The Respiratory Burst and Diabetes Mellitus

  • József T. Nagy
  • Tamás FülöpJr.
  • George Paragh
  • Gabriella Fóris


Diabetes mellitus is known as a general disturbance of glucose utilization at the cellular level. However, the precise pathomechanism is unclear, according to the 1985 classification of the WHO study Group1: Two (clinical) types of the disease—insulin-dependent diabetes mellitus (IDDM) and noninsulin-dependent diabetes mellitus (NIDDM)—have been used. The discovery and accessibility of the hormone insulin have fundamentally changed the outcome of the patients, but complications of the disease have become conspicuous; such as increased sensitivity of the organism against different infectious illnesses.


Respiratory Burst Chronic Granulomatous Disease Phagocytic Cell NIDDM Patient Islet Cell Antibody 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Report of WHO Study Group (1985) World Health Organization. Technical Report Series 727.Google Scholar
  2. 2.
    Esman V: Polymorphonuclear leukocyte in diabetes mellitus. J Clin Chem Clin Biochem 21:561– 567, 1983.Google Scholar
  3. 3.
    Wilson RM, Reeves WG: Neutrophil phagocytosis and killing in insulin-dependent diabetes. Clin Exp Immunol 63: 478–484, 1986.PubMedGoogle Scholar
  4. 4.
    Davidson NJ, Sowden JM, Fletscher J: Defective phagocytosis in insulin controlled diabetics: Evidence for a reaction between glucose and opsonising proteins. J Clin Pathol 37: 783–786, 1984.PubMedCrossRefGoogle Scholar
  5. 5.
    Lohmann D, Krug J, Lampeter EF, Et Al: Cell-mediated immune reactions against B cells and defect of suppressor cell activity in Type 1 (insulin-dependent) diabetes mellitus. Diabetologia 29:421– 425, 1986.Google Scholar
  6. 6.
    Dryberg T: Humoral autoimmunity in the pathogenesis of insulin dependent diabetes mellitus. Acta Endocrinol (suppl) 280: 9–29, 1986.Google Scholar
  7. 7.
    Komori K, Nakayama K, Aoki S, et al: Effect of anti-insulin antibody on insulin binding to liver membranes: Evidence against antibody-induced enhancement of insulin binding to the insulin receptor. Diabetologia 29: 447–452, 1986.PubMedCrossRefGoogle Scholar
  8. 8.
    McEvoy RE, Witt ME, Ginsberg-Fellner F, et al: Anti-insulin antibodies in children with Type 1 diabetes mellitus. Diabetes 35: 634–641, 1986.PubMedCrossRefGoogle Scholar
  9. 9.
    Blecher M: Speculations on potential anti-receptor autoimmune disease, in Pitman (ed): Receptors, antibodies and disease. Ciba foundation Symposium 90, London, 1982 pp. 279–300.Google Scholar
  10. 10.
    Tosi R, Vela M, Adorno D, et al: Radioimmunoassay typing gives a more precise definition of the HLA association of Type 1 (insulin-dependent) diabetes. Diabetologia 29: 430–433, 1986.PubMedCrossRefGoogle Scholar
  11. 11.
    Hitman, GA: Progress with the genetics of insulin-dependent diabetes mellitus. Clin Endocrinol 25: 463–472, 1986.CrossRefGoogle Scholar
  12. 12.
    Oberg G, Hallgren R, Moberg L, et al: Bactericidal protein and neutral proteases in diabetes neutrophils. Diabetologia 29: 426–429, 1986.PubMedCrossRefGoogle Scholar
  13. 13.
    Keily MK, Brown JM, Thong YH: Neutrophil and monocyte adeherence in diabetes mellitus, alcoholic cirrhosis, uremia and elderly patients. Int Arch Allergy Appl Immunol 78: 132–138, 1985.CrossRefGoogle Scholar
  14. 14.
    Babior BM: The respiratory burst of phagocytes. J Clin Invest 73: 599–604, 1984.PubMedCrossRefGoogle Scholar
  15. 15.
    Halliwell B, Gutteridge JMC: Oxygen toxicity, oxygen radicals, transition, metals and disease. Biochem 7 219: 1–11, 1984.Google Scholar
  16. 16.
    Rosen H, Klebanoff S: Bactericidal activity of superoxide anion generating system. J Exp Med 149: 29–38, 1979.CrossRefGoogle Scholar
  17. 17.
    Bagdade JD: Phagocytic and microbicidal function in diabetes mellitus. Acta Endrocrinol 83 (sup- pl): 27 — 33, 1976.Google Scholar
  18. 18.
