Biochemical and Biological Aspects
  • Victor A. Najjar


Tuftsin is a tetrapeptide (Thr-Lys-Pro-Arg) that is a part of specific leukophilic γ-globulin termed leukokinin.1 It represents residues 289–292 of the heavy chain of γ-globulin.


Systemic Lupus Erythematosus Sickle Cell Disease Antineoplastic Activity Mutant Peptide Plasma Protein Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Najjar VA, Nishioka, K: Tuftsin—A physiological phagocytosis stimulating peptide. Nature (Lond) 228: 672–673, 1970.CrossRefGoogle Scholar
  2. 2.
    Najjar, VA: The physiological role of 7-globulin, in Meister DA (ed): Advances in Enzymology. New York, Wiley, 1974, vol 41, pp 129–174.Google Scholar
  3. 3.
    Najjar VA: Defective phagocytosis due to deficiencies involving the tetrapeptide tuftsin. J Pediatr 87: 1121–1124, 1975.PubMedCrossRefGoogle Scholar
  4. 4.
    Najjar, VA: The physiological role of membrane 7-globulin interaction, in: Chapman D, Wallach DFH (eds): Biological Membranes. New York, Academic, 1976, vol 3, pp 191–240.Google Scholar
  5. 5.
    Najjar, VA: Molecular basis of familial and acquired phagocytosis deficiency involving the tetrapeptide, Thr-Lys-Pro-Arg, tuftsin, Exp. Cell Biol 46: 114–126, 1978.Google Scholar
  6. 6.
    Najjar, VA: The clinical and physiological aspects of tuftsin deficiency syndromes exhibiting defective phagocytosis, Klin. Wochenschr 57: 751–756, 1979.CrossRefGoogle Scholar
  7. 7.
    Najjar VA: Biochemical aspects of tuftsin deficiency syndrome. Med Biol 59: 134–138, 1981.PubMedGoogle Scholar
  8. 8.
    Najjar VA, Constantopoulos A: A new phagocytosis stimulating tetrapeptide hormone, tuftsin and its role in disease. J Reticuloendothel Soc 12: 197–215, 1972.PubMedGoogle Scholar
  9. 9.
    Nishioka K, Constantopoulos A, Satoh PS, Najjar VA: The characteristics, isolation and synthesis of the phagocytosis stimulating peptide tuftsin. Biochem Biophys Res Commun 47: 172–179, 1972.PubMedCrossRefGoogle Scholar
  10. 10.
    Spirer Z, Zakuth V, Golander A, et al: The effect of tuftsin on the nitrous blue tetrazolium reduction of normal human polymorphonuclear leukocytes. J Clin Invest 55: 198–200, 1975.PubMedCrossRefGoogle Scholar
  11. 11.
    Nishioka K, Constantopoulos, A, Satoh P, Mitchell W, Najjar VA: Characteristics and isolation of the phagocytosis-stimulating peptide, tuftsin. Biochim Biophys Acta 310: 217–229, 1973.PubMedGoogle Scholar
  12. 12.
    Nishioka K, Satoh P, Constantopoulos A, Najjar VA: The chemical synthesis of the phagocytosis stimulating tetrapeptide tuftsin (Thr-Lys-Pro-Arg) and its biological properties, Biochim Biophys Acta 310: 230–237, 1973.PubMedGoogle Scholar
  13. 13.
    Najjar VA, Fridkin M, (eds): Antineoplastic Immunogenic and Other Effects of the Tetrapeptide Tuftsin: A Natural Macrophage Activator, Ann NY Acad Sci 419:273, 1983.Google Scholar
  14. 14.
    Blok-Perkowska D, Muzalewski F, Konopinska D: Antibacterial properties of tuftsin and its ana-logs. Antimicrob Agents Chemother 25: 134–136, 1984.PubMedGoogle Scholar
  15. 15.
