• Michael J. Glade
  • Paula H. Stern


Calcium plays an esssential role in the regulation of many metabolic processes. It is also necessary for the development and maintenance of the skeletal framework which supports and allows strenous physical activity. In general, the overall calcium status of the athlete will reflect the net balance between calcium losses and calcium gains.


Bone Mineral Content Calcium Intake Postmenopausal Osteoporosis Dietary Calcium Dietary Calcium Intake 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pitkin RM: Calcium metabolism in pregnancy: a review. Am J Obstet Gynecol 121: 724–737, 1975.PubMedGoogle Scholar
  2. 2.
    Duggin GG, Lyneham RC, Dale NE, et al: Calcium balance in pregnancy. Lancet 2: 926–927, 1974.PubMedCrossRefGoogle Scholar
  3. 3.
    National Research Council: Recommended Dietary Allowances, ed 9. Washington, DC, National Academy of Sciences, 1980.Google Scholar
  4. 4.
    Dunger DB, Preece MA: Growth and nutrient requirements of adolescence, in: Pediatric Nutrition: Theory and Practice. Boston, Butterworth, 1987, pp 357–371.Google Scholar
  5. 5.
    Heaney RE, Gallagher JC, Johnston CC: Calcium nutrition and bone health in the elderly. Am J Clin Nutr 36: 986–1013, 1982.PubMedGoogle Scholar
  6. 6.
    Trotter M, Hixon BB: Sequential changes in weight, density and percentage ash weight of human skeletons from an early fetal period through old age. Ana. Rec 179: 1–18, 1974.CrossRefGoogle Scholar
  7. 7.
    Mazess RB: On aging bone loss. Clin Orthop Relat Res 165: 239–252, 1982.PubMedGoogle Scholar
  8. 8.
    Leitch I, Aitken FC: The estimation of calcium requirements: a reexamination. Nutr Abstr Rev 29: 393, 1959.Google Scholar
  9. 9.
    Eyberg CJ, Pettifor JM, Moodley G: Dietary calcium intake in rural black South African children. Hum Nutr Clin Nutr 40: 69–74, 1986.PubMedGoogle Scholar
  10. 10.
    Matkovic V, Fontana D, Tominac C, et al: Influence of calcium on peak bone mass: a pilot study. J Bone Min Res 1: (Abstr 168), 1986.Google Scholar
  11. 11.
    Heaney RP, Recker RR, Saville PD: Calcium balance and calcium requirements in middle-aged women. Am J Clin Nutr 30: 1603–1611, 1977.PubMedGoogle Scholar
  12. 12.
    Spencer H, Kramer L, Lesniak M, et al: Calcium requirements in humans. Clin Orthop Rel Res 184: 270–280, 1984.Google Scholar
  13. 13.
    Matkovic V, Kostial K, Simonovic I, et al: Bone status and fracture rates in two regions in Yugoslavia. Am J Clin Nutr 32: 540–549, 1979.PubMedGoogle Scholar
  14. 14.
    Garn SM, Solomon MA, Friedl J: Calcium intake and bone quality in the elderly. Ecol Food Nutr 10: 131–133, 1981.CrossRefGoogle Scholar
  15. 15.
    Kribbs PJ, Smith DE, Chesnut CH: Oral findings in osteoporosis. Part II: relationship between residual ridge and alveolar bone resorption and generalized skeletal osteopenia. J Prost Dent 50: 719–724, 1983.CrossRefGoogle Scholar
  16. 16.
    Wical KE, Swoope CC: Studies of residual ridge resorption. Part II. The relationship of dietary calcium and phosphorus to residual ridge resorption. J Prost Dent 32: 13–22, 1974.CrossRefGoogle Scholar
  17. 17.
    Bullamore JR, Gallagher JC, Wilkinson R, et al: The effect of age on calcium absorption. Lancet 2: 535–537, 1970.PubMedCrossRefGoogle Scholar
  18. 18.
    Gallagher JC, Riggs BL, Eisman J, et al: Intestinal calcium absorption and serum vitamin D metabolites in normal subjects and osteoporotic patients: effect of age and dietary calcium. J Clin Invest 64: 729–736, 1979.PubMedCrossRefGoogle Scholar
  19. 19.
    Avioli LV, McDonald JE, Lee SW: The influence of age on the intestinal absorption of 47Ca in women and its relation to 47Ca absorption in postmenopausal osteoporosis. J Clin Invest 44: 1960–1967, 1965.PubMedCrossRefGoogle Scholar
  20. 20.
    Alevizaki CC, Ikkos DC, Singhelakis PJ: Progressive decrease of true intestinal calcium absorption with age in normal man. Nucl Med 14: 760–762, 1973.Google Scholar
  21. 21.
    Nordin BEC, Williams R, Marshall DH, et al: Calcium absorption in the elderly. Calcif Tissue Res 21: 422–451, 1975.CrossRefGoogle Scholar
  22. 22.
    Ireland P, Fordtran JS: Effect of dietary calcium and age on jejunal calcium absorption in humans studied by intestinal perfusion. J Clin Invest 52: 2672–2681, 1973.PubMedCrossRefGoogle Scholar
  23. 23.
    Manolagas SC, Culler FL, Howard JE, et al: The cytoreceptor assay for 1,25-dihydroxyvitamin D and its application to clinical studies. J Clin Endocrinol Metab 56: 751–760, 1983.PubMedCrossRefGoogle Scholar
  24. 24.
    Tsai K-S, Heath H, Kumar R, et al: Impaired vitamin D metabolism with aging in women: possible role in pathogenesis of senile osteoporosis. J Clin Invest 73: 1668–1672, 1984.PubMedCrossRefGoogle Scholar
  25. 25.
    Ivanovich P, Fellows H, Rich C: The absorption of calcium carbonate. Ann Intern Med 66: 917–923, 1967.PubMedGoogle Scholar
  26. 26.
    Heaney RP, Recker RR, Saville PD: Menopausal changes in calcium balance performance. J Lab Clin Med 92: 953–963, 1978.PubMedGoogle Scholar
  27. 27.
    Heaney RP, Recker RR: Distribution of calcium absorption in middle-aged women. Am J Clin Nutr 43: 299–305, 1986.PubMedGoogle Scholar
  28. 28.
    Anonymous: Consensus Conference: Osteoporosis. DAMA 252: 799–802, 1984.Google Scholar
  29. 29.
