Arachidonic Acid Metabolism in Tissue Injury

  • Stephen M. Spaethe
  • Philip Needleman
Part of the New Horizons in Therapeutics book series (NHTH)


The significance of enhanced arachidonic acid metabolism in a variety of inflammatory disorders has been the focus of intense investigation for over 20 years. Several types of tissue injury, including hydronephrosis (Morrison et al.,1977; Nishikawa et al.,1977), glomerulonephritis (Lianos et al.,1983), renal vein constriction (Zipser et al., 1980), myocardial infarction (Evers et al., 1985), ulcerative colitis (Zipser et al.,1985), rheumatoid arthritis (McGuire et al., 1982), and pulmonary fibrosis (Clark et al.,1983), are characterized by marked quantitative, as well as qualitative, changes in arachidonic acid metabolism. In each case, the exaggerated eicosanoid production is associated with the invasion of inflammatory cells into the site of injury. A major interest in this laboratory has been understanding the temporal relations between inflammatory cell influx and enhanced arachidonate metabolism. Additionally, attempts have been made to correlate the biochemical events with the pathophysiological response observed following the onset of tissue injury.


Renal Blood Flow Unilateral Ureteral Obstruction Arachidonic Acid Metabolism Ureteral Obstruction Essential Fatty Acid Deficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aiken, J. R., and Vane, J. R., 1971, Blockade of angiotensin-induced prostaglandin release from dog kidney by indomethacin, Pharmacologis 13: 293.Google Scholar
  2. Albrightson, C. R., Baenziger, N. L. and Needleman, P., 1985a, A mononuclear cell factor is a potent agonist of prostaglandin biosynthesis in cultured human fibroblasts, smooth muscle and endothelial cells, in: Advances in Prostaglandin, Thromboxane and Leukotriene Research ( O. Hayaishi and S. Yamamoto. eds.), Vol. 15, pp 213–216, Raven Press, New York.Google Scholar
  3. Albrightson, C. R., Baenziger, N. L., and Needleman, P., 1985b, Exaggerated human vascular cell prostaglandin biosynthesis mediated by monocytes: Role of monokines and interleukin 1, J. Immunol. 135: 1872–1877.PubMedGoogle Scholar
  4. Albrightson, C. R., Evers, A. S., Griffin. A. C., and Needleman, P. 1987. The effect of endogenously produced leukotrienes and thromboxane on renal vascular resistance in rabbit hydronephrosis, Cir. Res. G1: 514–522.Google Scholar
  5. Allen, J. T., Vaughn, E. D., and Gillenwater, J. H., 1978, The effect of indomethacin on renal blood flow and ureteral pressure in unilateral ureteral obstruction in awake dogs, Invest. Urol. 15: 324–327.PubMedGoogle Scholar
  6. Allen, P. M., and Unanue, E. R., 1984, Differential requirements for antigen processing by macrophages for lysozyme-specific T cell hybridomas, J. Immunol. 132: 1077–1079.PubMedGoogle Scholar
  7. Baud, L., Sraer, J., Delarue, F., Bens, M., Balavoine, F., Schlondorff, D., Ardaillou, R., and Sraer, J. D., 1985, Lipoxygenase products mediate the attachment of rat macrophages to glomeruli in vitro, Kidney Int. 27: 855–863.PubMedCrossRefGoogle Scholar
