Advertisement

The Metabolism of Inositol Phosphates

  • Philip W. Majerus
  • Thomas M. Connolly
  • Vinay S. Bansal
  • Roger C. Inhorn
  • Hans Deckmyn
Part of the New Horizons in Therapeutics book series (NHTH)

Abstract

Phosphatidylinositols are phospholipid precursors of a series of inositol phosphates. Several inositol phosphates function as messenger molecules that evoke responses in cells following stimulation by extracellular agonists. While many different compounds are formed, the functions of only a few are understood. The pathways of formation of the inositol phosphates are complex and only partially worked out. The very complexity of the system implies that many functions may be served by these molecules. Myo-inositol (Fig. 1) is a hexatol that can be substituted with various combinations of phosphate esters and 1,2 cyclic phosphate esters. Allowing for all possible combinations of phosphates, we could have as many as 63 distinct noncyclic inositol phosphates and at least 3 cyclic inositol phosphates. Each of these compounds could specify some function, and the amount of information that could be derived from this system is therefore immense. Thus far, 15 inositol phosphates have been described in tissues or extracts of tissues (listed in Table I).

Keywords

Human Platelet Guanine Nucleotide Inositol Phosphate Inositol Trisphosphate Messenger Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackerman, K. E., Gish, B., G., Honchar, M. P., and Sherman, W. R., 1987, Evidence that inositol-1-phosphate in brain of lithium-treated rats results mainly from phospha- tidylinositol metabolism, Biochem. J. 242: 517–514.Google Scholar
  2. Baehr, W., Derbin, M. J., and Applebury, M. L., 1979, Isolation and characterization of cGMP phosphodiesterase from bovine rod outer segments, J. Biol. Chem. 254: 11669–11677.PubMedGoogle Scholar
  3. Ballon, C. E., and Pizer, L. I., 1960, The absolute configuration of myoinositol 1-phosphate and a confirmation of bornesitol configurations, J. Am. Chem. Soc. 82: 333–335.Google Scholar
  4. Bansal, V. S., Inborn, R. C., and Majerus, P. W., 1987, The metabolism of inositol 1,3,4-trisphosphate to inositol 1,3-bisphosphate, J. Biol. Chem. (in press).Google Scholar
  5. Batty, I. R., Nahorski, S. R., and Irvine, R. F., 1985, Rapid formation of inositol 1,3,4,5tetrakisphosphate following muscarinic receptor stimulation of rat cerebral cortical slices, Biochem. J. 232: 211–215.PubMedGoogle Scholar
  6. Berridge, M. J., 1986, Regulation of ion channels by inositol trisphosphate and diacylglycerol, J. Exp. Biol. 124: 323–335.PubMedGoogle Scholar
  7. Berridge, M. J., and Irvine, R. F., 1984, Inositol trisphosphate, a novel second messenger in cellular signal transduction, Nature 312: 315–321.PubMedCrossRefGoogle Scholar
  8. Biden, T. J., and Wallheim, C. B., 1986, Ca++ regulates the inositol tris/tetrakisphosphate pathways in intact and broken preparations of insulin-secreting RINm5F cells, J. Biol. Chem. 261: 11931–11934.PubMedGoogle Scholar
  9. Biswas, S., Maity, I. B., Chakrabarti, S., and Biswas, B. B., 1978, Purification and characterization of myo-inositol hexaphosphate-adenosine diphosphate phosphotransferase from Phaseolus aureus, Arch. Biochem. Biophys. 185: 557–566.CrossRefGoogle Scholar
  10. Chakrabarti, S., and Biswas, B. B., 1981, Evidence for the existence of phosphoinositol kinase in chicken erythrocytes, Indian J. Biochem. Biophys. 18: 398–401.Google Scholar
