Drug-Induced Agranulocytosis and Other Effects Mediated by Peroxidases during the Respiratory Burst

  • Jack P. Uetrecht


There are numerous examples demonstrating strong evidence that toxic reactions to drugs or other chemicals are due to chemically reactive metabolites.1 The form this toxicity takes can vary from cancer (presumably due to reaction of the metabolite with DNA) to anaphylactic reactions [presumably due to the metabolite acting as a hapten and reacting with a protein leading to the induction of immunoglobulin E (IgE) antibodies]. The greatest activity of enzymes capable of metabolizing xenobiotics is found in the liver; however, such enzymatic activity has been found in numerous other organs. One important aspect of this extrahepatic activity is that most reactive metabolites formed in the liver are too reactive to reach other target organs.


Respiratory Burst Phorbol Myristate Acetate Reactive Metabolite Thyroid Peroxidase Idiosyncratic Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anders MW: Bioactivation of Foreign Compounds. Orlando, Academic, 1985.Google Scholar
  2. 2.
    Moldeus P, Andersson B, Rahimtula A, Berggren M: Prostaglandin synthetase catalyzed activation of paracetamol. Biochem Pharmacol 31: 1363–1368, 1982.PubMedCrossRefGoogle Scholar
  3. 3.
    Kadlubar F, Frederick C, Weis C, Zenser T: Prostaglandin endoperoxide synthetase-mediated metabolism of carcinogenic aromatic amines and their binding to DNA and protein. Biochem Biophys Res Commun 108:253–258, 1982.Google Scholar
  4. 4.
    Zenser T, Mattammal M, Armbrecht H, Davis B: Benzidine binding to nucleic acids mediated by peroxidative activity of prostaglandin endoperoxide synthetase. Cancer Res 40: 2839–2845, 1980.PubMedGoogle Scholar
  5. 5.
    Krauss R, Eling T: Formation of unique arylamine: DNA adducts from 2-aminofluorene activated by prostaglandin H synthase. Cancer Res 45: 1680–1686, 1985.PubMedGoogle Scholar
  6. 6.
    Krauss R, Eling T: Arachidonic acid-dependent cooxidation: A potential pathway for the activation of chemical carcinogens in vivo. Biochem Pharmacol 33: 3319–3324, 1984.PubMedCrossRefGoogle Scholar
  7. 7.
    Tsuruta Y, Subrahmanyam V, Marshall W, O’Brien P: Peroxidase-mediated irreversible binding of arylamine carcinogens to DNA in intact polymorphonuclear leukocytes activated by a tumor promoter. Chem Biol Interact 53: 25–35, 1985.PubMedCrossRefGoogle Scholar
  8. 8.
    Schultz J, Kaminker K: Myeloperoxidase of leukocyte of normal human blood. I. Content and localization. Arch Biochem 96: 465–467, 1962.PubMedCrossRefGoogle Scholar
  9. 9.
    van Furth R, Raeburn J, van Zwet T: Characteristics of human mononuclear phagocytes. Blood 54: 485–500, 1979.PubMedGoogle Scholar
  10. 10.
    Harrison J, Araiso T, Palcic M, Dunford H: Compound I of myeloperoxidase. Biochem Biophys Res Commun 94: 34–40, 1980.PubMedCrossRefGoogle Scholar
  11. 11.
    Bolscher B, Zoutberg G, Cuperus R, Wever R: Vitamin C stimulates the chlorinating activity of human myeloperoxidase. Biochim Biophys Acta 784: 189–191, 1984.PubMedCrossRefGoogle Scholar
  12. 12.
    Zgliczynski J, Selvaraj R, Paul B, et al: Chlorination by the myeloperoxidase-H2O2-Cl anti-microbial system at acid and neutral pH. Proc Soc Exp Biol NY 154: 418–422, 1977.Google Scholar
  13. 13.
    Winterbourn C: Comparative reactivities of various biological compounds with myeloperoxidase- hydrogen peroxide-chloride, and similarity of the oxidant to hypochlorite. Biochim Biophys Acta 840: 204–210, 1985.PubMedCrossRefGoogle Scholar
  14. 14.