  8. Bolli, R., Goldstein, R. E., Davenport, N., and Epstein, S. E., 1981, Influence of sulfinpyrazone and naproxen on infarct size in the dog, Am. J. Cardiol. 47: 841–847.PubMedCrossRefGoogle Scholar
  9. Bonow, R. O., Lipson, L. C., Sheehan, F. H., Cappuro, N. L., Isner, J. M., Roberts, W. C., Goldstein, R. E., and Epstein, S. E., 1981, Lack of effect of aspirin on myocardial infarct size in the dog, Am. J. Cardiol. 47: 258–264.PubMedCrossRefGoogle Scholar
  10. Bonta, I. L., and Parnham, M. J., 1982, Prostaglandin, essential fatty acids and cell—tissue interactions in immun-inflammation, Prog. Lipid Res. 20: 617–623.CrossRefGoogle Scholar
  11. Borgeat, P., and Samuelsson, P., 1979, Transformation of arachidonic acid by rabbit polymorphonuclear leukocytes. Formation of a novel dihydroxy-eicosatetraenoic acid, J. Biol. Chem. 254: 2643–2646.PubMedGoogle Scholar
  12. Clark, J. G., Kostal, K. M., and Marino, B. A., 1983, Bleomycin-induced pulmonary fibrosis in hamsters, J. Clin. Invest. 72: 2082–2091.PubMedCrossRefGoogle Scholar
  13. Crowshaw, K., 1971, Prostaglandin biosynthesis forms endogenous precursors in the rabbit kidney, Nature New Biol. 231: 240–241.PubMedGoogle Scholar
  14. Crowshaw, K., McGiff, J. C., Strand, J. C., Lonigro, A. J., and Terragna, N. A., 1970, Prostaglandins in dog renal medulla, J. Pharm. Pharmacol. 22: 302–303.PubMedCrossRefGoogle Scholar
  15. Dahlen, S. E., Bjork, J., Hedquist, P., Arfors, K. E., Hammarstrom, S., Lindgren, J. A., and Sammuelsson, B., 1981, Leukotrienes promote plasma leakage and leukocyte adhesion in postcapillary venules: In vivo effects with relevance to the acute inflammatory response, Proc. Natl. Acad. Sci. U.S.A. 78: 3887–3891.PubMedCrossRefGoogle Scholar
  16. Daniels, E. G., Hinman, J. W., Leach, B. E., and Muirhead, E. E., 1967, Identification of prostaglandin E2 as the principal vasodepressor lipid of rabbit renal medulla, Nature 215: 1298–1299.PubMedCrossRefGoogle Scholar
  17. Danon, A., Zenser, T. V., Thomasson, D. L., Palmier, M. O., and Davis, B. B., 1986, Eicosanoid synthesis by rabbit hydronephrotic cortical interstitial cells in culture, J. Pharmacol. Exp. Ther. 238: 95–99.PubMedGoogle Scholar
  18. Dayer, J.-M., Robinson, D. R., and Krane, S. M., 1977, Prostaglandin production by rheumatoid synovial cells. Stimulation by a factor from human mononuclear cells, J. Exp. Med. 145: 1399–1404.PubMedCrossRefGoogle Scholar
  19. Dibona, G. F., 1986, Prostaglandins and non-steroidal anti-inflammatory drugs; effects on renal hemodynamics, Am. J. Med 80 (Suppl. 1A): 12–21.PubMedCrossRefGoogle Scholar
  20. DiSouza, S. M., Englis, D. J., Clark, A., and Russell, R. G., 1981, Stimulation of production of prostaglandin E in gingival cells exposed to products of human blood mononuclear cells, Biochem, J. 198: 391–396.Google Scholar
  21. Dunham, E. W., and Zimmerman, B. G., 1970, Release of prostaglandin-like material from dog kidney during nerve stimulation, Am. J. Phvsiol. 219: 1279–1285.Google Scholar
  22. Einstein, L. P., Schneeberger, E. E., and Colten, H. R., 1976, Synthesis of the second component of complement by long-term primary culture of human monocytes, J. Exp. Med. 143: 114–126.PubMedCrossRefGoogle Scholar