    Florentin I, Bruley-Rosset M, Kiger N, et al: In vivo immunostimulation by tuftsin. Cancer Immu-nol Immunother 5: 211–216, 1978.Google Scholar
  16. 16.
    Martinez J, Winternitz F, Vindel J: Nouvelles synthèses et propriétés de la tuftsine. Eur J Med Chem Chim Ther 12: 511–516, 1977.Google Scholar
  17. 17.
    Martinez J, Winternitz F: New synthetic and natural tuftsin-related compounds and evaluation of their phagocytosis-stimulating activity. Ann NY Acad Sci 419: 23–34, 1983.PubMedCrossRefGoogle Scholar
  18. 18.
    Tzehoval E, Segal S, Stabinsky Y, et al: Tuftsin (an Ig-associated tetrapeptide) triggers the immu-nogenic function of macrophages: General implications to activation of programmed cells. Proc Natl Acad Sci USA 75: 3400–3404, 1978.PubMedCrossRefGoogle Scholar
  19. 19.
    Catane R, Schlanger S, Gottlieb P, et al: Toxicology and antitumor activity of tuftsin in mice. Proc Am Assoc Cancer Res Am Soc Clin Oncol 22: 371–373, 1981.Google Scholar
  20. 20.
    Catane R, Schlanger S, Weiss L, Et Al: Toxicology and antitumor activity of tuftsin. Ann NY Acad Sci 419: 251–260, 1983.PubMedCrossRefGoogle Scholar
  21. 21.
    Catane R, Sulkes A, Buziely B, Et Al: Initial clinical studies with tuftsin. Int J Immunotherapy 11:81— 85, 1986.Google Scholar
  22. 22.
    Najjar VA: Tuftsin (Thr-Lys-Pro-Arg) a natural activator of phagocytic cells with antibacterial and antineoplastic activity, in Torrence PF (ed): Biological Response Modifiers. New York, Academic, 1985, pp 141–169.Google Scholar
  23. 23.
    Najjar VA, Konopiriska D, Chaudhuri MK, et al: Tuftsin a natural activator of phagocytic functions including tumoricidal activity. Mol Cell Biochem 41: 3–12, 1981.PubMedGoogle Scholar
  24. 24.
    Najjar VA, Linehan L, Konopinska D: The antineoplastic effects of tuftsin and tuftsinyltuftsin on B16/5B melanoma and L1210 cells. Ann NY Acad Sei 419: 261–267, 1983.CrossRefGoogle Scholar
  25. 25.
    Nishioka K, Babcock GF, Phillips JH, et al: In vivo and in vitro antitumor activities of tuftsin. Ann NY Acad Sei 419: 234–241, 1983.CrossRefGoogle Scholar
  26. 26.
    Marilus R, Spirer Z, Michaeli D, et al: First case of aids in a homosexual in Israel. Results of different therapeutic regimens. Israel J Med Sei 20: 249–251, 1984.Google Scholar
  27. 27.
    Tritsch GL, Niswander PW: Positive correlation between superoxide release and intracellular adenosine deaminase activity during macrophage membrane perturbation regardless of nature or magnitude of stimulus. Mol Cell Biochem 49: 49–52, 1982.PubMedCrossRefGoogle Scholar
  28. 28.
    Tritsch GL, Niswander PW: Modulation of macrophage superoxide release by purine metabolism. Life Sei 32: 1359–1370, 1983.CrossRefGoogle Scholar
  29. 29.
    Härtung HP, Toyka KV: Augmentation of oxidative and arachidonate metabolism in macrophages by tuftsin (Thr-Lys-Pro-Arg). Agents Actions 15: 38–39, 1984.CrossRefGoogle Scholar
  30. 30.
    Wleklik MS, Luczak M, Najjar VA: Tuftsin induced tumor necrosis activity. Mol Cell Biochem 75: 169–174, 1987.PubMedCrossRefGoogle Scholar
  31. 31.