    Weinsier RL, Norris D: Recent developments in the etiology and treatment of hypertension: dietary calcium, fat and magnesium. Am J Clin Nutr 42: 1331–1338, 1985.PubMedGoogle Scholar
  30. 30.
    Kok FJ, Vandenbroucke JP, van der Heide-Wessel C, et al: Dietary sodium, calcium, potassium, and blood pressure. Am J Epidemiol 123: 1043–1048, 1986.PubMedGoogle Scholar
  31. 31.
    Jones MR, Ghaffari F, Tomerson BW, et al: Hypotensive effect of a high calcium diet in the Wistar rat. Min Electral Metab 12: 85–91, 1986.Google Scholar
  32. 32.
    Luft FC, Aronoff GR, Sloan RS, et al: Short-term augmental calcium intake has no effect on sodium homeostasis. Clin Pharmacol Ther 39: 414–419, 1985.CrossRefGoogle Scholar
  33. 33.
    McCarron DA, Moms CD, Henry HJ, et al: Blood pressure and nutrient intake in the United States. Science 224: 1392–1398, 1984.PubMedCrossRefGoogle Scholar
  34. 34.
    McCarron DA, Morris CD, Cole C: Dietary calcium in human hypertension. Science 217: 267–269, 1982.PubMedCrossRefGoogle Scholar
  35. 35.
    Ackley S, Barrett-Connor E, Suarez L: Dairy products, calcium and blood pressure. Am J Clin Nutr 38: 457–461, 1983.PubMedGoogle Scholar
  36. 36.
    Stitt FW, Crawford MD, Clayton DG, et al: Clinical and biochemical indicators of cardiovascular disease among men living in hard and soft water areas. Lancet 1: 122–126, 1973.PubMedCrossRefGoogle Scholar
  37. 37.
    Schroeder HA: Relation between morality from cardiovascular disease and treated water supplies: variations in states and 163 largest municipalities of the United States. JAMA 172: 1902–1908, 1960.CrossRefGoogle Scholar
  38. 38.
    McCarron DA, Stanton J, Henry HJ, et al: Assessment of nutritional correlates of blood pressure. Ann Intern Med 98: 715–719, 1983.PubMedGoogle Scholar
  39. 39.
    Pernot F, Schleiffer R, Bertelot A, et al: Dietary calcium and arterial hypertension in the rat. Arch Mal Coeur 78: 1725–1729, 1985.PubMedGoogle Scholar
  40. 40.
    Doris PA: Sodium and hypertension: effect of dietary calcium supplementation on blood pressure. Clin Exp Hypertens 71: 1441–1456, 1985.CrossRefGoogle Scholar
  41. 41.
    McCarron DA, Morris CO: Blood pressure response to oral calcium in persons with mild to moderate hypertension: a randomized, double-blind, placebo-controlled crossover trial. Ann Intern Med 103: 825–831, 1985.PubMedGoogle Scholar
  42. 71.
    Yeh JK, Aloia JF: Effect of physical activity on absorption and excretion of calcium in the rat. J Bone Min Res 1 (Abstr 237), 1986.Google Scholar
  43. 72.
    Yeh JK, Aloia JF: Effects of physical activity on intestinal active and passive transport of calcium in the rat. 1 Bone Min Res 2(Suppl 1) (Abstr 459), 1987.Google Scholar
  44. 73.
    Lanyon LE, Bourn S: The influence of mechanical function on the development and remodeling of the tibia. J Bone Jt Surg 61A: 263–273, 1979.Google Scholar
  45. 74.
    Rubin CT, Lanyon LE: Regulation of bone formation by applied dynamic loads. J Bone Jt Surg 66A: 397–402, 1984.Google Scholar
  46. 75.
    Schryver HF, Hintz HF, Lowe JE: Calcium metabolism, body composition and sweat losses of exercised horses. Am J Vet Res 39: 245–248, 1978.PubMedGoogle Scholar
  47. 76.
    Raub RH, Jackson SG, Baker JP: The effect of exercise on bone development and growth and the circulating level of cortisol, insulin and thyroxine in weanling horses. Proc Eq Nutr Physiol Symp 10: 409–414, 1987.Google Scholar
  48. 77.
    Emiola L, O’Shea JP: Effects of physical activity and nutrition on bone density measured by radiographic techniques. Nutr Rep Intern 6: 669–681, 1978.Google Scholar
  49. 78.
    Ragan C, Briscoe AM: Effect of exercise on the metabolism of 40calcium and 47calcium in man. J Clin Endocrinol Metab 24: 385–392, 1964.PubMedCrossRefGoogle Scholar
  50. 79.
    Consolazio CF, Matoush LD, Nelson RA, et al: Relationship between calcium in sweat, calcium balance and calcium requirements. J Nutr 78: 78–88, 1962.PubMedGoogle Scholar
  51. 80.
    Robinson S, Robinson AH: Chemical composition of sweat. Physiol Rev 34: 202–220, 1954.PubMedGoogle Scholar
  52. 81.
    Costill DL: Sweating: its composition and effects on body fluids. Ann NY Acad Sci 301: 160–174, 1977.PubMedCrossRefGoogle Scholar
  53. 82.
    Talbert GA, Haugen C, Carpenter R, et al: Simultaneous study of the constituents of the sweat, urine and blood; also gastric acidity and other manifestations resulting from sweating. X. Basic Methods. Am J Physiol 104: 441–442, 1933.Google Scholar
  54. 83.
    Mitchell HH, Hamilson TS: The dermal excretion under controlled environmental conditions of nitrogen and minerals in human subjects, with particular reference to calcium and iron. J Biol Chem 178: 345–361, 1949.PubMedGoogle Scholar
  55. 84.
    Goulding A: Effects of dietary NaCl supplements on parathyroid function, bone turnover and bone composition in rats taking restricted amounts of calcium. Min Electrol Metab 4: 203–208, 1980.Google Scholar
  56. 85.
    Johnson N, Alcantara E, Linkswiler H: Effect of level of protein intake on urinary and feed calcium and calcium retention of young adult males. J Nutr 100: 1425–1430, 1970.PubMedGoogle Scholar
  57. 86.
    Walker R, Linkswiler HM: Calcium retention in the adult human male as affected by protein intake. J Nutr 102: 1297–1302, 1972.PubMedGoogle Scholar
  58. 87.