  23. Evans, J. F., Nathaniel, D. J., Zamboni, R. J., and Ford-Hutchinson, A. W., 1985, Leukotriene A3: A poor substrate but a potent inhibitor of rat and human neutrophil leukotriene A4 hydrolase, J. Biol. Chem 260: 10966–10970.PubMedGoogle Scholar
  24. Evers, A. S., Murphree, S., Saffitz, J. E., Jakschik, B. A., and Needleman, P., 1985, Effects of endogenously produced leukotrienes, thromboxane, and prostaglandins on coronary vascular resistance in rabbit myocardial infarction, J. Clin. Invest. 75: 992–999.PubMedCrossRefGoogle Scholar
  25. Evers, A. S., Dunkel, C. G., Saffitz, J. E., and Needleman, P., 1987, Exaggerated atrial arachidonate metabolism in rabbit left ventricular myocardial infarction, J. Clin. Invest 79: 155–162.PubMedCrossRefGoogle Scholar
  26. Fels, A. O. S., Pawlowski, N. A., Cramer, E. B., King, T. K. C., Cohn, Z. A., and Scott, W. A., 1982, Human alveolar macrophages produce leukotriene B4, Proc. Natl. Acad. Sci U.S.A. 79: 7866–7870.PubMedCrossRefGoogle Scholar
  27. Feuerstein, N., Foegh, M., and Ramwell, P. W., 1981, Recently reported stimulation of TxB2 and 6-ketoPGF,,, synthesis by rat peritoneal macrophages incubated with E. coli 055:BS lipopolysaccharide, Br. J. Pharmacol. 72: 389–391.PubMedGoogle Scholar
  28. Fulco, A. J., and Mead, J. F., 1959, Metabolism of essential fatty acids, J. Biol. Chem. 234: 1411–1416.PubMedGoogle Scholar
  29. Gery, I., and Wasksman, B. H., 1972, Potentiation of the T-lymphocyte response to mitogens. II. The cellular source of potentiating mediator(s), J. Exp. Med. 1361: 143–155.CrossRefGoogle Scholar
  30. Goldyne, M. E., Burrish, G. F., Poubelle, P., and Borgeat, P., 1984, Arachiodonic acid metabolism among human mononuclear leukocytes. Lipoxygenase-related pathways, J. Biol. Chem. 259: 8815–8819.PubMedGoogle Scholar
  31. Halushka, P. V., Cook, J. A., and Wise, W. C., 1981, Thromboxane A2 and prostacyclin production by lipopolysaccharide-stimulated peritoneal macrophages, J. Reticuloendothel. Soc. 30: 445–450.PubMedGoogle Scholar
  32. Holdsworth, S. R., Neale, T. J., and Wilson, C. B., 1981, Abrogation of macrophage-dependent injury in experimental glomerulonephritis, J. Clin. Inves 68: 689–698.CrossRefGoogle Scholar
  33. Holman, R. T., 1969, Essential fatty acid deficiency, Prog. Chem. Fats Other Lipids 9: 275–348.CrossRefGoogle Scholar
  34. Hsueh, W., Sun, F. F., and Henderson, S., 1985, The biosynthesis of leukotriene B4, the predominant lipoxygenase products in rabbit alveolar macrophages, is enhanced during immune activation, Biochim. Biophys. Acta 835: 92–97.PubMedGoogle Scholar
  35. Humes, S. L., Bonney, R. J., Pelus, L., Dahlgren, M. E., Sadowski, S. J., Kuehl, F. A., andGoogle Scholar
  36. Davis P., 1977, Macrophages synthesize and release prostaglandins in response to inflammatory stimuli, Nature 269: 149–151.CrossRefGoogle Scholar
  37. Hurd, E. R., Johnston, J. M., Okita, J. R., MacDonald, P. C., Ziff, M., and Gilliam, J. N, 1981, Prevention of glomerulonephritis and prolonged survival in New Zealand Black/ New Zealand White F, hybrid mice fed an essential fatty acid-deficient diet, J. Clin. Invest. 67: 476–485.PubMedCrossRefGoogle Scholar