  11. Chandra Sekar, M., Dixon, J. F., and Hokin, L. E., 1987, The formation of inositol 1,2—cyclic 4,5-trisphosphate and inositol 1,2-cyclic 4-bisphosphate on stimulation of mouse pancreatic minilobules with carbamylcholine, J. Biol. Chem. 262: 340–344.Google Scholar
  12. Cockcroft, S., 1987, Polyphosphoinositide phosphodiesterase: Regulation by a novel guanine nucleotide binding protein Gp, Trends Biochem. Sci. 12: 75–78.Google Scholar
  13. Connolly, T. M., Bross, T. E., and Majerus, P. W., 1985, Isolation of a phosphomonoesterase from human platelets that specifically hydrolizes the five-phosphate of inositol-(1,4,5)trisphosphate, J. Biol. Chem. 260: 7868–7874.PubMedGoogle Scholar
  14. Connolly, T. M., Wilson, D. B., Bross, T. E., and Majerus, P. W., 1986, Isolation and characterization of the inositol cyclic phosphate products of phosphoinositide cleavage by phospholipase C. II. Metabolism in cell free extracts, J. Biol. Chem. 261: 122–126.PubMedGoogle Scholar
  15. Connolly, T. M., Lawing, W. J., Jr., and Majerus, P. W., 1986b, Protein kinase C phosphorylates human platelet inositoltrisphosphate 5’-phosphomonoesterase increasing the phosphatase activity, Cell 46: 951–958.PubMedCrossRefGoogle Scholar
  16. Connolly, T. M., Bansal, V. S., Bross, T. E., Irvine, R. F., and Majerus, P. W., 1987, The metabolism of tris-and tetraphosphates of inositol by 5-phosphomonoesterase and 3-kinase enzymes. J. Biol. Chem. 262: 2146–2149.PubMedGoogle Scholar
  17. Deckmyn, H., Tu, S.-M., and Majerus, P. W., 1986, Guanine nucleotides stimulate soluble phosphoinositide-specific phospholipase C in the absence of membranes, J. Biol. Chem. 261: 16553–16558.PubMedGoogle Scholar
  18. Downes, C. P., Mussat, M. C., and Michell, R. H., 1982, The inositol trisphosphate phosphomonoesterase of the human erythrocyte membrane, Biochem. J. 203: 169–177.PubMedGoogle Scholar
  19. Downes, C. P., Hawkins, P. T., and Irvine, R. F., 1986, Inositol.1,3,4,5-tetrakisphosphate and not phosphatidylinositol 3,4-bisphosphate is the probable precursor of the inositol 1,3,4-trisphosphate in agonist-stimulated parotid gland, Biochem. J. 238: 501–506.PubMedGoogle Scholar
  20. Eisenberg, F., Jr., and Bolden, A. H., 1965, D-myo-inositol-l-phosphate, an intermediate in the biosynthesis of inositol in mammal, Biochem. Biophys. Res. Commun. 21: 100–105.CrossRefGoogle Scholar
  21. Eisenberg, F., Jr., and Bolden, A. H., 1965, D-myo-inositol-l-phosphate, an intermediate in the biosynthesis of inositol in mammal, Biochem. Biophys. Res. Commun. 21: 100–105.CrossRefGoogle Scholar
  22. Gomperts, B. D., 1980, Involvement of guanine nucleotide binding protein in the gating of CA2+ by receptors, Nature 306: 64–66.CrossRefGoogle Scholar
  23. Graham, R. A., Meyer, R. A., Szwergold, B. S., and Brown, T. R., 1987, Observation of myo-inositol 1,2-(cyclic)phosphate in a Morris hepatoma by 3113 NMR, J. Biol. chem. 262: 35–37.PubMedGoogle Scholar
  24. Guillemette, G., Baukal, A. J., Balla, T., and Catt. K. J.1987, Angiotensin-induced formation and metabolism of inositol polyphosphates in bovine adrenal glomerulosa cells, Biochem. Biophys. Res. Commun. 142: 15–22.CrossRefGoogle Scholar
  25. Hansen, C. A., Mah, S., and Williamson, J. R., 1986, Formation and metabolism of inositol 1,3,4,5-tetrakisphosphate in liver, J. Biol. Chem. 261: 8100–8103.PubMedGoogle Scholar
