Neurosecretion pp 137-146 | Cite as

Emerging Identity in Cytophysiology of Synaptic and Neurosecretory Terminals

  • D. W. Golding
  • D. V. Pow
  • Emine Bayraktaroglu
  • Barbara A. May
  • R. M. Hewit


Comparison of the organization of presynaptic terminals that typically release neurotransmitters at specialized junctions with other cells, and neurosecretory endings contributing to neurohaemal complexes and releasing hormones into the blood stream, has been a feature of interest since the commencement of their study (e.g., see Palay, 1958). Although terminals show considerable variation, the great majority, whether synaptic or neurohaemal, have in common a highly distinctive pattern of ultrastructure (Figs. 1, 2).


Tannic Acid Secretory Granule Neurosecretory Cell Synaptic Terminal Cerebral Ganglion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, R. and Mitchell, R., 1986, Uptake and autoreceptor-controlled release of 3HGABA by the hypothalamic median eminence and pituitary neurointermediate lobe, Neuroendocrinoloav, 42: 277.CrossRefGoogle Scholar
  2. Anwyl, R. and Finlayson, L.H., 1973, The ultrastructure of neurons with both a motor and a neurosecretory function in the insect Rhodnius orolixus, Z. Zellforsch., 146: 367.CrossRefGoogle Scholar
  3. Bayraktaroglu, E., Golding, D.W. and Whittle, A.C., 1988, Synaptic and synaptoid vesicles constitute a single category of inclusions: dense-cored synaptoid vesicles in Helix discharge their contents by exocytosis. (Submitted).Google Scholar
  4. Bayraktaroglu, E., Whittle, A.C. and Golding, D.W., 1988, Neurosecretory cells with ‘synaptoid perikarya’ in Helix - a definitive description of secretory release from the somata of endocrine neurones. (Submitted).Google Scholar
  5. Binnington, K.C. and Lane, N.J., 1982, Presence of T-bars, intramembrane particle arrays and exocytotic profiles in neuroendocrine terminals of an insect, Tissue & Cell, 14: 463.CrossRefGoogle Scholar
  6. Buma, P. and Roubos, E.R., 1986, Ultrastructural demonstration of nonsynaptic release sites in the central nervous system of the snail Lymnaea stagnalis, the insect Perinlaneta americana, and the rat, Neuroscience, 17: 867.CrossRefGoogle Scholar
  7. Buma, P., Roubos, E.W. and Buijs, R.M., 1984, Ultrastructural demonstration of exocytosis of neural, neuroendocrine and endocrine secretions with an in vitro tannic acid (TARI-) method, Histochemistrv, 80: 247.CrossRefGoogle Scholar
  8. Golding, D.W. and Bayraktaroglu, E., 1984, Exocytosis of secretory granules - a probable mechanism for the release of neuromodulators in invertebrate neuropiles, Exoerientia, 40: 1277.CrossRefGoogle Scholar
  9. Golding, D.W. and Pow, D.V., 1987a, ‘Neurosecretion’ by a classic cholinergic innervation apparatus; a comparative study of adrenal chromaffin glands in vertebrates, Cell Tissue Res., 249:421.CrossRefGoogle Scholar
  10. Golding, D.W. and Pow, D.V., 1987b, The new neurobiology - ultrastructural aspects of peptide release as revesled by studies of invertebrate nervous systems, in: “Neurohormones in Invertebrates”, M.C. Thorndyke and G.J. Goldsworthy, eds., Cambridge University Press.Google Scholar
  11. Golding, D.W. and Whittle, A.C., 1977, Neurosecretion and related phenomena in annelids, Int. Rev. Cvtol., Suppl. 5: 189.Google Scholar
  12. Lundberg, J.M., 1981, Evidence for the coexistence of vasoactive intestinal polypeptide (VIP) and acetylcholine in neurons of cat exocrine glands. Morphological, biochemical and functional studies, Acta Dhvsiol. Scand., Suppl. 496: 1.Google Scholar