  38. Jaffe, B. M., Parker, C. W., Marshall, G. R., and Needleman, P., 1972, The renal concentrations of prostaglandin E in acute and chronic renal ischemia, Biochem. Biophvs. Res. Commun. 49: 799–805.CrossRefGoogle Scholar
  39. Johnson, H. H., Herzog. J. P., and Lauler, D. P., 1967. Effect of prostaglandin E, on renal hemodynamics, sodium and water excretion, Am. J. Phvsiol. 213: 939–946.Google Scholar
  40. Jolly. S. R., and Lucchesi. B. R., 1983. Effect of BW755C in an occlusion-reperfusion model of ischemic myocardial injury, Am. Heart J. 106: 8–13.PubMedCrossRefGoogle Scholar
  41. Jonas, P. E. and Needleman, P., 1984, Mechanism of enhanced fibroblast arachidonic acid metabolism by mononuclear cell factor, J. Clin. Invest. 74: 2249–2253.CrossRefGoogle Scholar
  42. Jonas, P. E. Leahy. K. M. DeSchryver-Kecskemeti, K. and Needleman. P. 1984. Cellular interactions and exaggerated arachidonic acid metabolism in rabbit renal injury, J. Leukocyte Biol. 35: 55–64.PubMedGoogle Scholar
  43. Jugdutt, B. I., Hutchins, G. M., Bulkley, B. J., Pitt, B., and Becker. L. C., 1979. Effect of indomethacin on collateral blood flow and infarct size in the conscious dog. Circulation 59: 734–743.PubMedGoogle Scholar
  44. Kaizu, K., Marsh, D., Zipser, R., and Glassock, R. J., 1985, Role of prostaglandins and angiotensin II in experimental glomerulonephritis, Kidney Int. 28: 629–635.PubMedCrossRefGoogle Scholar
  45. Kawasaki, A., and Needleman, P., 1982, Contribution of thromboxane to renal resistance changes in the isolated perfused hydronephrotic rabbit kidney. Circ. Res. 50: 486–490.PubMedGoogle Scholar
  46. Kelley, V. E. Snever, S. and Musinski, S., 1986, Increased renal thromboxane production in murine lupus nephritis, J. Clin. Invest. 77: 252–259.Google Scholar
  47. Korn, J. H., Halushka, P. V., and LeRoy, E. C., 1980, Mononuclear cell modulation of connective tissue function: Suppression of fibroblast growth by stimulation of endogenous prostaglandin production, J. Clin. Invest. 65: 543–554.PubMedCrossRefGoogle Scholar
  48. Lefkowith, J. B. and Schreiner, G., 1987. Essential fatty acid deficiency depletes rat glomeruli of resident macrophages and inhibits angiotensin II-induced eicosanoid synthesis J. Clin. Invest. 80: 947–956.PubMedCrossRefGoogle Scholar
  49. Lefkowith, J. B., Okegawa, T., DeSchryver-Kecskemeti. K., and Needleman, P., 1984. Macrophage-dependent arachidonate metabolite in hydrophrosis, Kidney Int. 26: 10–17.PubMedCrossRefGoogle Scholar
  50. Lefkowith, J. B., Flippo, V., Sprecher, H., and Needleman, P., 1985, Paradoxical conservation of cardiac and renal arachidonate content in essential fatty acid deficiency, J. Biol. Chem. 260: 15736–15744.PubMedGoogle Scholar
  51. Lefkowith, J. B., Jackschik, B. A., Stahl, P., and Needleman, P., 1987. Metabolic and functional alteration in macrophages induced by essential fatty acid deficiency, J. Biol. Chem. 262: 6668–6675.PubMedGoogle Scholar
  52. Lianos, E. A., Giuseppe, G. A., and Dunn, M. J., 1983, Glomerular prostaglandin and thromboxane synthesis in rat nephrotoxic serum nephritis, J. Clin. Invest. 721: 439–1448.Google Scholar