  26. Haslam, R. J., and Davidson, M. M. L., 1984, Guanine nucleotides decrease the free [Ca2+] required for secretion of serotonin from permeabilized blood platelets. Evidence for a role for a GTP-binding protein in platelet activation, FEBS Len. 174: 90–95.CrossRefGoogle Scholar
  27. Heslop, J. P., Irvine, R. F., Tashjian, A. T., and Berridge, M. J., 1985, Inositol tetrakis-and pentakisphosphates in GH4 cells, J. Exp. Biol. 119: 395–401.PubMedGoogle Scholar
  28. Heslop. J. P., Blakeley, D. M., Brown, K. D., Irvine, R. F., and Berridge, M. J.. 1986, Effects of bombesin and insulin on inositol(1,4,5)trisphosphate and inositol(1,3,4) trisphosphate formation in Swiss 3T3 cells, Cell 47: 703–709.CrossRefGoogle Scholar
  29. Hofmann, S. L., and Majerus, P. W., 1982, Identification and properties of two distinct phosphatidylinositol-specific phospholipase C enzymes from sheep seminal vesicular glands. J. Biol. Chem. 257: 6461–6469.PubMedGoogle Scholar
  30. Hokin, L. E., 1985, Receptors and phosphoinositide-generated second messengers, Annu. Rev. Biochem. 54: 205–236.CrossRefGoogle Scholar
  31. Imai, A., and Gershengorn, M. C., 1986, Phosphatidylinositol 4,5-bisphosphate turnover is transient while phosphatidylinositol turnover is persistent in thyrotropin-releasing hormone-stimulated rat pituitary cells, Proc. Natl. Acad. Sci. U.S.A. 83: 8540–8544.PubMedCrossRefGoogle Scholar
  32. Imai, A., and Gershengorn, M. C., 1986, Phosphatidylinositol 4,5-bisphosphate turnover is transient while phosphatidylinositol turnover is persistent in thyrotropin-releasing hormone-stimulated rat pituitary cells, Proc. Natl. Acad. Sci. U.S.A. 83: 8540–8544.PubMedCrossRefGoogle Scholar
  33. Irvine, R. F., Letcher, A. J., Lander, D. J., and Downes, C. P.. 1984, Inositol trisphosphates in carbachol-stimulated rat parotid glands, Biochem. J. 223: 237–243.PubMedGoogle Scholar
  34. Irvine R. F., Letcher, A. J., Lander, D. J., and Berridge, M. J., 1986a, Specificity of inositol phosphate-stimulated Cat+ mobilization from Swiss-mouse 3T3 cells, Biochem. J. 240: 301–304.Google Scholar
  35. Irvine, R. F., Letcher, A. J., Heslop, J. P., and Berridge, M. J., 1986b, The inositol tris/ tetrakisphosphate pathway-demonstration of Ins(1,4,5)P3 3-kinase activity in animal tissues, Nature 320: 631–634.PubMedCrossRefGoogle Scholar
  36. Irvine, R. F., Letcher, A. J., Heslop, J. P., and Berridge, M. J., 1987, Inositol(3,4) bisphosphate and inositol(1,3)bisphosphate in GH4 cells-Evidence for complex breakdown of inositol(1,3,4)trisphosphate, Biochem. Biophys. Res. Commun. 143: 353–359.CrossRefGoogle Scholar
  37. Isaacks, R., Harkness, D., Sampsell, R., Adler, J., Roth, S., Kim, C., and Goldman, P., 1977, Studies on avian erythrocyte metabolism. Inositol tetrakisphosphate: The major phosphate compound in the erythrocytes of the ostrich (Struthio camelus camelus), Eur. J. Biochem. 77: 567–574.PubMedCrossRefGoogle Scholar
  38. Ishii, H., Connolly, T. M., Bross, T. E., and Majerus, P. W., 1986, Inositol cyclic trisphosphate (inositol 1:2-cyclic,4,5-trisphosphate) is formed upon thrombin stimulation of human platelets, Proc. Natl. Acad. Sci. U.S.A. 83: 6397–6401.PubMedCrossRefGoogle Scholar
  39. Kühn, H., 1986, Proteins involved in the control of cGMP phosphodiesterase in retinal rod cells, Fortschr. Zool. 33: 289–297.Google Scholar
  40. Litosch, I., and Fain, J. N., 1986, Mini review: Regulation of phosphoinositide breakdown by guanine nucleotides, Life Sci. 39: 187–194.PubMedCrossRefGoogle Scholar