    Allen CH, Oddoye EA, Margen S: Protein-induced hypercalciuria: a longer term study. Am J Clin Nutr 32: 741–749, 1979.PubMedGoogle Scholar
  59. 88.
    Kim Y, Linkswiler HM: Effect of level of protein intake on calcium metabolism and on parathyroid and renal function in the adult human male. J Nutr 109: 1399–1404, 1979.PubMedGoogle Scholar
  60. 89.
    Heaney RP, Recker RR: Effects of nitrogen, phosphorus and caffeine on calcium balance in women. J Loh Clin Med 99: 46–55, 1982.Google Scholar
  61. 90.
    Heaney RP, Skillman TG: Secretion and excretion of calcium by the human gastrointestinal tract. J Lab Clin Med 64: 29–41, 1964.PubMedGoogle Scholar
  62. 91.
    Notelovitz M: Interrelations of exercise and diet on bone metabolism and osteoporosis, in Winick M (ed): Nutrition and Exercise. New York, John Wiley and Sons, 1986, pp 203–228.Google Scholar
  63. 92.
    Anand CR, Linkswiler H: Effect of protein intake on calcium balance of young men given 500 mg calcium daily. J Nutr 104: 695–700, 1974.PubMedGoogle Scholar
  64. 93.
    Margen S, Chu JY, Kaufman NA, et al: Studies in calcium metabolism. I. The calciuretic effect of dietary protein. Am J Clin Nutr 27: 584–589, 1974.PubMedGoogle Scholar
  65. 94.
    Glade MJ, Beller D, Bergen J, et al: Dietary protein in excess of requirements inhibits renal calcium and phosphorus reabsorption in young horses. Nutr Rep Intern 31: 649–659, 1985.Google Scholar
  66. 95.
    Schuette SA, Zemel MB, Linkswiler HM: Studies on the mechanism of protein-induced hypercalciuria in older men and women. J Nutr 110: 305–315, 1980.PubMedGoogle Scholar
  67. 96.
    Block GD, Wood RJ, Allen CH: A comparison of the effects of feeding sulfur amino acids and protein on urine calcium in man. Am J Clin Nutr 3: 2128–2136, 1980.Google Scholar
  68. 42.
    Belzian JM, Villar J, Pineda O, et al: Reduction of blood pressure with calcium supplementation in young adults. JAMA 249: 1161–1165, 1983.CrossRefGoogle Scholar
  69. 43.
    Hollaway ET, Bohr DF: Reactivity of vascular smooth muscle in hypertensive rats. Circ Res 33: 678–685, 1973.Google Scholar
  70. 44.
    McCarron DA, Pingree PA, Rubin RS, et al: Enhanced parathyroid function in essential hypertension: a homeostatic response to a urinary calcium leak. Hypertension 2: 162–168, 1980.PubMedGoogle Scholar
  71. 45.
    Rosenthal FD, Ray S: Hypertension and hyperparathyroidism. Br Med J 4: 396–397, 1972.PubMedCrossRefGoogle Scholar
  72. 46.
    Aloia JF, Cohn SH, Ostuni JA, et al: Prevention of involutional bone loss by exercise. Ann Intern Med 89: 356–358, 1978.PubMedGoogle Scholar
  73. 47.
    Smith EL Jr, Reddan W, Smith PE: Physical activity and calcium modalities for bone mineral increase in aged women. Med Sci Sports Exerc 13: 60–64, 1981.PubMedGoogle Scholar
  74. 48.
    Drinkwater BL, Nilson K, Chestnut CH, et al: Bone mineral content of amenonheic and eumenorrheic athletes. N Engl J Med 311: 277–281, 1984.PubMedCrossRefGoogle Scholar
  75. 49.
    Marcus R, Cann C, Madvig P, et al: Menstrual function and bone mass in elite women distance runners. Ann Intern Med 102: 158–163, 1985.PubMedGoogle Scholar
  76. 50.
    Lindberg JS, Fears WB, Hunt MM, et al: Exercise-induced amenorrhea and bone density. Ann Intern Med 101: 647–648, 1984.PubMedGoogle Scholar
  77. 51.
    Rigotti NA, Nussbaum SR, Herzog OB, et al: Osteogenesis in women with anorexia nervosa. N Engl J Med 311: 1601–1606, 1984.PubMedCrossRefGoogle Scholar
  78. 52.
    Stillman RJ, Lohman TG, Slaughter MH, et al: Physical activity and bone mineral content in women aged 30 to 85 years. Med Sci Sports Exerc 18: 576–580, 1986.PubMedGoogle Scholar
  79. 53.
    Krolner B, Toft B, Nielsen SP, et al: Physical exercise as prophylaxis against involutional vertebrae bone loss: a controlled trial. Clin Sci 64: 541–546, 1983.PubMedGoogle Scholar
  80. 54.
    Lane NE, Block DA, Jones HH, et al: Long distance running, bone density and osteoarthritis. JAMA 255: 1147–1151, 1986.PubMedCrossRefGoogle Scholar
  81. 55.
    Nilsson BE, Westlin NE: Bone density in athletes. Clin Orthop Relat Res 77: 179–182, 1971.PubMedGoogle Scholar
  82. 56.
    Dalen N, Olsson KE: Bone mineral content and physical activity. Acta Orthop Scand 45: 170–174, 1974.PubMedCrossRefGoogle Scholar
  83. 57.
    Aloia JF, Cohn SH, Babu T, et al: Skeletal mass and body composition in marathon runners. Metabolism 27: 1793–1796, 1978.PubMedCrossRefGoogle Scholar
  84. 58.
    Smith EL Jr, Smith PE, Ensign CJ, et al: Bone involution decrease in exercising middle-aged women. Calcif Tissue Int 36: S129 - S138, 1984.PubMedCrossRefGoogle Scholar
  85. 59.
    Williams JA, Wagner J, Wasnich R, et al: The effect of long distance running upon appendicular bone mineral content. Med Sci Sports Exerc 3: 223–227, 1984.Google Scholar
  86. 60.
    Jones HH, Priest JD; Hayes WC, et al: Humeral hypertrophy in response to exercise. J Bone Jt Surg 59A: 204–208, 1977.Google Scholar
  87. 61.
    Brewer V, Meyer BM, Keele MS, et al: Role of exercise in prevention of involutional bone loss. Med Sci Sports Exerc 15: 445–449, 1983.PubMedGoogle Scholar
  88. 62.