  13. May, B.A., 1980, Ultrastructural correlates of secretory release in invertebrate nervous systems, Gen. Como. Endocrinol., 40: 375.Google Scholar
  14. May, B.A. and Golding D.W., 1982a, Synaptic and synaptoid vesicles constitute a single category of inclusions new evidence from invertebrate nervous systems, Acta Zool. (Stockh.), 63: 111.CrossRefGoogle Scholar
  15. May, B.A. and Golding D.W., 1982b, Synaptic and synaptoid vesicles constitute a single category of inclusions: new evidence from Z10 impregnation, Acta Zool. (Stockh.), 63: 171.CrossRefGoogle Scholar
  16. Meister, B., Hokfelt, T., Vale, W.W. and Goldstein, M., 1985, Growth hormone releasing factor (GRF) and dopamine coexist in hypothalamic arcuate neurons, Acta ohvsiol. Scand., 124: 133.CrossRefGoogle Scholar
  17. Morris, J.F., Nordmann, J.J. and Shaw, F.D., 1981, Granules, microvesicles, and vacuoles, in: “Neurosecretion: molecules, cells, systems,” D.S. Farner and K. Lederis, eds., Plenum Press, New York.Google Scholar
  18. Navone, F., Greengard, P. and De Camilli, P., 1984, Synapsin I in nerve terminals: selective association with small synaptic vesicles, Science, 226: 1209.CrossRefGoogle Scholar
  19. Palay, S.L., 1958, The morphology of synapses in the central nervous system, Exotl. Cell Res., Suppl. 5: 275.Google Scholar
  20. Pow, D.V. and Golding D.W., 1987, ‘Neurosecretion’ by aminergic synaptic terminals in vivo - a study of secretory granule exocytosis in the corpus cardiacum of the flying locust, Neuroscience (in press).Google Scholar
  21. Pumplin, D.W., Reese, T.S. and Llinas, R., 1981, Are the presynaptic membrane particles the calcium channels? Proc. Nat. Acad. Sci. (Wash.), 78: 7210.CrossRefGoogle Scholar
  22. Rambourg, A. and Droz, B., 1980, Smooth endoplasmic reticulum and axonal transport, L Neurochem., 35: 165.CrossRefGoogle Scholar
  23. Richards, J.G. and Tranzer, J.P., 1974, The characterization of monoaminergic nerve terminals in the brain by fine structural cytochemistry, in: “Neurosecretion - the final neuroendocrine pathway,” F.G.W. Knowles and L. Vollrath, Eds., Springer-Verlag, Berlin.Google Scholar
  24. Scharrer, B., 1968, Neurosecretion. XIV. Ultrastructural study of sites of release of neurosecretory materials in blatterian insects, Z. Zellforsch., 89: 1.CrossRefGoogle Scholar
  25. Scholnik, N.J. and Schwartz, J.H., 1980, Genesis and maturation of serotonergic vesicles in identified giant cerebral neuron of Anlysia J. Phvsiol., 43: 945.Google Scholar
  26. Schmitt, F.O., 1984, Molecular regulators of brain function: a new view, Neuroscience., 13: 991.CrossRefGoogle Scholar
  27. Vieillemaringe, J., Duris, P., Bensch, C. and Girardie, J., 1982, Co-localization of amines and peptides in the same neurosecretory cells of locusts, Neurosci. Lett., 31: 237.CrossRefGoogle Scholar
  28. Whittaker, V.P., 1982, Biophysical and biochemical studies of isolated cholinergic vesicles from Torpedo marmorata, Fed. Proc., 41: 2759.Google Scholar
  29. Zamora, J., Garosi, M. and Ramirez, V.D., 1984, Poststimulatory endocytosis, microvesicle repopulation and changes in the smooth endoplasmic reticulum in nerve endings of the median eminence superfused in vitro, Neuroscience, 13: 105.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • D. W. Golding
    • 1
  • D. V. Pow
    • 1
  • Emine Bayraktaroglu
    • 2
  • Barbara A. May
    • 1
  • R. M. Hewit
    • 1
  1. 1.Department of ZoologyUniversity of Newcastle upon TyneUK
  2. 2.Department of Biological SciencesMiddle-East Technical UniversityAnkaraTurkey

Personalised recommendations