    Ichihara S, Tomisawa H, Fukazawa H, Tateishi M: Involvement of leukocyte peroxidases in the metabolism of tenoxicam. Biochem Pharmacol 34: 1337–1338, 1985.PubMedCrossRefGoogle Scholar
  15. 15.
    Ichihara S, Tomisawa H, Fukazowa H et al: Involvement of leukocytes in the oxidation and chlorination reaction of phenylbutazone. Biochem Pharmacol 35: 3935–3939, 1986.PubMedCrossRefGoogle Scholar
  16. 16.
    Libby R, Thomas J, Kaiser L, Hager L: Chloroperoxidase halogenation reactions: Chemical versus enzymatic halogenating intermediates. J Biol Chem 257: 5030–5037, 1982.PubMedGoogle Scholar
  17. 17.
    Marnett L, Bieukowski M, Pagels W, Reed G: Mechanism of xenobiotic cooxidation coupled to prostaglandin H2 biosynthesis, in Samuelson P, Ramewell W, Paoletti R (eds): Advances in Prostaglandin and Thromboxane Research, New York, Raven, 1980, vol 6, pp 149–151.Google Scholar
  18. 18.
    Reed G, Griffin I, Eling T: Inactivation of prostaglandin H synthase and prostacyclin synthase by phenylbutazone. Mol Pharmacol 27: 109–114, 1985.PubMedGoogle Scholar
  19. 19.
    Lang P: Sulfones and sulfonamides in dermatology today. J Am Acad Dermatol 1: 479–492, 1979.PubMedCrossRefGoogle Scholar
  20. 20.
    Morgan J, Marsden C, Coburn J, et al: Dapsone in dermatitis herpetiformis. Lancet 1: 1197–1200, 1955.CrossRefGoogle Scholar
  21. 21.
    Alexander J: Dapsone in the treatment of dermatitis herpetiformis. Lancet 1: 1201–1202, 1955.CrossRefGoogle Scholar
  22. 22.
    Stendahl O, Molin L, Dahlgren C: The inhibition of polymorphonuclear leukocyte cytotoxicity by dapsone. J Clin Invest 62: 214–220, 1978.PubMedCrossRefGoogle Scholar
  23. 23.
    Katz S, Hertz K, Crawford P, et al: Effect of sulfones on complement deposition in dermatitis herpetiformis and on complement-mediated guinea-pig reactions. J Invest Dermatol 67: 688–690, 1976.PubMedCrossRefGoogle Scholar
  24. 24.
    Schifferli J, Jones R: Dapsone and complement. Lancet 2: 368–369, 1981.PubMedCrossRefGoogle Scholar
  25. 25.
    Drummond L, Gemmell D: The effect of dapsone on complement activation. Agents Actions 13: 435–437, 1983.CrossRefGoogle Scholar
  26. 26.
    Uetrecht J, Shear N, Biggar W: Dapsone is metabolized by human neutrophils to a hydroxylamine. Pharmacologist 28: 239, 1986.Google Scholar
  27. 27.
    Uetrecht J, Zahid N, Shear N, Biggar W: Metabolism of dapsone to a hydroxylamine by human neutrophils and mononuclear cells. J Pharmacol Exp Ther 245: 1–6, 1988.Google Scholar
  28. 28.
    Niwa Y, Sakane T, Miyachi Y: Dissociation of the inhibitory effect of dapsone on the generation of oxygen intermediates—In comparison with that of colchicine and various scavengers. Biochem Pharmacol 33: 2355–2360, 1984.PubMedCrossRefGoogle Scholar
  29. 29.
    Ortiz de Montellano P, Reich N: Inhibition of Cytochrome P-450 enzymes, in Ortiz de Montellano P (ed): Cytochrome P-450: Structure, Mechanism, and Biochemistry. New York, Plenum, 1986, p 283.Google Scholar
  30. 30.
    McKenna W, Chalmers A: Agranulocytosis following dapsone therapy. Br Med J 1: 324–325, 1958.PubMedCrossRefGoogle Scholar
  31. 31.