    Chow E, Harrison JE, Brown CF, et al: Physical fitness effect on bone mass in postmenopausal women. Arch Phys Med Rehabil 67: 231–234, 1986.PubMedGoogle Scholar
  89. 63.
    Smith RT, Sunde ML, Smith EL: The influence of dietary calcium and exercise on the mechanical properties of bone. Med Sci Sports Exerc 16: 164, 1984.Google Scholar
  90. 64.
    Pocock NA, Eisman JA, Yeates MG, et al: Physical fitness is a major determinant of femoral neck and lumbar spine bone mineral density. J Clin Invest 78: 618–621, 1986.PubMedCrossRefGoogle Scholar
  91. 65.
    Nilsson BE, Anderson SM, Havdrup T, et al: Am J Roentgenol 131: 539, 1978.Google Scholar
  92. 66.
    Drinkwater BL: Exercise and bone mass, in: Exercise and Bone Mass. Indianapolis, American Society for Bone and Mineral Research, 1987, pp 11–21.Google Scholar
  93. 67.
    Heaney RP: Calcium, bone health and osteoporosis, in Peck WA (ed): Bone and Mineral Research /V. Amsterdam, Elsevier Science Publishers, 1986, pp 255–301.Google Scholar
  94. 68.
    Crilly RG, Richardson LFO, Anderson C: Anthropometry and bone mass in postmenopausal women. J Bone Min Res 2:Suppl 1 (Abstr 342), 1987.Google Scholar
  95. 69.
    Woo SLY, Kuei SC, Amiel D, et al: The effect of prolonged physical training on the properties of long bone: a study of Wolff’s law. J Bone Jt Surg 63A: 780–787, 1980.Google Scholar
  96. 70.
    Chavapil M, Bartos D, Bartos F: Effect of long-term physical stress on collagen growth in the lung, heart and femur of young and adult rats. Gerontologia 19: 263–270, 1973.CrossRefGoogle Scholar
  97. 97.
    Goulding A, Malthus RS: Effects of the protein content of the diet on the development of nephrocalcinosis in rats. Aust J Exp Biol Med Sci 48: 313–320, 1970.PubMedCrossRefGoogle Scholar
  98. 98.
    Whiting SJ, Draper HH: The role of sulfate in the calciuria of high protein diets in adult rats. J Nutr 110: 212–222, 1980.PubMedGoogle Scholar
  99. 99.
    Jacob M, Smith JC Jr, Chan JCM: Effects of metabolic acidosis on zinc and calcium metabolism in rats. Ann Nutr Metab 27: 380–385, 1983.PubMedCrossRefGoogle Scholar
  100. 100.
    McSherry E, Morris RC Jr: Attainment and maintenance of normal stature with alkali therapy in infants and children with classic renal tubular acidosis. J Clin Invest 61: 509–527, 1978.PubMedCrossRefGoogle Scholar
  101. 101.
    Life Sciences Research Office: Evaluation of the Health Aspects of Phosphates as Food Ingredients. SCOGS-32. Bethesda, MD, FASEB, 1975.Google Scholar
  102. 102.
    Bell RR, Draper HH, Tzeng DYM, et al: Physiological responses of human adults to foods containing phosphate additives. J Nutr 107: 42–50, 1977.PubMedGoogle Scholar
  103. 103.
    Spencer H, Kramer L, Osis D, et al: Effect of phosphorus on the absorption of calcium and on the calcium balance in man. J Nutr 108: 447–457, 1978.PubMedGoogle Scholar
  104. 104.
    Goldsmith RS, Jowsey J, Dube WJ, et al: Effects of phosphorus supplementation on serum parathyroid hormone and bone morphology in osteoporosis. J Clin Endocrinol Metab 43: 523–532, 1976.PubMedCrossRefGoogle Scholar
  105. 105.
    Spencer H, Kramer L, DeBartolo M, et al: Further studies of the effect of a high protein diet as meat on calcium metabolism. Am J Clin Nutr 37: 924–929, 1983.PubMedGoogle Scholar
  106. 106.
    Wood RJ: Glucose polymer enhancement of calcium bioavailability, in Gussler JD (ed): Osteoporosis: Current Concepts. Columbus, OH, Ross Laboratories, 1987, pp 66–68.Google Scholar
  107. 107.
    Norman DA, Morawski SG, Fortran JS: Influence of glucose, fructose and water movement on calcium absorption in the jejunum. Gastroenterology 78: 22–25, 1980.PubMedGoogle Scholar
  108. 108.
    Monnier L, Colette C, Acquirre L, et al: Intestinal and renal handling of calcium in human diabetes mellitus: influence of acute glucose loading and diabetic control. Eur J Clin Invest 8: 225–231, 1978.PubMedCrossRefGoogle Scholar
  109. 109.
    Kabayashi A, Kawai S, Ohbeard Y, et al: Effects of dietary lactose and lactase preparation on the intestinal absorption of calcium and magnesium in normal infants. Am J Clin Nutr 28: 681–683, 1975.Google Scholar
  110. 110.
    Kocian J, Skala I, Bakos K: Calcium absorption from milk and lactose-free milk in healthy subjects and patients with lactose intolerance. Digestion 9: 311–324, 1973.Google Scholar
  111. 111.
    Church CF, Church HN: Food Values of Portions Commonly Used, ed 12. Philadelphia, JB Lippincott Co, 1975.Google Scholar
  112. 112.
    Jeaghers H, Murphy R: Practical aspects of oxalate metabolism. N Engl J Med 233: 208–215, 1945.CrossRefGoogle Scholar
  113. 113.
    Pingle U, Ramasastri BV: Absorption of calcium from a leafy vegetable rich in oxalates. Br J Nutr 39: 119–125, 1978.PubMedCrossRefGoogle Scholar
  114. 114.
    Zarembski PM, Hodkinson A: The oxalic acid content of English diets. Br J Nutr 16: 627–634, 1962.PubMedCrossRefGoogle Scholar
  115. 115.
    Kelsay JL, Behall KM, Prather ES: Effect of fiber from fruits and vegetables on metabolic responses of human subjects, II. Calcium, magnesium, iron and silicon balances. Am J Clin Nutr 32: 1876–1880, 1979.PubMedGoogle Scholar
  116. 116.
    Ismail-Beigi F, Reinhold JG, Faradji B, et al: Effects of cellulose added to diets of low and high fiber content upon the metabolism of calcium, magnesium, zinc and phosphorus by man. J Nutr 107: 510–518, 1977.PubMedGoogle Scholar
  117. 117.
