Molecular Mechanism of Regulation of Cellular Phospholipases

  • Fusao Hirata
Part of the New Horizons in Therapeutics book series (NHTH)


Many, if not all, cells release arachidonic acid when they are stimulated by hormones, neurotransmitters, antigens, and drugs. Arachidonic acid is mostly present as an esterified form in phosphatidylinositol and other alkenyl- and/or acylglycerophospholipids. The key enzymes involved in the arachidonate release are thus proposed to be phospholipase A2 and phospholipase C (Van Den Bosh, 1980; Irvine, 1982). Phospholipase A2 directly mobilizes arachidonic acid in the 2-position of the glycerol moiety of phospholipids (phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, and alkenylglycerophospholipids), whereas phospholipase C converts phospholipids to diacylglycerol, a compound that releases arachidonic acid by the subsequent action of diacylglycerol or monoacylglycerol lipase. These phospholipases are inactive in unstimulated conditions (resting state), although they are surrounded by their lipid substrates. This raises important questions concerning the mechanism by which receptor stimulation can activate cellular phospholipases. This chapter discusses the molecular mechanisms that may possibly regulate cellular phospholipases.


Arachidonic Acid Phospholipase Activity Arachidonic Acid Release Fluocinolone Acetonide Isolate Plasma Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berridge, M. J., and Irvine, R. F., 1985, Inositol trisphosphate, a novel second messenger in cellular signal transduction Nature 312: 315–321.CrossRefGoogle Scholar
  2. Blackwell, G. J., 1983, Specificity and inhibition of glucocorticoid-induced macrocortin secretion from rat peritoneal macrophages, Br. J. Pharmacol 79: 578–594.Google Scholar
  3. Blackwell, G. J., Carnuccio, R., DiRosa, M., Flower, R. J., Parente, L., and Persico, P., 1980, Macrocortin: A polypeptide causing the antiphospholipase effect of glucocorticoid, Nature 287: 147–149.PubMedCrossRefGoogle Scholar
  4. Bomalaski, J. S., Hirata, F., and Clark, M. A., 1986, Aspirin inhibits phospholipase C, Biochem. Biophys. Res. Commun 139: 115–121.PubMedCrossRefGoogle Scholar
  5. Brugge, J. S., 1986, The p35/p36 substrates of protein-tyrosine kinases as inhibitors of phospholipase A2, Cell 46: 149–150.PubMedCrossRefGoogle Scholar
  6. Bucala, R., Manabe, S., Urban, R. C., and Cerami, A., 1985, Nonenzymatic modifications of lens crystallins by prednisolone induces sulfhydryl oxidation and aggregate formation: In vitro and in vivo studies. Exp. Eye Res 41: 353–363.PubMedCrossRefGoogle Scholar
  7. Burch, R. M., Luini, A., and Axelrod, J., 1986, Phospholipase A2 and phospholipase C are activated by distinct GTP-binding proteins in response to a-adrenergic stimulation in FRTL 5 thyroid cells, Proc. Natl. Acad. Sci. U.S.A 83: 7201–7205.PubMedCrossRefGoogle Scholar
  8. Chang, J., Wigley, F., and Newcombe, D., 1980, Neutral protease activation of peritoneal macrophage prostaglandin synthesis, Proc. Natl. Acad. Sci. U.S.A 77: 4736–4740.PubMedCrossRefGoogle Scholar
  9. Chang, J., Gilman, S. C., and Lewis, A. J., 1986, Interleukin 1 activates phospholipase A2 in rabbit chondrocytes: A possible signal for interleukin 1 action, J. Immunol 136: 1283–1287.PubMedGoogle Scholar
  10. Cloix, J. F., Colard, O., Rothhut, B., and Russo-Marie, F., 1983, Characterization and partial purification of “renocortins”: Two polypeptides formed in renal cells causing the antiphospholipase-like action of glucocorticoids, Br. J. Pharmacol 79: 313–321.PubMedGoogle Scholar
  11. Creutz, C. E., Zaks, W. J., Hamman, H. C., Crane, S., Martin, W. H., Gould, K. L., Oddie, K. M., and Parsons, S. J., 1987, Identification of chromaffin granule-binding proteins. Relationship of the chromobinding to calelectrin, synhibin, and the tyrosine kinase substrates p35 and p36, J. Biol. Chem 262: 1860–1868.PubMedGoogle Scholar