  53. Lianos, E. A., Rahman, M. A., and Dunn, M. J., 1985, Glomerular arachidonate lipoxygenation in rat nephrotoxic serum nephritis, J. Clin. Invest. 76: 1355–1359.PubMedCrossRefGoogle Scholar
  54. Mallory, G. P., White, P., and Sakedo-Salgar, T., 1979, The speed of healing of myocardial infarction. A study of the pathologic anatomy in seventy-two cases, Am. Heart J. 18: 647–671.CrossRefGoogle Scholar
  55. Mathias, C. J., Welch, M. J., Schwartz. D., Spaethe, S. M., and Needleman, P., 1987, In-111 labeled cells to differentiate the sequential blood cell invasion of the injured rabbit kidney in vivo J. Nuc. Med.,(in press).Google Scholar
  56. McCluskey, E. R., Corr, P. B. Lee B. I., Saffitz, J. E., and Needleman, P., 1982, The arachidonic acid metabolic capacity of canine myocardium is increased during healing of acute myocardial infarction, Circ. Res. 51: 743–750.PubMedGoogle Scholar
  57. McCluskey, E. R., Murphee, S., Saffitz, J. E., Morrison, A. R., and Needleman, P., 1985, Temporal changes in 12-HETE formation in two models of canine myocardial infarction, Prostaglandins 29: 387–403.PubMedCrossRefGoogle Scholar
  58. McGiff, J. C., Crowshaw, K.,Terragno, N. A., Lonigro, A. J., Strand, J. C., Williamson, M. A., Lee, J. B., and Ng, K. D. F., 1970a, Prostaglandin-like substances appearing in canine renal venous blood during renal ischemia, Circ. Res. 27: 765–789.Google Scholar
  59. McGiff, J. C., Crowshaw, K., Terragno, N. A., and Lonigro, A. J., 1970b, Release of prostaglandin-like substances into renal venous blood in response to angiotensin-II, Circ. Res. 26 (Suppl. I): 1121–1130.Google Scholar
  60. McGiff, J. C., Terragno, N. A., Malik, K. U., and Lonigro, A. J., 1972, Release of prostaglandin E-like substance from canine kidney by bradykinin, Circ. Res 31: 36–43.PubMedGoogle Scholar
  61. McGiff, J. C., Crowshaw, k., and Itskovitz, H. D., 1974, Prostaglandins and renal function, Fed. Proc. 33: 39–47.PubMedGoogle Scholar
  62. McGuire, M. K., Meats, J. E., Ebsworth, N. M., Harvey, L., Murphy, G., Russell, G. G., and Reynolds, J. J., 1982, Properties of rheumatoid and normal synovial tissue in vitro and cells derived from them. Production of prostaglandins and collagenase in response to factors derived from cultured blook mononuclear cells and from synovium, Rheumatol. Int. 2: 113–120.PubMedCrossRefGoogle Scholar
  63. Mellman, I., Plutner, H., and Ukkonen, P., 1984, Internalization and rapid processing of macrophage Fc receptors tugged with monovalent antireceptor antibody: Possible role of a prelysosomal compartment, J. Cell Biol. 98: 1163–1169.PubMedCrossRefGoogle Scholar
  64. Miyamoto, T., Taniguchi, K., Tanonchi, T., and Hirata, F., 1980, Selective inhibition of thromboxane synthetase. Pyridine and its derivatives, in: Advances in Prostaglandin Research, ( B. Samuelsson, P. Ramwell, and P. Paoletti, eds.), Vol. 6, pp. 443–445, Raven Press, New York.Google Scholar
  65. Moody, T. E., Vaughn, E. D., and Gillenwart, J. Y, 1975, Relationship between renal blood flow and ureteral pressure during eighteen hours of total unilateral occlusion. Implications for changing sites of renal resistance, Invest. Urol. 13: 246–251.PubMedGoogle Scholar