    Reinhold JG, Faradji B, Abadi P, et al: Decreased absorption of calcium, magnesium, zinc and phosphorus by humans due to increased fiber and phosphorus consumption as wheat bread. J Nutr 106: 493–503, 1976.PubMedGoogle Scholar
  118. 118.
    McCance RA, Widdowson EM: Mineral metabolism of healthy adults on white and brown bread intakes. J Physiol 101: 44–85, 1942.PubMedGoogle Scholar
  119. 119.
    Cummings JH, Hill MJ, Houston H, et al: The effect of meat protein and dietary fiber on colonic function and metabolism. I. Changes in bowel habit, bile acid excretion and calcium absorption. Am J Clin Nutr 32: 2086–2093, 1979.PubMedGoogle Scholar
  120. 120.
    Rheinhold JG, Nasr K, Lahimgarzadel A, et al: Effects of purified phytate and phytate-rich bread upon metabolism of zinc, calcium, phosphorus and nitrogen in man. Lancet 1: 283–288, 1973.CrossRefGoogle Scholar
  121. 121.
    James WPT, Branch WJ, Southgate DAT: Calcium binding by dietary fiber. Lancet 1: 638–639, 1978.PubMedCrossRefGoogle Scholar
  122. 122.
    Sandstead HH, Klevay LM, Jacob RA, et al: Effects of dietary fiber and protein level on mineral element metabolism, in Inglett GE, Falkhaged SI (eds): Dietary Fibers, Chemistry and Nutrition. New York, Academic Press, 1979, pp 147–156.Google Scholar
  123. 123.
    Allen LH: Calcium bioavailability and absorption: a review. Am J Clin Nutr 35: 783–808, 1982.PubMedGoogle Scholar
  124. 124.
    Leichsenring JM, Norris LM, Halbert ML: Effect of ascorbic acid and of orange juice on calcium and phosphorus metabolism of women. J Nutr 63: 425–435, 1957.PubMedGoogle Scholar
  125. 125.
    Tantibhedhyangkul P, Hashim SA: Medium-chain triglyceride feeding in premature infants: effects on calcium and magnesium absorption. Pediatrics 61: 537–545, 1978.PubMedGoogle Scholar
  126. 126.
    Glade MJ, Krook L: Glucocorticoid-induced inhibition of osteolysis and the development of osteopetrosis, osteonecrosis and osteoporosis. Cornell Vet 72: 76–91, 1982.PubMedGoogle Scholar
  127. 127.
    Meunier PJ, Dempster DW, Edouard C, et al: Bone histomorphometry in corticosteroid-induced osteoporosis and Cushing’s syndrome. Adv Exp Med Biol 171: 191–200, 1984.PubMedGoogle Scholar
  128. 128.
    Jowsey J, Riggs BL: Bone formation in hypercortisonism. Acta Endocrinol 63: 21–28, 1970.PubMedGoogle Scholar
  129. 129.
    Glade MJ, Krook L, Schryver HF, et al: Calcium metabolism in glucocorticoid-treated foals. J Nutr 112: 67–76, 1982.Google Scholar
  130. 130.
    Klein RG, Arnaud SB, Gallagher JC, et al: Intestinal calcium absorption in exogenous hypercortisonism. J Clin Invest 60: 253–259, 1977.PubMedCrossRefGoogle Scholar
  131. 131.
    Hahn TJ, Halstead LR, Baran DT: Effects of short-term glucocorticoid administration on intestinal calcium absorption and circulating vitamin D metabolite concentrations in man. J Clin Endocrinol Metab 52: 111–115, 1981.PubMedCrossRefGoogle Scholar
  132. 132.
    Nordin BEC, Marshall DH, Francis RM, et al: The effects of sex steroid and corticosteroid hormones on bone. J Steroid Biochem 15: 171–174, 1981.PubMedCrossRefGoogle Scholar
  133. 133.
    Reid IR, Ibbertson HK: Calcium supplements in the prevention of steroid-induced osteoporosis. Am J Clin Nutr 44: 287–290, 1986.PubMedGoogle Scholar
  134. 134.
    Wilkinson R: Absorption of calcium, phosphorus and magnesium, in Nordin BEC (ed): Calcium, Phosphate and Magnesium Metabolism. Edinburgh, Churchill Livingstone, 1975, p 37.Google Scholar
  135. 135.
    Glade MJ, Krook L, Schryver HF, et al: Morphologic and biochemical changes in cartilage of foals treated with dexamethasone. Cornell Vet 73: 170–192, 1983.PubMedGoogle Scholar
  136. 136.
    Wolf RE: Nonsteroidal anti-inflammatory drugs. Arch Intern Med 144: 1658–1660, 1984.PubMedCrossRefGoogle Scholar
  137. 137.
    Hess EV: Nonsteroidal anti-inflammatory drugs: new perspectives in the inflammatory process and immunologic function. Am J Med 77(4B):l-2, 1984.Google Scholar
  138. 138.
    Mills JA: Nonsteroidal anti-inflammatory drugs. N Engl J Med 290: 781–784, 1974.PubMedCrossRefGoogle Scholar
  139. 139.
    Carmichael J, Shankel SW: Effects of nonsteroidal anti-inflammatory drugs on prostaglandins and renal function. Am J Med 78: 992–1000, 1985.PubMedCrossRefGoogle Scholar
  140. 140.
    Garella S, Matarese RA: Renal effects of prostaglandins and clinical adverse effects of nonsteroidal anti-inflammatory agents. Medicine 63: 165–181, 1984.PubMedCrossRefGoogle Scholar
  141. 141.
    Clive DM, Stoff JS: Renal syndromes associated with nonsteroidal anti-inflammatory drugs. N Engl J Med 310: 563–572, 1984.PubMedCrossRefGoogle Scholar
  142. 142.
    Patmas MA, Wilborn SL, Shankel SW: Acute multisystem toxicity associated with the use of non-steroidal anti-inflammatory drugs. Arch Intern Med 144: 519–521, 1984.PubMedCrossRefGoogle Scholar
  143. 143.
    Bjarnason I, So A, Levi Ai, et al: Intestinal permeability and inflammation in rheumatoid arthritis: effects of nonsteroidal anti-inflammatory drugs. Lancet 2: 1171–1173, 1984.PubMedCrossRefGoogle Scholar
  144. 144.