    Ognibene A: Agranulocytosis due to dapsone. Ann Intern Med 72: 521–524, 1970.PubMedGoogle Scholar
  32. 32.
    Firkin F, Mariani A: Agranulocytosis due to dapsone. Med J Aust 2: 247–251, 1977.PubMedGoogle Scholar
  33. 33.
    Wilson J, Harris J: Hematologic side-effects of dapsone. Ohio State Med J 73: 557–560, 1977.PubMedGoogle Scholar
  34. 34.
    Lahuerta-Palacios J, Gomez-Pedraja J, Montalban M, et al: Proliferation of Ig Dx plasma cells after agranulocytosis induced by dapsone. Br Med J 290: 282–283, 1985.CrossRefGoogle Scholar
  35. 35.
    Weetman R, Boxer L, Brown M, et al: In vitro inhibition of granulopoiesis by 4-amino-4’-hydrox- ylaminodiphenyl sulfone. Br J Haematol 45: 361–370, 1980.PubMedCrossRefGoogle Scholar
  36. 36.
    Wallerstein R, Condit P, Brown J, Morrison F: Statewide study of chloramphenicol—Therapy and fatal aplastic anemia. JAMA 208: 2045–2050, 1969.PubMedCrossRefGoogle Scholar
  37. 37.
    Fouts J, Brodie B: The enzymatic reduction of chloramphenicol, p-nitrobenzoic acid and other aromatic nitro compounds in mammals. J Pharmacol Exp Ther 119: 197–207, 1957.PubMedGoogle Scholar
  38. 38.
    Scheline R: Metabolism of foreign compounds by gastrointestinal microorganisms. Pharmacol Rev 25: 451–523, 1973.PubMedGoogle Scholar
  39. 39.
    Ascherl M, Eyer P, Kampffmeyer H: Formation and disposition of nitrosochloramphenicol in rat liver. Biochem Pharmacol 34: 3755–3763, 1985.PubMedCrossRefGoogle Scholar
  40. 40.
    Yunis A, Miller A, Salem Z, et al: Nitroso-chloramphenicol: Possible mediator in chloramphenicol- induced aplastic anemia. J Lab Clin Med 96: 36–46, 1980.PubMedGoogle Scholar
  41. 41.
    Gross B, Branchflower R, Burke T, et al: Bone marrow toxicity in vitro of chloramphenicol and its metabolites. Toxicol Appl Pharmacol 64: 557–565, 1982.PubMedCrossRefGoogle Scholar
  42. 42.
    Uetrecht J, Zahid N, Rubin R: Metabolism of procainamide to a hydroxylamine by human neutrophils and mononuclear cells. Chem Res Toxicol, 1988 (in press).Google Scholar
  43. 43.
    Rubin R, Uetrecht J, Jones J: Cytotoxicity of oxidative metabolites of procainamide. J Pharmacol Exp Ther 242: 833–841, 1987.PubMedGoogle Scholar
  44. 44.
    Reider M, Uetrecht J, Shear N, Spielberg S: Synthesis and in vitro toxicity of hydroxylamine metabolites of sulfonamides. J Pharmacol Exp Ther 244: 724–728, 1988.Google Scholar
  45. 45.
    Kutscher A, Lane, Segall R: The clinical toxicity of antibiotics and sulfonamides: A comparative review of the literature based on 104,672 cases treated systematically. J Allergy 25: 135–150, 1954.PubMedCrossRefGoogle Scholar
  46. 46.
    Berger B, Hauser D: Agranulocytosis due to new sustained-release procainamide. Am Heart J 105: 1035–1036, 1983.PubMedCrossRefGoogle Scholar
  47. 47.
    Ellrodt A, Murata G, Riedinger M, et al: Severe neutropenia associated with sustained-release procainamide. Ann Intern Med 100: 197–201, 1984.PubMedGoogle Scholar
  48. 48.
    Nelson J, Lutton J, Fass A: Procainamide-induced agranulocytosis with reversible myeloid sen-sitivity. Am J Hematol 17: 427–432, 1984.PubMedCrossRefGoogle Scholar
  49. 49.