    Lukas TJ, Munoz H, Erickson BW: Inhibition of CI-mediated immune hemolysis by monomelic and dimeric peptides from the second constant domain of human immunoglubulin G. J Immunol 127: 2555–2560, 1981.PubMedGoogle Scholar
  32. 32.
    Constantopoulos A, Najjar VA: Tuftsin, a natural and general phagocytosis stimulating peptide affecting macrophages and polymorphonuclear granulocytes. Cytobios 6: 97–100, 1972.Google Scholar
  33. 33.
    Hisatsune K, Nozaki S, Ishikawa T, et al: A biochemical study of the phagocytic activities of tuftsin and its analogues. Ann NY Acad Sei 419: 205–213, 1983.CrossRefGoogle Scholar
  34. 34.
    Satoh PS, Constantopoulos A, Nishioka K, Najjar VA: Tuftsin, threonyl-lysyl-prolyl-arginine, in Meinhofer J (ed): Chemistry and Biology of Peptides. Ann Arbor, Michigan, Ann Arbor Science, 1971, pp 403–408.Google Scholar
  35. 35.
    Rauner RA, Schmidt JJ, Najjar VA: Proline endopeptidase and exopeptidase activity in poly-morphonuclear granulocytes. Mol Cell Biochem 10: 77–80, 1976.PubMedCrossRefGoogle Scholar
  36. 36.
    Nagoaka I, Yamashita T: Inactivation of phatocytosis-stimulating activity of tuftsin by poly-morphonuclear neutrophils. A possible role of leucine aminopeptidase as an ecto-enzyme. Biochim Biophys Acta 675: 85–93, 1981.CrossRefGoogle Scholar
  37. 37.
    Najjar VA, Chaudhuri MK, Konopinska D, et al: Tuftsin (Thr-Lys-Pro-Arg), a physiological activator of phagocytic cells: A possible role in cancer suppression and therapy, in Hersh MA, Chirigos MA, Mastrangelo MJ (eds): Augmenting Agents in Cancer Therapy. New York, Raven, 1981, pp 459–478.Google Scholar
  38. 38.
    Inada K, Nemoto N, Nishijima A, Wada S, Hirata M, Yoshida M: in Kokobun Y, Kobayashi N (eds): Phagocytosis: Its Physiology and Pathology. Baltimore, University Park Press, 1977, pp 101–108.Google Scholar
  39. 39.
    Constantopoulos A, Najjar VA, Wish JB, et al: Defective phagocytosis due to tuftsin deficiency in splenectomized subjects. Am J Dis Child 125: 663–665, 1973.PubMedGoogle Scholar
  40. 40.
    Spirer Z, Zakuth V, Bogair N, Frikin M: Radioimmunoassay of the phagocytosis stimulating peptide tuftin in normal and splenectomized subjects. Eur J Immunol 7: 69–74, 1977.PubMedCrossRefGoogle Scholar
  41. 41.
    Spirer Z, Weisman Y, Zakuth V, et al: Decreased serum tuftsin concentrations in sickle cell disease. Arch Dis Child 55: 566–567, 1980.PubMedCrossRefGoogle Scholar
  42. 42.
    Florentin I, Martinez J, Maral J, et al: Immunopharmacological properties of tuftsin and of some analogues. Ann NY Acad 419: 177–191, 1983.CrossRefGoogle Scholar
  43. 43.
    Najjar VA, Schmidt J: The chemistry and biology of tuftsin, in Pick E (ed): Lymphokine Reports. New York, Academic, 1980, vol 1, pp 157–159.Google Scholar
  44. 44.
    Ketchel MM, Favour CB: Acceleration and inhibition of migration of human leucocytes in vitro by plasma protein fractions. J Exp Med 101: 647–663, 1955.PubMedCrossRefGoogle Scholar
  45. 45.
    Kavai M, Lukacs K, Szegedi G, et al: Chemotactic and stimulating effect of tuftsin and its analogues on human monocytes. Immunol Lett 2: 219–224, 1981.CrossRefGoogle Scholar
  46. 46.