  66. Moody, T. E., Vaughn, E. D., Jr., Wyker, A. T., and Gillenwater, J. Y., 1977, The role of intrarenal angiotensin II in the hemodynamic response to unilateral obstructive uropathy, Invest. Urol. 14: 390–397.PubMedGoogle Scholar
  67. Morrison, A. R., Nishikawa, K., and Needleman, P., 1977, Unmasking of thromboxane A2 synthesis by ureteral obstruction in the rabbit kidney, Nature 267: 259–260.PubMedCrossRefGoogle Scholar
  68. Morrison, A. R., Nishikawa, K., and Needleman, P., 1978, Thromboxane A2 biosynthesis in the ureter obstructed isolated perfused kidney of the rabbit, J. Pharmacol. Exp. Ther. 205: 1–8.PubMedGoogle Scholar
  69. Mullane, K. M., and Moncaa, S., 1982, The salvage of ischemic myocardium by BW-755C in anesthetized dogs, Prostaglandins 24: 255–266.PubMedCrossRefGoogle Scholar
  70. Mullane, K. M., Read, N., Salmon, J. A., and Moncada, S., 1984, Role of leukocytes in acute myocardial infarction in anesthetized dogs: Relationship to myocardial salvage by anti-inflammatory drugs, J. Parmacol. Exp. Ther. 228: 510–522.Google Scholar
  71. Nagle, R. B., Bulger, R. E., Culter, R. E., Jervis, H. R., and Benditt, E. P., 1973, Unilateral obstructive nephropathy in the rabbit: I. Early morphologic, physiologic, and histochemical changes, Lab Invest. 28: 456–467.PubMedGoogle Scholar
  72. Nagle, R. B., Johnson, M. E., and Jervis, H. R., 1976, Proliferation of renal interstitial cells following injury induced by ureteral obstruction, Lab. Invest. 35: 18–22.PubMedGoogle Scholar
  73. Needleman, P., Kauffman, A. H., Douglas, J. R., Johnson, J. R., and Marshall, G. R., 1973, Specific stimulation and inhibition of renal prostaglandin release by angiotensin analogs, Am. J. Physiol. 224: 1415–1419.PubMedGoogle Scholar
  74. Needleman, P., Douglas, J. R., Jakschik, B., Stoecklein, P. B., and Johnson, E. M., 1974.Google Scholar
  75. Release of renal prostaglandins by catecholamines: Relationship to renal endocrine function, J. Pharmacol. Exp. Ther. 188: 453–460.Google Scholar
  76. Needleman, P., Raz, A., Ferrendelli, J. A. and Minkes, M., 1977, Application of imidazole as a selective inhibitor of thromboxane synthetase in human platelets, Proc. Natl. Acad. Sci. U.S.A. 74: 1716–1720.PubMedCrossRefGoogle Scholar
  77. Nishikawa, K., Morrison, A. R., and Needleman, P., 1977, Exaggerated prostaglandin biosynthesis and its influence on renal resistance in the isolated hydronephrotic rabbit kidney, J. Clin. Invest, 59: 1143–1150.PubMedCrossRefGoogle Scholar
  78. Okegawa, T., Jonas, P. E., DeSchryver, K., Kawasaki, A., and Needleman, P., 1983a, Metabolic and cellular alterations underlying the exaggerated renal prostaglandin and thromboxane synthesis in ureter obstruction in rabbits. Inflammatory response involving fibroblasts and mononuclear cells. J. Clin. Invest. 71: 81–90.PubMedCrossRefGoogle Scholar
  79. Okegawa, T., DeSchryver-Kecskemeti, K., and Neddleman, P., 19836, Endotoxin induces chronic prostaglandin and thromboxane synthesis from ureter-obstructed kidneys: Role of inflammatory cells, J. Pharmacol. Exp. Ther. 225: 213–218.Google Scholar
