Peptide Mediators of Inflammation

An Overview
  • Stephen M. Krane
Part of the New Horizons in Therapeutics book series (NHTH)


Some of us who have been attempting to understand the mechanisms of inflammation have focused on the nature of the interactions among component cells in inflammatory lesions. The deleterious consequences of chronic inflammatory diseases result from the effects of these interactions on resident cells of the involved tissues (Krane et al., 1982). In most of these tissues, mesenchymal cells such as fibroblasts are the target cells, and monocytes and lymphocytes are the effector cells. It has become apparent, however, that the distinction between effector and target is blurred, since the so-called target cells can also profoundly influence functions of the effector cells. The interactions among these cells are mediated through direct cell contact or the release of soluble ligands that act by binding through specific cellular receptors.


Collagen Synthesis Synovial Fibroblast Synovial Cell Articular Chondrocytes Human Mononuclear Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barnes, D. M., 1986, How cells respond to signals, Science 234: 286–288.PubMedCrossRefGoogle Scholar
  2. Beutler, B., and Cerami, A., 1986, Cachectin and tumour necrosis factor as two sides of the same biological coin, Nature 320: 584–588.PubMedCrossRefGoogle Scholar
  3. Comb, M., Birnberg, N. C., Seasholtz, A., Herbert, E., and Goodman, H. M., 1986, A cyclic AMP-and phorbol ester-inducible DNA element, Nature 232: 353–356.CrossRefGoogle Scholar
  4. Dayer, J.-M., Robinson, D. R., and Krane, S. M., 1977a, Prostaglandin production by rheumatoid synovial cells. Stimulation by a factor from human mononuclear cells, J. Exp. Med. 145: 1399–1404.PubMedCrossRefGoogle Scholar
  5. Dayer, J.-M., Russell, R. G. G., and Krane, S. M., 1977b, Collagenase production by rheumatoid synovial cells: Stimulation by a human lymphocyte factor, Science 195: 181–183.PubMedCrossRefGoogle Scholar
  6. Dayer, J.-M., Goldring, S. R., Robinson, D. R., and Krane, S. M., 1979, Effects of human mononuclear cell factor on cultured rheumatoid synovial cells. Interactions of prostaglandin E2 and cyclic adenosine 3’, 5’-monophosphate, Biochim, Biophvs, Acta 586: 87–105.Google Scholar
  7. Dayer, J.-M., Beutler, B., and Cerami, A., 1985, Cachectin/tumor necrosis factor stimulates collagenase and prostaglandin E2 production by human synovial cells and dermal fibroblasts, J. Exp. Med. 162: 2163–2168.PubMedCrossRefGoogle Scholar
  8. Dinarello, C. A., Cannon, J. G., Mier, J. W., Bernheim, H. A., LoPreste, G., Lynn, D. L., Love, R. N., Webb, A. C., Auron, P. E., Reuben, R. C., Rich, A., Wolff, S. M., and Putney, S. D., 1986, Multiple biological activities of human recombinant interleukin 1, J. Clin. Invest. 77: 1734–1739.PubMedCrossRefGoogle Scholar
  9. Goldring, M. B., and Krane, S. M., 1986, Modulation of collagen synthesis in human chondrocyte cultures by interleukin 1, J. Bone Mineral Res. 1 (Suppl. 1): 56 (Abstract).Google Scholar
  10. Goldring, S. R., Dayer, J.-M., and Krane, S. M., 1984, Rheumatoid synovial cell hormone responses modulated by cell—cell interactions, Inflammation 8: 107–121.PubMedCrossRefGoogle Scholar
  11. Goldring, S. R., Roelke, M. S., Petrison, K. K., and Krane, S. M., 1986, Interleukin 1 (IL 1) mediates effects of soluble monocyte—macrophage products on responses to prostaglandin E2 (PGE2); A potential mechanism for regulating cellular activity at sites of inflammation, J. Bone Mineral Res. 1 (Suppl. 1): 55Google Scholar
  12. Goldring, S. R., Roelke, M. S., Petrison, K. K., Evins, A. E., and Krane, S. M., 1987a, Mechanisms by which monocyte—macrophage products regulate responses of connective tissue (bone and synovial) cells to hormones, J. Bone Mineral Res. 2 (Suppl.1): 239 (Abstract).Google Scholar
  13. Goldring, M. B., Birkhead, J. R., Sandell, L. J., and Krane, S. M., 19876, Differential effects of recombinant interleukin 1 and phorbol ester on collagen synthesis and procollagen mRNA levels in cultured human chondrocytes, Arthritis Rheum. 30:(Suppl.):129 (Abstract).Google Scholar