    Simmons HA, Raisz LG: Biphasic effects of cyclo-oxygenase inhibitors on prostaglandin production by cultural neonatal rat calvaria. J Bone Min Res 2(Suppl 1) (Abstr 27), 1987.Google Scholar
  145. 145.
    Walker WA, Hendricks KM: Manual of Pediatric Nutrition. Philadelphia, W.B. Saunders Co., 1985.Google Scholar
  146. 146.
    Roe DA: Drug-Induced Nutritional Deficiency, ed 2. Westport, CT, A.V.I. Publishing Co., Inc., 1985.Google Scholar
  147. 147.
    Faloon WW, Fisher CJ, Duggan KC: Occurrence of a sprue-like syndrome during neomycin therapy. J Clin Invest 37: 893, 1958.Google Scholar
  148. 148.
    Spencer H, Kramer L, Norris C, et al: Effect of small doses of aluminum-containing antacids on calcium and phosphorus metabolism. Am J Clin Nutr 36: 32–40, 1982.PubMedGoogle Scholar
  149. 149.
    Spencer H, Lender M: Adverse effects of aluminum-containing antacid on mineral metabolism. Gastroenterology 76: 603–606, 1979.PubMedGoogle Scholar
  150. 150.
    Spencer H, Derler J, Osis D: Calcium requirement, bioavailability and loss. Fed Proc 46: 631 (Abstr 1834), 1987.Google Scholar
  151. 151.
    Hahn TJ, Birge SJ, Scharp CR, et al: Phenobarbital-induced alterations in vitamin D metabolism. J Clin Invest 51: 741–748, 1972.PubMedCrossRefGoogle Scholar
  152. 152.
    Hahn TJ, Hendin BA, Scharp CR, et al: Effect of chronic anticonvulsant therapy on serum 25hydroxycalciferol levels in adults. N Engl J Med 287: 900–909, 1972.PubMedCrossRefGoogle Scholar
  153. 153.
    Kupfer S, Kosovsky JD: Effects of cardiac glycosides on renal tubular transport of calcium, magnesium, inorganic phosphate and glucose in the dog. J Clin Invest 44: 1132–1143, 1965.PubMedCrossRefGoogle Scholar
  154. 154.
    Wasnich RD, Benfante RJ, Yano K, et al: Thiazide effect on the mineral content of bone. N Engl J Med 309: 344–347, 1983.PubMedCrossRefGoogle Scholar
  155. 155.
    American College of Sports Medicine: Position statement on the use and abuse of anabolic-androgenic steroids in sports. Med Sci Sports 9:xi-xii, 1977.Google Scholar
  156. 156.
    Lamb DR: Androgens and exercise. Med Sci Sports 7: 1–5, 1975.PubMedCrossRefGoogle Scholar
  157. 157.
    Ryan AJ: Athletics, in Kochakian CD (ed): Anabolic-Androgenic Steroids. Berlin, Springer-Verlag, 1976, pp 515–536.Google Scholar
  158. 158.
    Chestnut CH: Synthetic salmon calcitonin, diphosphonates and anabolic steroids in the treatment of post-menopausal osteoporosis, in Christiansen C, Arnaund CP, Nordin BEC, et al (eds): Osteoporosis: Proceedings of the Copenhagen International Symposium on Osteoporosis. Copenhagen Aalborg Stiftsbogtrykkeri, 1984, pp 549–555.Google Scholar
  159. 159.
    Chesnut CH: Treatment of post-menopausal osteoporosis. Compr Ther 10: 41–47, 1984.PubMedGoogle Scholar
  160. 160.
    Chesnut CH, Ivey JL, Gruber HE, et al: Stanozolol in postmenopausal osteoporosis: therapeutic efficacy and possible mechanisms of action. Metabolism 32: 571–580, 1983.PubMedCrossRefGoogle Scholar
  161. 161.
    Peacock M, Henry DP, Johnson CC Jr., et al: The effect of Humatrope (biosynthetic human growth hormone) on bone biochemistry in men. J Bone Min Res 2(Suppl 1 ) (Abstr 340), 1987.Google Scholar
  162. 162.
    Buckler JMH: Exercise as a screening test for growth hormone release. Acta Endocr (Copenhagen) 69: 219–229, 1972.Google Scholar
  163. 163.
    Berchtold P, Berger M, Cuppers HJ, et al: Non-glucoregulatory hormones during physical exercise in juvenile-type diabetes. Horm Metab Res 10: 269–273, 1978.PubMedCrossRefGoogle Scholar
  164. 164.
    Schwarz F, TerHaar DJ, van Riet HG, et al: Response of growth hormone, FFA, blood sugar and insulin to exercise in obese patients and normal subjects. Metabolism 18: 1013–1020, 1969.PubMedCrossRefGoogle Scholar
  165. 165.
    Sutton JR, Young JD, Lazarus L: The hormonal response to physical exercise. Aust Ann Med 18: 8490, 1969.Google Scholar
  166. 166.
    Schlach DS: The influence of physical stress and exercise on growth hormone and insulin secretion in man. J Lab Clin Med 69: 256–269, 1967.Google Scholar
  167. 167.
    Kuoppasalmi K: Plasma testosterone and sex-hormone-binding globulin capacity in physical exercise. Scand J Clin Lab Invest 40: 411–418, 1980.PubMedCrossRefGoogle Scholar
  168. 168.
    Nilsson KO, Heding LG, Hokfelt B: The influence of short-term submaximal work on the plasma concentrations of catecholamines, pancreatic glucagon and growth hormone in man. Acta Endocr (Copenhagen) 79: 286–294, 1975.Google Scholar
  169. 169.
    Hansen AP: The effect of adrenergic receptor blockade on the exercise-induced serum growth hormone rise in normals and juvenile diabetics. J Clin Endocrinol Metab 33: 807–812, 1971.PubMedCrossRefGoogle Scholar
  170. 170.
    Blackard W, Hubbell GL: Stimulatory effect of exogenous catecholamines on plasma HGH concentrations in presence of beta adrenergic blockade. Metabolism 19: 547–552, 1970.PubMedCrossRefGoogle Scholar
  171. 171.
    Bergman EA, Sherrard DJ, Massey LK: Effects of dietary caffeine on calcium metabolism and bone turnover in adult women. Fed Proc 46: 632 (Abstr 1840), 1987.Google Scholar
  172. 172.
