Advertisement

Neurosecretion pp 181-189 | Cite as

Electrical Activity of Peptidergic Neurones and Its Relation to Hormone Release

  • D. A. Poulain
  • D. T. Theodosis

Abstract

As all other neurones, the magnocellular neurones that secrete vasopressin and oxytocin generate action potentials and an obvious question is whether the electrical activity displayed by their cell bodies is necessary to bring about hormone release from their terminals. Another question quickly arises when one considers the temporal organization of these action potentials. As we will see, vasopressinergic and oxytocinergic neurones display several distinct patterns of electrical activity and one of the outcomes of recent research has been to show that such patterns of firing are particularly adapted to generate temporal patterns of hormone release necessary to meet the requirements of the target organ.

Keywords

Firing Rate Hormone Release Interspike Interval Magnocellular Neurone Milk Ejection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belin V., Moos F. and Richard Ph., 1984, Synchronization of oxytocin cellshypothalamic paraventricular and supraoptic nuclei in suckled rats: direct proof with paired extracellular recordings, Exn. Brain Res., 57:201.Google Scholar
  2. Bicknell R.J., Brown D., Chapman C., Hancock P.D. and Leng G., 1984, Reversible fatigue of stimulus-secretion coupling in the rat neurohypophysis, J. Phvsiol. Lond., 348:601.Google Scholar
  3. Boer K., Cransberg K. and Dogterom J., 1980, Effect of low-frequency stimulation of the pituitary stalk on neurohypophysial hormone release in vivo, Neuroendocr., 30:313.CrossRefGoogle Scholar
  4. Cazalis M., Dayanithi G. and Nordmann J.J., 1985, The role of patterned burst and interburst interval on the excitation-coupling mechanism in the isolated rat neural lobe, J. Physiol. Lond., 369:45.Google Scholar
  5. Douglas W.W., 1974, Mechanism of release of neurohypophysial hormones: stimulus-secretion coupling, in: Handbook of Physiology,Endocrinology IV, part 1 (eds. Knobil E. & Sawyer W.H.) pp 191–224, Am.Physiol.Soc., Washington D.C.Google Scholar
  6. Douglas W.W. and Poisner A.M., 1964, Stimulus-secretion coupling in a neurosecretory organ: the role of calcium in the release of vasopressin from the neurohypophysis, J. Phvsiol. Lond., 172:1.Google Scholar
  7. Dreifuss J.J., Harris M.C. and Tribollet E., 1976a, Excitation of phasically firing hypothalamic supraoptic neurones by carotid occlusion in rats, J. Phvsiol. Lond. 257:337.Google Scholar
  8. Dreifuss J.J., Kalnins I., Kelly J.S. and Ruf K.B., 1971, Action potentials and release of neurohypophysial hormones in vitro, J. Physiol. Lond., 215:805.Google Scholar
  9. Dreifuss J.J., Tribollet E. and Baertschi A.J., 1976b, Excitation of supraoptic neurones by vaginal distension in lactating rats; correlation with neurohypophysial hormone release, Brain Res., 113:600.CrossRefGoogle Scholar
  10. Dudek F.E., Hatton G.I and MacVicar B.A., 1980, Intracellular recordings from the paraventricular nucleus in slices of rat hypothalamus, J. Phvsiol. Lond., 301:101Google Scholar
  11. Dutton A. and Dyball R.E.J., 1979, Phasic firing enhances vasopressin release from the rat neurohypophysis, J. Phvsiol. Lond., 290:433.Google Scholar
  12. Dyball R.E.J. and Leng G., 1987, Single unit recordings from the rat neurohypophysis in vivo, J. Phvsiol. Lond., (in press).Google Scholar
  13. Gainer H., 1978, Input-output relations of neurosecretory cells, in: Comparative Endocrinology (eds. Gaillard P.J. & Boer H.H.) pp 293–304Google Scholar