    Rab S, Alam M: Severe agranulocytosis during para-aminosalicylic acid therapy. Br J Dis Chest 64: 164–168, 1970.PubMedCrossRefGoogle Scholar
  50. 50.
    Bodenheimer H, Samarel A: Agranulocytosis associated with aprindine therapy. Arch Intern Med 139: 1181–1182, 1979.PubMedCrossRefGoogle Scholar
  51. 51.
    Lawrence B, Sarter R, Lipton A, et al: Pancytopenia induced by aminoglutethimide in the treatment of breast cancer. Cancer Treatm Rep 62: 1581–1583, 1978.Google Scholar
  52. 52.
    Taurog A: The mechanism of action of the thioureylene antithyroid drugs. Endocrinology 98:1031— 1046, 1976.Google Scholar
  53. 53.
    Nagasaka A, Hidaka H: Effect of antithyroid agents 6-propyl-2-thiouracil and l-methyl-2-mercap- toimidazole on human thyroid peroxidase. J Clin Endocrinol Metab 43: 152–158, 1976.PubMedCrossRefGoogle Scholar
  54. 54.
    Nakashima T, Taurog A, Riesco G: Mechanism of action of thioureylene antithyroid drugs: Factors affecting intrathyroidal metabolism of propylthiouracil and methimazole in rats. Endocrinology 103: 2187–2197, 1978.PubMedCrossRefGoogle Scholar
  55. 55.
    Davidson B, Soodak M, Neary J, et al: The irreversible inactivation of thyroid peroxidase by methylmercaptoimidazole, thiouracil, and propylthiouracil in vitro and its relationship to in vivo findings. Endocrinology 103: 871–882, 1978.PubMedCrossRefGoogle Scholar
  56. 56.
    Engler H, Taurog A, Nakashima T: Mechanism of inactivation of thyroid peroxidase by thio-ureylene drugs. Biochem Pharmacol 31: 3801–3806, 1982.PubMedCrossRefGoogle Scholar
  57. 57.
    Engler H, Taurog A, Luthy C, Dorris M: Reversible and irreversible inhibition of thyroid perox- idase-catalyzed iodination by thioureylene drugs. Endocrinology 112: 86–95, 1983.PubMedCrossRefGoogle Scholar
  58. 58.
    Imamura M, Aoka N, Saito T, et al: Inhibitory effects of antithyroid drugs on oxygen radical formation in human neutrophils. Acta Endocrinol (Copenh) 112: 210–216, 1986.Google Scholar
  59. 59.
    Weetman A, Holt M, Campbell A, et al: Methimazole and generation of oxygen radicals by monocytes: Potential role in immunosuppression. Br Med J 288: 518–520, 1984.CrossRefGoogle Scholar
  60. 60.
    Kariya K, Lee E, Hirouchi M: Relationship between leukopenia and bone marrow myeloperoxidase in the rat treated with propylthiouracil. Jpn J Pharmacol 36: 217–222, 1984.PubMedCrossRefGoogle Scholar
  61. 61.
    Forsland T, Borgmastars F, Fyhrquist F: Captropril associated leukopenia confirmed by rechallenge in patient with renal failure. Lancet 1: 166, 1981.CrossRefGoogle Scholar
  62. 62.
    Weiss A, Markenson J, Weiss M, Kammerer W: Toxicity of d-penicillamine in rheumatoid arthritis. Am J Med 64: 114–120, 1978.PubMedCrossRefGoogle Scholar
  63. 63.
    Harrison J, Schultz J: Studies on the chlorinating activity of myeloperoxidase. J Biol Chem 251: 1371–1374, 1976.PubMedGoogle Scholar
  64. 64.
    Kadar D, Kalow W: Acute and latent leukopenic reaction to antipyrine. Clin Pharmacol Ther 28: 820–822, 1980.PubMedCrossRefGoogle Scholar
  65. 65.
    Barrett A, Weller E, Rozengust N, et al: Amidopyrine agranulocytosis: Drug inhibition of gran-ulocyte colonies in the presence of patient’s serum. Br Med J 2: 850–851, 1976.PubMedCrossRefGoogle Scholar
  66. 66.