    Massey LK, Sherrard DJ, Bergman EA: Dietary caffeine lowers ultrafiltrable calcium levels in women consuming low dietary calcium. J Bone Min Res 2(Suppl 1 ) (Abstr 479), 1987.Google Scholar
  173. 173.
    Shangold MM, Levine HS: The effect of marathon training upon menstrual function. Am J Obstet Gynecol 143: 862–869, 1982.PubMedGoogle Scholar
  174. 174.
    Malina RM, Harper AB, AVent HH, et al: Age at menarche in athletes and non-athletes. Med Sci Sports 5: 11–13, 1973.PubMedGoogle Scholar
  175. 175.
    Warren M: The effects of exercise on pubertal progression and reproductive function in girls. J Clin Endocrinol Metab 51: 1150–1157, 1980.PubMedCrossRefGoogle Scholar
  176. 176.
    Frisch RE, Gotz-Welbergen AV, McArthur JW, et al: Delayed menarche and amenorrhea of college athletes in relation to age of onset of training. JAMA 246: 1559–1563, 1981.PubMedCrossRefGoogle Scholar
  177. 177.
    Baker ER, Mathur RS, Kirk RF, et al: Female runners and secondary amenorrhea: correlation with age, parity, mileage and plasma hormonal and sex-hormone-binding globulin concentrations. Fertil Steril 36: 183–187, 1981.PubMedGoogle Scholar
  178. 178.
    Jurkowski JE, Jones NL, Walker WC, et al: Ovarian hormonal responses to exercise. J Appl Physiol Respirai Environ Exercise Physiol 44: 109–114, 1978.Google Scholar
  179. 179.
    Bonen A, Ling WY, Maclntyre KP, et al: Effects of exercise on the serum concentrations of FSH, LH, progesterone and estradiol. Eur J Appl Physiol 42: 15–25, 1979.CrossRefGoogle Scholar
  180. 180.
    Keizer HA, Portman J, Bunnik GSJ: Influence of physical exercise on sex hormone metabolism. J Appl Physiol Respirai Environ Exercise Physiol 48: 765–769, 1980.Google Scholar
  181. 181.
    Tylaysky FA, Halioua L, Doherty A: The effects of menstrual status on radial bone parameters of premenopausal women. IXth International Congress on Calcium Regulating Hormones and Bone Metabolism, Nice, France, 1966.Google Scholar
  182. 182.
    Nelson ME, Fisher EL, Catsos PD, et al: Diet and bone status in amenorrheic runners. Am J Clin Nutr 43: 910–916, 1986.PubMedGoogle Scholar
  183. 183.
    Wentz AC: Body weight and amenorrhea. Obstet Gynecol 56: 482–487, 1980.PubMedGoogle Scholar
  184. 184.
    Schwartz B, Cumming DC, Riordan E, et al: Exercise-associated amenorrhea: a distinct entity? Am J Obstet Gynecol 141: 662–670, 1981.PubMedGoogle Scholar
  185. 185.
    Bonen A, Belcastro AN: Effect of exercise and training on menstrual cycle hormones. Austr J Sports Med 10: 39–43, 1978.Google Scholar
  186. 186.
    Shangold M, Freeman R, Thysen B, et al: The relationship between long-distance running, plasma progesterone and luteal phase length. Fertil Steril 31: 130–133, 1979.PubMedGoogle Scholar
  187. 187.
    Cann CE, Martin MC, Genant HK, et al: Decreased spinal mineral content in amenorrhetic women. JAMA 251: 626–629, 1984.PubMedCrossRefGoogle Scholar
  188. 188.
    Koppelman MCS, Kurtz DW, Morrish KA, et al: Vertebral body bone mineral content in hyperprolactinemic women. J Clin Endocrinol Metab 59: 1050–1053, 1984.PubMedCrossRefGoogle Scholar
  189. 189.
    Meema J, Meema HE: Menopausal bone loss and estrogen replacement. Isr J Med Sci 12: 601–606, 1976.PubMedGoogle Scholar
  190. 190.
    Drinkwater BL, Nilson K, Ott S, et al: Bone mineral density following resumption of menses in amenorrheic athletes. JAMA 256: 380–382, 1986.PubMedCrossRefGoogle Scholar
  191. 191.
    Albright F, Smith PH, Richardson AM: Postmenopausal osteoporosis; its clinical features. JAMA 116: 2465–2474, 1941.CrossRefGoogle Scholar
  192. 192.
    Cummings SR: Epidemiology of osteoporotic fractures: selected topics, in Gussler JD (ed): Osteoporosis: Current Concepts. Columbus, OH, Ross Laboratories, 1987, pp 3–8.Google Scholar
  193. 193.
    Cummings SR, Kelsey JL, Nevitt MC: Epidemiology of osteoporosis and osteoporotic fractures. Epidemiol Rev 7: 178, 1985.PubMedGoogle Scholar
  194. 194.
    Riggs BL, Melton LJ: Involutional osteoporosis. N Engl J Med 314: 1676–1686, 1986.PubMedCrossRefGoogle Scholar
  195. 195.
    Heaney RP, Gallagher JC, Johnston CC, et al: Calcium nutrition and bone health in the elderly. Am J Clin Nutr 36: 986–1013, 1982.PubMedGoogle Scholar
  196. 196.
    Paganini-Hill A, Ross RK, Gerkins VR, et al: Menopausal estrogen therapy and hip fractures. Ann Intern Med 95: 28–31, 1981.PubMedGoogle Scholar
  197. 197.
    Williams AR, Weiss NS, Ure CL, et al: Effect of weight, smoking, and estrogen use on the risk of hip and forearm fractures in postmenopausal women. Obstet Gynecol 60: 695–699, 1982.PubMedGoogle Scholar
  198. 198.
    Hutchinson TA, Polansky SM, Feinstein AR: Postmenopausal estrogens protect against fractures of hip and distal radius. Lancet 2: 705–709, 1979.PubMedCrossRefGoogle Scholar
  199. 199.
    Sinaki M, Mikkelsen BA: Evaluation of therapeutic exercise programs in postmenopausal spinal osteoporosis: flexion vs. extension exercises. IXth International Congress on Calcium Regulating Hormones and Bone Metabolism, Nice, France, 1986.Google Scholar
  200. 200.
    Martin AD, Houston CS: Osteoporosis, calcium and physical activity. Can Med Assoc J 136: 587–593, 1987.Google Scholar
  201. 201.