    Lukacs K, Berenyi E, Kavai M, et al: Potentiation of the defective monocyte Chemotaxis in Hodgkin’s disease by in vitro tuftsin treatment. Cancer Immunol Immunother 15: 162–163, 1983.PubMedCrossRefGoogle Scholar
  47. 47.
    Lukacs K, Szabo G, Sonkoly I, et al: Stimulating effect of tuftsin and its analogues on the defective monocyte Chemotaxis in systemic lupus erythematosus. Immunopharmacology 7: 171–178, 1984.PubMedCrossRefGoogle Scholar
  48. 48.
    Babcock GF, Amoscato AA, Nishioka K: Effect of tuftsin on the migration Chemotaxis, and differentiation of macrophages and granulocytes. Ann NY Acad Sei 419: 64–74, 1983.CrossRefGoogle Scholar
  49. 48a.
    Beretz A, Hiller Y, Gottlieb P, et al: The effect of tuftsin, its analogs and its conjugates with formyl chemotactic peptide on Chemotaxis of human monocytes, in Sakakibara S (ed): Peptide Chemistry. Osaka, Protein Research Foundation, 1982, pp 207–212.Google Scholar
  50. 49.
    Baker CC, Chaudry IH, Gaines HO, Baue AD: Evaluation of factors affecting mortality rate after sepsis in a murine cecal ligation and puncture model. Surgery 94: 331–335, 1983.PubMedGoogle Scholar
  51. 50.
    Konopinska D, Luczak M, Wleklik M, et al: Elongated tuftsin analogues-synthesis and biological investigation. Ann NY Acad Sei 419: 35–43, 1983.CrossRefGoogle Scholar
  52. 51.
    Knyszynski K, Gottlieb P, Fridkin M: Inhibition by tuftsin of Rauscher virus leukemia development in mice. J. Natl Cancer Inst 71: 87–90, 1983.PubMedGoogle Scholar
  53. 52.
    Suk WA, Long CW: Enhancement of endogenous xenotropic murine retrovirus expression by tuftsin. Ann NY Acad Sei 419: 75–86, 1983.CrossRefGoogle Scholar
  54. 53.
    Bruley-Rosset M, Hercend T, Rappaport H, Mathe G: Immunorestorative capacity of tuftsin after long-term administration to aging mice. Ann NY Acad Sei 419: 242–250, 1983.CrossRefGoogle Scholar
  55. 54.
    Fridkin M, Najjar VA: Tuftsin: Its chemistry, biology and clinical potential, in Sela M (ed): Critical Reviews of Biochemistry. Boca Raton, Florida, CRC Press, in press.Google Scholar
  56. 55.
    Goldman R, Bar-Shavit Z: On the mechanism of the augmentation of the phagocytic capability of phagocytic cells by tuftsin, substance P, neurotensin, and kentsin and the interrelationship between their receptors. Ann NY Acad Sei 419: 143–155, 1983.CrossRefGoogle Scholar
  57. 56.
    Klebanoff S: Myeloperoxidase-mediated cytotoxic systems, in Sbarra AJ, Strauss RR (eds): Re-ticuloendothelial System. New York, Plenum, 1980, vol 2, pp 279–308.Google Scholar
  58. 57.
    Sbarra AJ, Selvary RJ, Paul BB, et al: Chlorination, decarboxylation and bactericidal activity mediated by the MP0-H202-C1- system. Adv Exp Med 73: 191–203, 1976.Google Scholar
  59. 58.
    Thomas EL, Jefferson MM, Grisham MB: Myeloperoxidase-catalyzed incorporation of amines into protein: Role of hypochorous acid and dichloroamines. Biochemistry 24: 6299–6308, 1982.CrossRefGoogle Scholar
  60. 59.