  12. Danon, A., and Assouline, G., 1978, Inhibition of prostaglandin biosynthesis by corticosteroids requires RNA and protein synthesis, Nature 273: 552–554.PubMedCrossRefGoogle Scholar
  13. Davidson, F. F., Dennis, E. A., Powell, M., and Glenny, J. R., Jr., 1987, Inhibition of phospholipase A2 by “lipocortins” and calpactins, J. Biol. Chem 262: 1698–1705.PubMedGoogle Scholar
  14. DeGeorge, J. J., Ousley, A. H., McCarthy, K. D., Morell, P., and Lapetina, E. G., 1987, Gulcocorticoids inhibit the liberation of arachidonate but not the rapid production of phospholipase C dependent metabolites in acetylcoline-stimulated C62B glioma cells, J. Biol. Chem (in press).Google Scholar
  15. DiRosa, M., Flower, R. J., Hirata, F., Parente, L., and Russo-Marie, F., 1984, Letter to the editor; “Anti-phospholipase proteins, nonenclature announcement,” Prostaglandins 28: 441–442.CrossRefGoogle Scholar
  16. Duque, R. E., Phan, S. H., Sulavik, M. C., and Ward, P. A., 1983, Inhibition by tosyl-Lphenylalanyl chloromethyl ketone of membrane potential changes in rat neutrophils. Correlation with the inhibition of biologial activity, J. Biol. Chem 258: 8123–8128.PubMedGoogle Scholar
  17. Flower, R. J., and Blackwell, C. J., 1979, Anti-inflammatory steroids induce biosynthesis of a phospholipase A2 inhibitor which prevents prostaglandin generation, Nature 278: 456–459.PubMedCrossRefGoogle Scholar
  18. Fung, B. K.-K., Hurley, J. B., and Stryer, L., 1981, Flow of information in the light-triggered cyclic nucleotide cascade of vision, Proc. Natl. Acad. Sci. U.S.A 78: 152–156.PubMedCrossRefGoogle Scholar
  19. Geisow, M. J., Fritsche, U., Hexham, J. M., Dash, B., and Johnson, T., 1986. A consensus amino-acid sequence repeat in torpedo and mammalian Cat+-dependent membrane-binding proteins, Nature 320: 636–638.PubMedCrossRefGoogle Scholar
  20. Glenn, K. C., and Cunningham, D. D., 1979, Thrombin-stimulated cell division involves proteolysis of its cell surface reeptor, Nature 278: 711–714.PubMedCrossRefGoogle Scholar
  21. Gomperts, B. D., Barrowman, M. M., and Cockcroft, S., 1986, Dual role for guanine nucleotides in stimulus-secretion coupling, Fed. Proc 45: 2156–2161.PubMedGoogle Scholar
  22. Gryglewski, R. J., Panczenko, B., Karbut, R., Grodzinska, L., and Ocetkiewicz, A., 1975, Corticosteroids inhibit prostaglandin release for perfused mesenteric blood vessels of rabbit and from perfused lungs of sensitized guinea pig, Prostaglandins 10: 343–355.PubMedGoogle Scholar
  23. Gupta, C., Katsumata, M., Goldman, A. S., Herold, R., and Piddington, R., 1984, Glucocorticoid-induced phospholipase A2-inhibitory proteins mediate glucocorticoid teratogenicity in vitro, Proc. Natl. Acad. Sci. U.S.A 81: 1140–1143.PubMedCrossRefGoogle Scholar
  24. Henson, P. M., Gould, D., and Becker, E. L., 1976, Activation of stimulus-specific serine esterases (proteases) in the initiation of platelet secretion. I. Demonstration with organophosphorus inhibitors, J. Exp. Med 144: 1657–1673.PubMedCrossRefGoogle Scholar
  25. Hirata, F., 1981, The regulation of lipomodulin, a phospholipase inhibitory protein in rabbit neutrophils by phosphorylation, J. Biol. Chem 256: 7730–7733.PubMedGoogle Scholar
  26. Hirata, F., 1983, A possible mediator of the action of glucocorticoids, Adv. Prostaglandins Thromboxane Leukotriene Res 11: 73–78.Google Scholar
  27. Hirata, F., 1984, Role of lipomodulin: A phospholipase inhibitory protein in immunoregulation, Adv. Inflammation Res 7: 71–78.Google Scholar
  28. Hirata, F., 1987, Role of lipocortins in cellular function as a second messenger of glucocorticoids, in: Antiinflammatory Steroid Action: Basic and Clinical Aspects (L. M. Lichtenstein, H. Claman, A. Oronsky, and R. Schleimer, eds.), Academic Press, Orlando (in press).Google Scholar
