealCanada

Personalised recommendations