    Badwey JA, Karnovsky ML: Active oxygen species and the functions of phagocytic leukocytes. Annu Rev Biochem 49: 695–726, 1980.PubMedCrossRefGoogle Scholar
  61. 60.
    Chaudhuri MK, Konopinska D, Bump NJ, Najjar VA: The similarity between tuftsin (Thr-Lys-Pro- Arg) receptors and tuftsin antibody: A case of induced molecular mimicry. Ann NY Acad Sei 419: 135–142, 1983.CrossRefGoogle Scholar
  62. 61.
    Najjar VA, Bump NJ, Lee J: Isolation and characterization of tuftsin receptor, in Martinez J, Castro B (eds): Forum Peptides. Le Cap d’Agde, France, 1985, pp 17–21.Google Scholar
  63. 62.
    Siemion IZ, Lisowski M, Konopinska D, Nawrocka E: 13C nuclear magnetic resonance and circular dichroism studies of the tuftsin conformation in water. Eur J Biochem 112: 339–343, 1980.PubMedCrossRefGoogle Scholar
  64. 63.
    Fitzwater S, Hodes ZI, Scheraga HA: Conformational energy study of tuftsin. Macromolecules 11: 805–811, 1978.CrossRefGoogle Scholar
  65. 64.
    Blumenstein M, Layne PP, Najjar VA: Nuclear magnetic resonance studies on the structure of the tetrapeptide tuftsin, L-threonyl-L-lysyl-L-prolyl-L-arginine, and its pentapeptide analogue L- threonyl-L-lysyl-L-prolyl-L-prolyl-L-arginine. Biochemistry 18: 5247–5253, 1979.PubMedCrossRefGoogle Scholar
  66. 65.
    Merrifield RB: Solid-phase peptide synthesis. III. An improved synthesis of bradykinin, Biochemis-try 3: 1385–1390, 1964.CrossRefGoogle Scholar
  67. 66.
    Chaudhuri MK, Najjar VA: The solid phase synthesis of tuftsin and its analogs. Anal Biochem 95: 305–310, 1979.PubMedCrossRefGoogle Scholar
  68. 66a.
    Yajima H, Ogawa H, Watanabe H, et al: Studies on peptides. XLVIII. Application of the tri- fluoromethane-sulphonic acid procedure to the synthesis of tuftsin. Chem Pharm Bull 23: 371–374, 1975.CrossRefGoogle Scholar
  69. 67.
    Gottlieb P, Stabinsky Y, Zakuth V, et al: Synthetic pathways to tuftsin and radioimmunoassay. Ann NY Acad Sci 419: 12–22, 1983.CrossRefGoogle Scholar
  70. 68.
    Fridkin M, Gottlieb P: Tuftsin, Thr-Lys-Pro-Arg. Mol Cell Biochem 41: 73–98, 1981.PubMedCrossRefGoogle Scholar
  71. 69.
    Savrda J: An unusual side reaction of succinimidyl esters during peptide synthesis. J Org Chem 42: 3199–3200, 1977.PubMedCrossRefGoogle Scholar
  72. 70.
    Fridkin M, Stabinsky Y, Zakuth V, Spirer Z: Tuftsin and some analogs. Synthesis and interaction with human polymorphonuclear leukocytes. Biochim Biophys Acta 496: 203–211, 1977.PubMedCrossRefGoogle Scholar
  73. 71.
    Amoscato AA, Babcock GF, Nishioka K: Synthesis and biological activity of [L-3,4-Dehydropro- line3]-tuftsin, Peptides 5: 489–494, 1984.PubMedCrossRefGoogle Scholar
  74. 72.
    Najjar VA, Bump NJ, Lee J, Wleklik M: Tuftsin (Thr-Lys-Pro-Arg) a natural drug for immu- nostimulation; structure and function relationships, in Makriyannis A (ed): New Methods in Drug Research. Barcelona, Spain, J. R. Prous Science Publishers, vol 2, in press.Google Scholar
  75. 73.