  14. Gordon, M. Y., Riley, G. P., Watt, S. M., and Greaves, M. F., 1987, Compartmentalization of a haematopoietic growth factor (GM-CSF) by glycosaminoglycans in the bone marrow microenvironment, Nature 326: 403–405.PubMedCrossRefGoogle Scholar
  15. Gowen, M., Wood, D. D., and Russell, R. G. G., 1985, Stimulation of the proliferation of human bone cells in vitro by human monocyte products with interleukin-1 activity, J. Clin. Invest. 75: 1223–1229.PubMedCrossRefGoogle Scholar
  16. Krane, S. M., Goldring, S. R., and Dayer, J.-M., 1982, Interactions among lymphocytes, monocytes, and other synovial cells in the rheumatoid synovium, Lymphokines 7: 75–136.Google Scholar
  17. Krane, S. M., Dayer, J.-M., Simon, L. S., and Byrne, M. S., 1985, Mononuclear cell-conditioned medium containing mononuclear cell factor (MCF), homologous with interleukin I, stimulates collagen and fibronectin synthesis by adherent rheumatoid synovial cells: Effects of prostaglandin E, and indomethacin, Collagen Relat. Res. 5: 99–117.Google Scholar
  18. McCroskery, P.A., Arai, S., Amento, E. P., and Krane, S. M., 1985, Stimulation of procollagenase synthesis in human rheumatoid synovial fibroblasts by mononuclear cell factor/interleukin 1, FEBS Leu. 191: 7–12.CrossRefGoogle Scholar
  19. Mizel, S. B., Dayer, J.-M., Krane, S. M., and Mergenhagen, S. E., 1981, Stimulation of rheumatoid synovial cell collagenase and prostaglandin production by partially purified lymphocyte-activating factor (interleukin 1), Proc. Natl. Acad. Sci. U.S.A. 78: 2474–2477.PubMedCrossRefGoogle Scholar
  20. Old, L. J., 1987, Polypeptide mediator network, Nature 326: 330–331.PubMedCrossRefGoogle Scholar
  21. Oppenheim, J. J., Kovacs, E. J., Matsushima, K., and Durum, S. K., 1986, There is more than one interleukin 1, lmmunol. Today 7: 45–56.CrossRefGoogle Scholar
  22. Pytela, R., Pierschbacher, M. D., and Ruoslahti, E., 1985, A 125/1l5-kDa cell surface receptor specific for vitronectin interacts with the arginine—glycine—aspartic acid adhesion sequence derived from fibronectin, Proc. Natl. Acad. Sci. U.S.A. 82: 5766–5770.PubMedCrossRefGoogle Scholar
  23. Pytela, R., Pierschbacher, M. D., Ginsberg, M. H., Plow, E. F., and Ruoslahti, E., 1986, Platelet membrane glycoprotein IIb/IIIa: Member of a family of Arg-Gly-Asp-specific adhesion receptors, Science 231: 1559–1562.PubMedCrossRefGoogle Scholar
  24. Ruoslahti, E., and Pierschbacher, M. D., 1986, Arg-Gly-Asp: A versatile cell recognition signal, Cell 44: 517–518.PubMedCrossRefGoogle Scholar
  25. Rupp, E. A., Cameron, P. M., Ranawat, C. S., Schmidt, J. A., and Bayne, E. K., 1986, Specific bioactivities of monocyte-derived interleukin la and interleukin 1β are similar to each other on cultured murine thymocytes and on cultured human connective tissue cells, J. Clin. Invest. 78: 836–839.PubMedCrossRefGoogle Scholar
  26. Schmidt, J. A., Mizel, S. B., Cohen, D., and Green, I., 1982, Interleukin 1, a potential regulator of fibroblast proliferation, J. Immunol. 128: 2177–2182.PubMedGoogle Scholar
  27. Stephenson, M. L., Goldring, M. B., Birkhead, J. R., Krane, S. M., Rahmsdorf, H. J., and Angel, P., 1987, Stimulation of procollagenase synthesis parallels increases in cellular procollagenase mRNA in human articular chondrocytes exposed to recombinant interleukin I G3 or phorbol ester, Biochem. Biophys. Res. Commun. 144: 583–590.PubMedCrossRefGoogle Scholar
  28. Yamada, K. M., Akiyama, S. K., Hasegawa, T., Hasegawa, E., Humphries, M. J., Kennedy, D. W., Nagata, K., Urushihara, H., Olden, K., and Chen, W.-T., 1985, Recent advances in research on fibronectin and other cell attachment proteins, J. Cell. Biochem. 28: 79–97.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Stephen M. Krane
    • 1
  1. 1.Department of Medicine, Harvard Medical School and the Medical Services (Arthritis Unit)Massachusetts General HospitalBostonUSA

Personalised recommendations