    Nolan CM, Beaty HN, Bagdade JD: Further characterization of the impaired byctericidal function of granulocytes in patients with poorly controlled diabetes. Diabetes 27: 889–894, 1978.PubMedGoogle Scholar
  19. 19.
    Notsu K, Oka N, Note S, et al: Islet cell antibodies in the Japanese population and subjects with Type 1 (insulin-dependent) diabetes, Diabetologia 28: 660–662, 1985.PubMedCrossRefGoogle Scholar
  20. 20.
    Takahashi A, Tsujihata M, Yokota A, et al: A new method of detection of islet cell antibodies (ICA) using peroxidase-labeled protein A, and incidence of ICA in Type 1 (insulin-dependent) diabetes. Diabetologia 29: 378–382, 1986.PubMedCrossRefGoogle Scholar
  21. 21.
    Karjalainen J, Knip M, Mustonen A, et al: Relation between insulin antibody and complement- fixing islet cell antibody at clinical diagnosis of IDDM. Diabetes 35: 620–622, 1986.PubMedCrossRefGoogle Scholar
  22. 22.
    Grunfeld C, Jones DS, Shigenaga JK: Autoantibodies against the insulin receptor. Diabetes 34:205– 211, 1985.Google Scholar
  23. 23.
    Shoelson SE, Marshall S, Horikoshi H, et al: Antiinsulin receptor antibodies in an autoantiidiotypes. J Clin Endocrinol Metab 63: 56–61, 1986.PubMedCrossRefGoogle Scholar
  24. 24.
    Proietto J, Nankervis A, Aitken P, et al: Insulin resistance in cirrhosis: Evidence for a post-receptor defect. Clin Endocrinol 21: 677–688, 1984.CrossRefGoogle Scholar
  25. 25.
    Olczak SA, Greenwood RH, Hales CN: Post-receptor insulin resistance after diazoxide in non- insulin dependent diabetes. Horm Metab Res 18: 38–41, 1986.PubMedCrossRefGoogle Scholar
  26. 26.
    Fovenyi J, Totpal K, Thaisz E, et al: Non-specific cellular immunity in Type I and II diabetes Exp Clin Endocrinol 83: 203–206, 1984.Google Scholar
  27. 27.
    Negishi K, Waldeck N, Chandy G, et al: Natural killer and islet cell activities in Type 1 (insulin- dependent) diabetes, Diabetologia 29: 352–357, 1986.PubMedCrossRefGoogle Scholar
  28. 28.
    Zier KS, Leo MM, Spielman RS, et al: Decreased synthesis of Interleukin 2 (IL-2) in insulin- dependent diabetes mellitus, Diabetes 33: 552–555, 1984.PubMedCrossRefGoogle Scholar
  29. 29.
    Ilonen J, Surcel HM, Mustonen A, et al: Lymphocyta subpopulations at the onset of Type 1 (insulin- dependent) diabetes. Diabetologia 27: 106–108, 1984.PubMedCrossRefGoogle Scholar
  30. 30.
    Rich S, O’Neill G, Daimasso AP, et al: Complement and HLA. Diabetes 34: 504–509, 1985.PubMedCrossRefGoogle Scholar
  31. 31.
    Pozzili P, Sensi M, Al-Sakkaf L, et al: Prospective study of lymphocyte subsets in subjects genetically susceptible to Type 1 (insulin-dependent) diabetes. Diabetologia 27: 132–135, 1984.CrossRefGoogle Scholar
  32. 32.
    Marcelli-Barge A, Poinier JC, Schmid M, et al: Genetic polymorphism of the fourth component of complement and type 1 (Insulin-dependent) diabetes. Diabetologia 27: 116–117, 1984.PubMedCrossRefGoogle Scholar
  33. 33.
    Topliss D, How J, Lewis M, Et Al: Evidence for cell-mediated immunity and specific suppressor T lymphocyta dysfunction in Graves’ disease and diabetes mellitus. J Clin Endocrinol Metab 57:700– 705, 1983.Google Scholar
  34. 34.
    Rodier M, Andary M, Richard JL, et al: Peripheral blood T-cell subsets studied by monoclonal antibodies in Type 1 (insulin-dependent diabetes: Effect of blood glucose control. Diabetologia 27: 136–138, 1984.PubMedCrossRefGoogle Scholar
  35. 35.
    Prud’homme GJ, Colle E, Fuks A, et al: Cellular immune abnormalities and autoreactive T lymphocytes in insulin-dependent diabetes mellitus in rats. Immunol Today 6: 160–162, 1985.CrossRefGoogle Scholar
  36. 36.