    Huguley C: Agranulocytosis induced by dipyrone, a hazardous antipyretic and analgesic. JAMA 189: 938–941, 1964.PubMedCrossRefGoogle Scholar
  67. 67.
    Vincent P: Drug-induced aplastic anaemia and agranulocytosis: Incidence and mechanisms. Drugs 31: 52–63, 1986.PubMedCrossRefGoogle Scholar
  68. 68.
    Pisciotta V: Drug-induced agranulocytosis. Drugs 15: 132–143, 1978.PubMedCrossRefGoogle Scholar
  69. 69.
    Weitzman S, Stossel T: Drug-induced immunological neutropenia. Lancet 1: 1068–1072, 1978.PubMedCrossRefGoogle Scholar
  70. 70.
    Fibbe W, Claas F, Van der Star-Dijkstra W, Et Al: Agranulocytosis induced by propylthiouracil: evidence of a drug dependent antibody reacting with granulocytes, monocytes, and haematopoietic progenitor cells. Br J Haematol 64: 363–373, 1986.PubMedCrossRefGoogle Scholar
  71. 71.
    Nakamura M, Yamazaki I, Kotoni T, Ohtaki S: Thyroid peroxidase selects the mech1- or 2-electron oxidation of phenols, depending on their substituents. J Biol Chem 260:13546– 13552, 1985.Google Scholar
  72. 72.
    Takayama S, Aihara K, Onodera T, Akimoto T: Antithyroid effects of propylthiouracil and sul- famonomethoxine in rats and monkeys. Toxicol Appl Pharmacol 82: 191–199, 1986.PubMedCrossRefGoogle Scholar
  73. 73.
    Haynes R, Murad F: Thyroid and antithyroid drugs, in Gilman A, Goodman L, Rail T, Murad F (eds): The Pharmacological Basis of Therapeutics, ed 7. New York, Macmillan, 1985, p 1402.Google Scholar
  74. 74.
    Hughes SW, Burley D: Aminoglutethimide: Side-effect turned to therapeutic advantage. Postgrad Med J 46: 409–416, 1970.CrossRefGoogle Scholar
  75. 75.
    Vrhovac B: Anti-inflammatory analgesics and drugs used in gout, in Dukes M (ed): Meyler’s Side Effects of Drugs, ed 10. Amsterdam, Elsevier, 1984, p 154.Google Scholar
  76. 76.
    Griciute L, Tomatis L: Carcinogenicity of dapsone in mice and rats. Int J Cancer 25: 123–129, 1980.PubMedCrossRefGoogle Scholar
  77. 77.
    Park BK, Coleman J, Kitteringham N: Drug disposition and drug hypersensitivity. Biochem Pharmacol 36: 581–590, 1987.PubMedCrossRefGoogle Scholar
  78. 78.
    Ahlstedt S, Kristofferson A: Immune mechanisms for induction of penicillin allergy. Prog Allergy 30: 67–134, 1982.PubMedGoogle Scholar
  79. 79.
    Uetrecht J, Sweetman B, Woosley, R, Oates J: Metabolism of procainamide to a hydroxylamine by rat and human hepatic microsomes. Drug Metab Dispos 12: 77–81, 1984.PubMedGoogle Scholar
  80. 80.
    Uetrecht J: Reactivity and possible significance of hydroxylamine and nitroso metabolites of procainamide. J Pharmacol Exp Ther 232: 420–425, 1985.PubMedGoogle Scholar
  81. 81.
    Shear N, Spielberg S: In vitro evaluation of a toxic metabolite of sulfadiazine. Can J Physiol Pharmacol 63: 1370–1372, 1985.PubMedCrossRefGoogle Scholar
  82. 82.
    Reider M, Uetrecht J, Miller M, Spielberg S: Toxicity of a reactive intermediate of sulfadiazine in an in vitro system. Pharmacologist 28: 124, 1986.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Jack P. Uetrecht
    • 1
  1. 1.Faculties of Pharmacy and MedicineUniversity of Toronto and Sunnybrook HospitalTorontoCanada

Personalised recommendations