  41. Litosch, I., Wallis, C., and Fain, J. N., 1985, 5-Hydroxytryptamine stimulates inositol phosphate production in a cell-free system from blowfly salivary glands. Evidence for a role of GTP in coupling receptor activation to phosphoinositide breakdown, J. Biol. Chem. 260: 5464–5471.Google Scholar
  42. Lochner, J. E., Badway, J. A., Horn, W., and Kamovsky, M. L., 1986, All-trans-retinal stimulates superoxide release and phospholipase C activity in neutrophils without significantly blocking protein kinase C, Proc. Natl. Acad. Sci. U.S.A. 83: 7673–7677.PubMedCrossRefGoogle Scholar
  43. Majerus, P. W., Connolly, T. M., Deckmyn, H., Ross, T. S., Bross, T. E., Ishii, H. Bansal, V. S., and Wilson, D. B., 1986, The metabolism of phosphoinositide-derived messenger molecules, Science 234: 1519–1526.Google Scholar
  44. Majumder, A. N. L., Mandal, N. C., and Biswas, B. B., 1972, Phosphoinositol kinase from germinating mung bean seeds, Phytochemistry 11: 503–508.CrossRefGoogle Scholar
  45. Molina y Vedia, L. M., and Lapetina, E. G., 1986, Phorbol 12,13-dibutyrate and 1-oleoyl-2acetyldiacylglycerol stimulate inositol trisphosphate dephosphorylation in human platelets, J. Biol. Chem. 261: 10493–10495.Google Scholar
  46. Morgan, R. O., Chang, J. P., and Catt, K. J., 1987, Novel aspects of gonadatropin-releasing hormone action on inositol polyphosphate metabolism in cultured pituitary gonadotrophs, J. Biol. Chem. 262: 1166–1171.PubMedGoogle Scholar
  47. Nishizuka, Y., 1986, Studies and prospectives of protein kinase C Science 233: 305–312.Google Scholar
  48. Rittenhouse, S. E., and Sasson, J. P., 1985, Mass changes in myo-inositol trisphosphate in human platelets stimulated by thrombin. Inhibitory effects of phorbol ester, J. Biol. Chem. 260: 8657–8660.PubMedGoogle Scholar
  49. Ross, T. S., and Majerus, P. W., 1986, Isolation of D-myo-inositol 1:2 cyclic phosphate 2-inositolphosphohydrolase from human placenta, J. Biol. Chem. 261: 11119–11123.PubMedGoogle Scholar
  50. Shears, S. B., Storey, D. J., Morris, A. J., Cubitt, A. B., Parry, J. B., Michell, R. H., and Kirk, C. J., 1987, Dephosphorylation of myo-inositol 1,4,5-trisphosphate and myo-inositol 1,3,4-trisphosphate, Biochem. J. 242: 393–402.PubMedGoogle Scholar
  51. Siess, W., 1985, Evidence for the formation of inositol 4-monophosphate in stimulated human platelets, FEBS Lett. 185: 151–156.PubMedCrossRefGoogle Scholar
  52. Siess, W., 1985, Evidence for the formation of inositol 4-monophosphate in stimulated human platelets, FEBS Lett. 185: 151–156.PubMedCrossRefGoogle Scholar
  53. Williamson, J. R., Cooper, R. H., Joseph, S. K., and Thomas, A. P., 1985, Inositol tris-phosphate and diacylglycerol as intracellular second messengers in liver, Am. J. Physiol. 248: C203 - C216.PubMedGoogle Scholar
  54. Wilson, D. B., Bross, T. E., Hofmann, S. L., and Majerus, P. W., 1984, Hydrolysis of polyphosphoinositides by purified sheep seminal vesicle phospholipase C enzymes, J. Biol. Chem. 259: 11718–11724.PubMedGoogle Scholar
  55. Wilson, D. B., Neufeld, E. J., and Majerus, P. W., 1985, Phosphoinositide interconversion in thrombin stimulated human platelets, J. Biol. Chem. 260: 1036–1051.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Philip W. Majerus
    • 1
  • Thomas M. Connolly
    • 1
  • Vinay S. Bansal
    • 1
  • Roger C. Inhorn
    • 1
  • Hans Deckmyn
    • 1
  1. 1.Division of Hematology-Oncology, Departments of Internal Medicine and Biological ChemistryWashington University School of MedicineSt. LouisUSA

Personalised recommendations