    Sundsmo JP, Papin RA, Wood L, et al: Complement activation in Type 1 human diabetes. Clin Immunol Immunopathol 35: 211–225, 1985.PubMedCrossRefGoogle Scholar
  37. 37.
    Shah SV, Wallin JD, and Eilen SD: Chemiluminescence and superoxide anion production by leukocytes from diabetic patients. J Clin Endrocrinol Metab 57: 402–409, 1983.CrossRefGoogle Scholar
  38. 38.
    Matkovics B, Varga Szl, Szabo L, Et Al: The effect of diabetes on the activities of the peroxide metabolism enzymes. Horm Metab Res 14: 77–79, 1982.PubMedCrossRefGoogle Scholar
  39. 39.
    Markert M, Cech P, Frei J: Oxygen metabolism of phagocytosing human polymorphonuclear leukocytes in diabetes mellitus. Blut 49: 447–455, 1984.PubMedCrossRefGoogle Scholar
  40. 40.
    Nath N, Chari SN, Rathi AB: Superoxide dismutase in diabetic polymorphonuclear leukocytes. Diabetes 33: 586–589, 1984.PubMedCrossRefGoogle Scholar
  41. 41.
    Theete LG, Couch RK, Buse MG, et al: The protective role of copper-zinc superoxide dismutase against alloxan-induced diabetes: morphological aspects. Diabetologia 28: 677–682, 1985.CrossRefGoogle Scholar
  42. 42.
    Thomas G, Skrinska V, Lucas FV, et al: Platelet glutathione and thromboxane synthesis in diabetes. Diabetes 34: 951–954, 1985.PubMedCrossRefGoogle Scholar
  43. 43.
    Loven D, Schedl H, Wilson H, et al: Effect of insulin and oral glutathione on glutathione levels and superoxide dismutase activities in organs of rats with streptozocin–induced diabetes. Diabetes 35: 503–507, 1986.PubMedCrossRefGoogle Scholar
  44. 44.
    Yamamura M, Boler J, Valdimarsson H: A 5Chromium release assay for phagocytic killing of Candida albicans. J Immunol Methods 13: 227–234, 1979.CrossRefGoogle Scholar
  45. 45.
    Tanabe T, Kabayashi Y, Usui T: Enhancement of human neutrophil oxygen consumption by chemotactic factors. Experientia 39: 604–611, 1983.PubMedCrossRefGoogle Scholar
  46. 46.
    Cohen HJ, Chovaniek ME: Superoxide generation by digitonin-stimulated guinea pig granulocytes. J Clin Invest 40: 1081–1086, 1978.CrossRefGoogle Scholar
  47. 47.
    Pick E, Keisari Y: Superoxide anion and hydrogen peroxide production by chemically elicited peritoneal macrophages–Induction by multiple non-phagocytic stimuli. Cell Immunol 59: 301–312, 1981.PubMedCrossRefGoogle Scholar
  48. 48.
    Paglia DE, Valentine WN: Studies on the quantitative and qualitative characterization of erythrocytes glutathione peroxidase. J Lab Clin Med 70: 150–158, 1967.Google Scholar
  49. 49.
    Weiss SJ, Regiani S: Neutrophils degrade subendothelial matrices in the presence of alpha-1- proteinase inhibitor: Cooperative use of lysosomal proteinases and oxygen metabolites. J Clin Invest 73: 1297–1303, 1984.PubMedCrossRefGoogle Scholar
  50. 50.
    Weiss SJ, Curnutte JT, Regiani S: Neutrophil-mediated solubilization of the subendothelial matrix: Oxidative and nonoxidative mechanisms of proteolysis used by normal and chronic granulomatous disease of phagocytes. J Immunol 136: 636–641, 1986.PubMedGoogle Scholar
  51. 51.
    Fiilop T, Foris G, Worum I, et al: Some variations of PMNL functions with aging. Mech Aging Dev 29: 1–7, 1985.CrossRefGoogle Scholar
  52. 52.
    Shah SV, Wallin JD, Cruz FC: Impaired oxidative metabolism by leukocytes from renal transplant recipients: A potential mechanism for the increased susceptibility to infections. Clin Nephrol 21:89– 92, 1984.Google Scholar
  53. 53.
    Kurose H, Ui M: Dual pathways of receptor-mediated cyclic GMP generation in NG 108–15 cells as differentiated by susceptibility to islet-activating protein, partussis toxin. Arch Biochem Biophys 238: 424–434, 1985.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • József T. Nagy
    • 1
  • Tamás FülöpJr.
    • 1
  • George Paragh
    • 1
  • Gabriella Fóris
    • 1
  1. 1.First Department of MedicineUniversity Medical SchoolDebrecenHungary

Personalised recommendations