    Najjar VA, Konopinska D, Lee L: Tuftsin, in Disabato G, Everse J (eds): Phagocytosis and Cell- Mediated Cytotoxicity. New York, Academic, 1986, vol 132, pp 318–325.Google Scholar
  76. 74.
    Constantopoulos A, Najjar VA: The requirement for membrane sialic acid in the stimulation of phagocytosis by the natural tetrapeptide, tuftsin. J Biol Chem 248: 3819–3822, 1973.PubMedGoogle Scholar
  77. 75.
    Bump NJ, Chaudhuri MK, Munson D, et al: Further studies on tuftsin, a natural activator of phagocytic cells. J Immunol Immunopharmacol 5: 8–13, 1985.Google Scholar
  78. 76.
    Gottlieb P, Stabinsky Y, Hiller Y, et al: Tuftsin receptors. Ann NY Acad Sci 419: 93–106, 1983.PubMedCrossRefGoogle Scholar
  79. 77.
    Nair RMG, Ponce B, Fudenberg HH: Interactions of radiolabeled tuftsin with human neutrophils. Immunochemistry 15: 901–907, 1978.PubMedCrossRefGoogle Scholar
  80. 78.
    Najjar VA, Bump NJ: A stimulator of all known functions of macrophage, in Fenichel RL, Chirigos MA (eds): Immunomodulating Agents. New York, Dekker, 1984, pp 229–242.Google Scholar
  81. 79.
    Bump NJ, Lee J, Wleklik M, et al: Isolation and subunit composition of tuftsin receptor. Proc. Natl Acad Sci USA 83: 7187–7191, 1986.PubMedCrossRefGoogle Scholar
  82. 80.
    Amoscato AA, Davies PJA, Babcock GF, Nishioka K: Receptor-mediated internalization of tuftsin. Ann NY Acad Sci 419: 114–134, 1983.PubMedCrossRefGoogle Scholar
  83. 81.
    Herman ZS, Stachura Z, Krezeminski T, Et Al: Central effects of tuftsin. Ann NY Acad Sci 419:156– 163, 1983.Google Scholar
  84. 82.
    Valdman AV, Kozlovskaia MM, Ashmarin IP, Et Al: [Central effects of the tetrapeptide tuftsin]. Biull Eksp Biol Med (Moscow) 92: 31–33, 1981.Google Scholar
  85. 83.
    Valdman AV, Bondarenko NA, Kozlovskaia MM, Et Al: [Comparative study of the psychotropic activity of tuftsin and its analogs]. Biull Eksp Biol Med (Moscow) 93: 49–52, 1982.Google Scholar
  86. 84.
    Constantopullos A, Najjar VA: Tuftsin deficiency syndrome, a report of two new cases. Acta Paediatr Scand 62: 645–648, 1973.CrossRefGoogle Scholar
  87. 85.
    Najjar VA: Tuftsin, in Drugs of the Future. Barcelona, Spain, J. R. Prous Science Publishers, 1987.Google Scholar
  88. 86.
    Najjar VA, Fidalgo BV, Stitt E: The physiological role of the lymphoid system. VII. The disappearance of leucokinin activity following splenectomy. Biochemistry 7: 2376–2379, 1968.PubMedCrossRefGoogle Scholar
  89. 87.
    Spirer Z: The role of the spleen in immunity and infection. Adv Pediatr 27: 55–88, 1980.PubMedGoogle Scholar
  90. 88.
    Spirer Z, Zakuth V, Orda R, et al: Acquired tuftsin deficiency. Ann NY Acad Sci 419: 220–226, 1983.PubMedCrossRefGoogle Scholar
  91. 89.
    Constantopoulos A, Najjar VA: Adenyl cyclase of polymorphonuclear leucocytes. Nature New Biol 243: 268–269, 1973.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Victor A. Najjar
    • 1
  1. 1.Department of Molecular Biology and MicrobiologyTufts University School of MedicineBostonUSA

Personalised recommendations