  14. Harris G.W., Manabe Y. and Ruf K.B., 1969, A study of the parameters of electrical stimulation of unmyelinated fibres in the pituitary stalk, J. Phvsiol. Lond., 203:67Google Scholar
  15. Ingram C.D., Bicknell R.J., Brown D. and Leng G., 1982, Rapid fatigue of neuropeptide secretion during continual electrical stimulation, Neuroendocrinologv, 35:424.CrossRefGoogle Scholar
  16. Ishida A., 1970, The oxytocin release and the compound action potential evoked by electrical stimulation on the isolated neurohypophysis of the rat, Jan. J. Phvsiol., 20:84.Google Scholar
  17. Jones C.W. and Pickering B.T., 1972, Intra-axonal transport and turnover of neurohypophysial hormones in the rat, J. Phvsiol. Lond., 227:553.Google Scholar
  18. Lincoln D.W., 1974, Dynamics of oxytocin secretion, in: Neurosecretion, “The final neuroendocrine pathway” (eds. Knowles F.G.W. & Vollrath L.) pp 129–133, Springer-Verlag, Berlin.Google Scholar
  19. Mason W.T., 1983, Electrical properties of neurons recorded from the rat supraoptic nucleus in vitro, Proc. R. Soc. Lond., B 217:141.CrossRefGoogle Scholar
  20. Nordmann J.J., 1983, Stimulus-secretion coupling, Prog. Brain Res., 60:281.CrossRefGoogle Scholar
  21. Nordmann J.J. and Dyball R.E.J., 1978, Effect of veratridine on Ca fluxes and the release of oxytocin and vasopressin from the isolated rat neurohypophysis, I. Gen. Phvsiol., 72:297.CrossRefGoogle Scholar
  22. Nordmann J.J. and Stuenkel E.L., 1986, Electrical properties of axons and neurohypophysial nerve terminals and their relationship to secretion in the rat, J. Phvsiol. Lond., 380:521.Google Scholar
  23. Pittman Q., 1983, Increases in antidromic latency of neurohypophyseal neurons during sustained activation, Neurosci. Lett., 37:239.Google Scholar
  24. Poulain D.A., Brown D. and Wakerley J.B., 1988, Statistical analysis of patterns of electrical activity in vasopressin-and oxytocin-secreting neurones, in: Pulsatility in neuroendocrine systems (ed. Leng G.), CRC Press, New York (in press).Google Scholar
  25. Poulain D.A. and Tasker J.G., 1985, Recurrent mammary gland contractions induced by a low tonic release of oxytocin in rats, J. Endocr., 107:89.CrossRefGoogle Scholar
  26. Poulain D.A. and Wakerley J.B., 1982, Electrophysiology of hypothalamic magnocellular neurones secreting oxytocin and vasopressin, Neuroscience, 7:773.CrossRefGoogle Scholar
  27. Sachs H., Share L., Osinchak J. and Carpi A., 1967, Capacity of the neurohypophysis to release vasopressin, Endocrinology, 81:755.CrossRefGoogle Scholar
  28. Shaw F.D., Bicknell R.J. and Dyball R.E.J., 1984, Facilitation of vasopressin release from the neurohypophysis by application of electrical stimuli in bursts. Relevant stimulation parameters, Neuroendocrinol., 39:371.CrossRefGoogle Scholar
  29. Shaw F.D. and Dyball R.E.J., 1984, The relationship between calcium uptake and hormone release in the isolated neurohypophysis. A reassessment, Neuroendocrinologv, 38:504.CrossRefGoogle Scholar
  30. Thorn N.A., 1966, In vitro studies of the release mechanism for vasopressin in rats, Acta Endocrinol., 53:644.Google Scholar
  31. Wakerley J.B., Poulain D.A. and Brown D., 1978, Comparison of firing patterns in oxytocinand vasopressin-releasing neurones during progressive dehydration, Brain Res. 148:425.CrossRefGoogle Scholar
  32. Yagi K., Azuma T. and Matsuda K., 1966, Neurosecretory cell: capable of conducting impulse in rats, Science, 154:778.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • D. A. Poulain
    • 1
  • D. T. Theodosis
    • 1
  1. 1.INSERM U.176Université of Bordeaux IIBordeaux CédexFrance

Personalised recommendations