  80. Patrono, C., Ciabattoni, G., Remuzzi, G., Gotti, E., Bombardieri, S., Di Munno, O., Tartarelli, G., Cinotti, G. A., Simonetti, B. M., and Pierucci, A., 1985, Functional significance of renal prostacyclin and thromboxane Az production in patients with systemic lupus erythematosus, J. Clin. Invest. 76: 1011–1018.PubMedCrossRefGoogle Scholar
  81. Prickett, J. D., Robinson, D. R., and Steinberg, A. D., 1981, Dietary enrichment with the polyunsaturated fatty acid eicosapentaenoic acid prevents proteinuria and prolongs survival in NZBxNZW/F, mice, J. Clin. Invest. 68: 556–559.PubMedCrossRefGoogle Scholar
  82. Reingold, D. F., Waters, S., Holmberg, S., and Needleman, P., 1981, Differential biosynthesis of prostaglandins by hydronephrotic rabbit and cat kidneys, J. Pharmacol. Exp. Ther. 216: 510–515.PubMedGoogle Scholar
  83. Romson, J., Hook, B., Krunkel, S. L., Abrams, G. D., Schork, M. A., and Lucchesi, B. R., 1983, Reduction of the extent of ischemic myocardial injury by neutrophil depletion in the dog, Circulation 67: 1016–1023.PubMedCrossRefGoogle Scholar
  84. Schramm, L. P., and Carlson, D. E., 1975, Inhibition of renal vasoconstriction by elevated ureteral pressure, Am. J. Physiol. 228: 1126–1133.PubMedGoogle Scholar
  85. Schreiner, G. F., Cotran, R. S., Pardo, V., and Unanue, E. R., 1978, A mononuclear cell component in experimental immunological glomerulonephritis, J. Exp. Med. 147: 369–384.PubMedCrossRefGoogle Scholar
  86. Scott, W. A., Pawlowski, N. A., Andreach, M., and Cohn, Z. A., 1982, Resting macrophages produce distinct metabolites from exogenous arachidonic acid, J. Exp. Med. 155: 535–547.PubMedCrossRefGoogle Scholar
  87. Spaethe, S. M., Freed, M. S., DeSchryver-Kecskemeti, K., Lefkowith, J. B., and Needleman, P., 1987, Essential fatty acid deficiency reduces the inflammatory cell invasion in rabbit hydronephrosis resulting in suppression of the exaggerated eicosanoid synthesis J. Pharmacol. Exiler. Thes. (in press).Google Scholar
  88. Taffet, S. M., and Russell, S. W., 1981, Macrophage-mediated tumor cell killing: Regulation of expression of cytolytic activity by prostaglandin E, J. Immunol. 126: 434–427.Google Scholar
  89. Vaughn, E. D., Shenasky, J. H., II, and Gillenwater, J. H., 1971, Mechanism of acute hemodynamic response to ureteral occlusion, Invest, Urol. 9: 109–118.Google Scholar
  90. Williams, J. D., Robin, J. L., Lewis, R. A., Lee, T. H. and Austin, K. F., 1986, Generation of leukotrienes by human monocytes pretreated with cytochalasin B and stimulated with formly-methionyl-leucyl-phenylalanine, J. Immunol. 136: 2169–2173.Google Scholar
  91. Zipser, R., Meyers, S., and Needleman, P., 1980, Exaggerated prostaglandin and thromboxane synthesis in the rabbit with renal vein constriction, Circ. Res. 47: 231–237.PubMedGoogle Scholar
  92. Zipser, R. D., Patterson, J. B., Kao, H. W., Hauser, C. J., and Locke, R., 1985, Hypersensitive prostaglandin and thromboxane response to hormones in rabbit colitis, Am. J. Physiol. 249: G457–G463.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Stephen M. Spaethe
    • 1
  • Philip Needleman
    • 1
  1. 1.Department of PharmacologyWashington University School of MedicineSt. LouisUSA

Personalised recommendations