    Lee CJ, Lawler GS, Johnson GH: Effects of supplementation of the diets with calcium and calcium-rich foods on bone density of elderly females with osteoporosis. Am J Clin Nutr 34: 819–823, 1981.PubMedGoogle Scholar
  202. 202.
    Albanese AA, Edelson AH, Lorenze EJ Jr., et al: Problems of bone health in elderly; a 3-year study. NY State J Med 75: 326–336, 1975.Google Scholar
  203. 203.
    Nordin BEC, Horsman A, Crilly RG, et al: Treatment of spinal osteoporosis in postmenopausal women. Br Med J 280: 451–454, 1980.PubMedCrossRefGoogle Scholar
  204. 204.
    Recker RR, Saville PD, Heaney RP: The effect of estrogens and calcium carbonate on bone loss in postmenopausal women. Ann Intern Med 87: 649–655, 1977.PubMedGoogle Scholar
  205. 205.
    Horsman A, Gallagher JC, Simpson M, et al: Prospective trial of estrogen and calcium in postmenopausal women. Br Med J 2: 789–792, 1977.PubMedCrossRefGoogle Scholar
  206. 206.
    Rus B, Thomsen K, Christiansen C: Does calcium supplementation prevent postmenopausal bone loss? N Engl J Med 316: 173–177, 1987.CrossRefGoogle Scholar
  207. 207.
    Thalassinos NC, Gutteridge DH, Joplin GF, et al: Calcium balance in osteoporotic patients on longterm oral calcium therapy with and without sex hormones. Clin Sci 62: 221–226, 1982.PubMedGoogle Scholar
  208. 208.
    Riggs BL, Seeman R, Hodgson SF, et al: Effect of the fluoride/calcium regimen on vertebral fracture occurrence in postmenopausal osteoporosis: comparison with conventional therapy. N Engl J Med 306: 446–450, 1982.PubMedCrossRefGoogle Scholar
  209. 209.
    Riggs BL, Jowsey J, Kelly PJ, et al: Effects of oral therapy with calcium and vitamin D in primary osteoporosis. J Clin Endocrinol Metab 42: 1139–1144, 1976.PubMedCrossRefGoogle Scholar
  210. 210.
    Sandler RB, Slemenda CW, LaPorte RE, et al: Postmenopausal bone density and milk consumption in childhood and adolescence. Am J Clin Nutr 42: 270–274, 1985.PubMedGoogle Scholar
  211. 211.
    Nilas L, Christiansen S, Rodbro P: Calcium supplementation and postmenopausal bone loss. Br J Med 289: 1103–1106, 1984.CrossRefGoogle Scholar
  212. 212.
    Walker ARP: The human requirement of calcium-should low intakes be supplemented? Am J Clin Nutr 25: 518–530, 1972.PubMedGoogle Scholar
  213. 213.
    Garn SM: The Earlier Gain and the Later Loss of Cortical Bone in Nutritional Perspective. Springfield, IL, Charles C. Thomas, 1970.Google Scholar
  214. 214.
    Garn SM, Rohmann CG, Wagner B, et al: Population similarities in the onset and rate of adult endosteal bone loss. Clin Orthop 65: 51–60, 1969.PubMedGoogle Scholar
  215. 215.
    Riggs BL, Wahner LW, Melton LJ, et al: In women dietary calcium intake and rates of bone loss from midradius and lumbar spine are not related. J Bone Min Res 1 (Abstr. 96), 1986.Google Scholar
  216. 216.
    Lamke B, Sjoberg HE, Sylven M: Bone mineral content in women with Colles’ fracture: effect of calcium supplementation. Acta Orthop Scand 49: 143–146, 1978.PubMedCrossRefGoogle Scholar
  217. 217.
    Weaver CM, Heaney RP, Martin BR: Oxalic acid inhibits calcium absorption. Fed Proc 46: 631 (Abstr 1836), 1987.Google Scholar
  218. 218.
    Miller JZ, Jiang X, Smith DL, et al: Calcium absorption from calcium carbonate and calcium carbonate citrate-malate in healthy male and female adolescents. Fed Proc 46: 631 (Abstr 1838), 1987.Google Scholar
  219. 219.
    Lewis NM, Marcus MS, Behling AR, et al: Calcium and chloride interactions in humans. Fed Proc 46: 887 (Abstr 3328), 1987.Google Scholar
  220. 220.
    Robertson WG, Peacock M, Hodgkinson A: Dietary changes and the incidence of urinary calculi in the UK between 1958 and 1976. J Chronic Dis 32: 469–476, 1979.PubMedCrossRefGoogle Scholar
  221. 221.
    Gallagher JC, Aaron J, Horsman A, et al: The crush fracture syndrome in postmenopausal women. Clin Endocrinol Metab 2: 293–315, 1973.PubMedCrossRefGoogle Scholar
  222. 222.
    Heaney RP, Saville PD, Recker RR: Calcium absorption as a function of calcium intake. J Lab Clin Med 85: 881–889, 1975.PubMedGoogle Scholar
  223. 223.
    Austin LA, Heath H, Go VL: Regulation of calcitonin secretion in normal man by changes of serum calcium within the physiologic range. J Clin Invest 64: 1721–1724, 1979.PubMedCrossRefGoogle Scholar
  224. 224.
    Barreras RF: Acid secretion after calcium carbonate in patients with duodenal ulcer. N Engl J Med 282: 1402–1405, 1970.PubMedCrossRefGoogle Scholar
  225. 225.
    Burnett CH, Commons RR, Albright F, et al: Hypercalcemia without hypercalciuria or hypophosphatemia, calcinosis and renal insufficiency: a syndrome following prolonged intake of milk and alkali. N Engl J Med 240: 787–794, 1949.PubMedCrossRefGoogle Scholar
  226. 226.
    Department of Health and Social Security: Recommended Intakes of Nutrients for the United Kingdom. Reports on Public Health and Medical Subjects, No. 120. London, HMSO, 1969.Google Scholar
  227. 227.
    FAO/WHO Joint Expert Committee on Nutrition: Food and Nutrition Strategies in National Development. Technical Report Series 584. Geneva, World Health Organization, 1976.BGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • Michael J. Glade
    • 1
  • Paula H. Stern
    • 1
  1. 1.Department of PharmacologyNorthwestern UniversityChicagoUSA

Personalised recommendations