  29. Hirata, F., Schiffmann, E., Venkatasubramanian, K., Salomon, D., and Axelrod, J., 1980, A phospholipase A2 inhibitory protein in rabbit neutrophils induced by glucocorticoids, Proc. Natl. Acad. Sci. U.S.A 77: 2533–2536.PubMedCrossRefGoogle Scholar
  30. Hirata, F., Del Carmine, R., Nelson, C. A., Axelrod, J., Schiffmann, E., Warabi, A., De Blas, A. L., Nirenberg, M., Manganiello, V., Vaughn, M., Kumagai, S., Green, I., Decker, J. L., and Steinberg, A. D., 1981, Presence of autoantibody for phospholipase inhibitory protein, lipomodulin, in patients with rheumatic diseases, Proc. Natl. Acad. Sci. U.S.A 78: 3190–3194.PubMedCrossRefGoogle Scholar
  31. Hirata, F., Notsu, Y., Iwata, M., Parente, L., DiRosa, M., and Flower, R. J., 1982, Identification of several species of phospholipase inhibitory protein(s) by radioimmunoassay for lipomodulin, Biochem. Biophys. Res. Commun 109: 223–230.PubMedCrossRefGoogle Scholar
  32. Hirata, F., Matsuda, K., Notsu, Y., Hattori, T., and Del Calmine, R., 1984, Phosphorylation at tyrosine residue of lipomodulin in mitogen-stimulated murine thymocytes. Proc. Natl. Acad. Sci. U.S.A 81: 4717–4721.PubMedCrossRefGoogle Scholar
  33. Hirata, F., Stracke, M. L., and Schiffmann, E., 1987, Regulation of prostaglandin formation by glucocorticoid and their second messenger, lipocortins, in: Proceedings of the 7th International Congress on Hormonal Steroids (in press).Google Scholar
  34. Hofmann, S. L., and Majerus, P. W., 1982, Identification and properties of two distinct phosphatidylinositol-specific phospholipase C enzymes from sheep seminal vesicular glands, J. Biol. Chem 257: 6461–6469.PubMedGoogle Scholar
  35. Hong, S.-C. L., and Levine, L., 1976, Inhibition of arachidonic acid release from cells as the biochemical action of anti-inflammatory corticosteroids, Proc. Natl. Acad. Sci. U.S.A 73: 1730–1734.PubMedCrossRefGoogle Scholar
  36. Huang, K.-S., Wallner, B. P., Mattaliano, R. J., Tizard, R., Burne, C., Frey, A., Hession, C., McGray, P., Sinclair, L. K., Chow, E. P., Browning, J. L., Ramachandran, K. L., Tang, J., Smart, J. E., and Pepinsky, R. B., 1986, Two human 35 kD inhibitors of phospholipase A2 are related to substrates of pp60v-src and of the epidermal growth factor kinase, Cell 46: 191–199.PubMedCrossRefGoogle Scholar
  37. Hunter, T., 1986, Cell growth control mechanisms, Nature 322: 14–16.PubMedCrossRefGoogle Scholar
  38. Irvine, R. F., 1982, How is the level of free arachidonic acid controlled in mammalian cells?, Biochem. J 204: 3–32.PubMedGoogle Scholar
  39. Iwata, M., Huff, T. F., and Ishizaka, K., 1984, Modulation of the biologic activities of IgEbinding factor. V. The role of glycosylation-enhancing factor and glycosylation-inhibiting factor in determining the nature of IgE-binding factor, J. Immunol 132: 1286–1293.PubMedGoogle Scholar
  40. Jimeno-Abendano. J., and Zahler. P., 1979, Purified phospholipase A, from sheep erythrocyte membrane: Preferential hydrolysis according to polar groups and 2-acyl chains, Biochim. Biophys. Acta 573: 266–275.Google Scholar
  41. Kretsinger, R. H., and Creutz, C. E., 1986, Consensus in exocytosis, Nature 320: 573.PubMedCrossRefGoogle Scholar
  42. Litosch, I., and Fain. J. N.. 1986, Regulation of phosphoinositide breakdown by guanine nucleotides, Life Sci. 39: 187–194.PubMedCrossRefGoogle Scholar
  43. Loeb, L. A., and Gross, R. W., 1986, Identification and purification of sheep platelet phospholipase A2 isoforms. Activation by physiologic concentrations of calcium ion, J. Biol. Chem 261: 10467–10470.PubMedGoogle Scholar
  44. Miwa, M.,Kubota, I., Ichihashi, T., Motojima, H., and Matsumoto, M.. 1984. Studies on phospholipase A inhibitor in blood plasma. I. Purification and characterization of phospholipase A inhibitor in bovine plasma, J. Biochem. Tokyo 96: 761–773.Google Scholar
  45. Moskowitz, N., Schook. W.. and Puszkin, S., 1982, Interaction of brain synaptic vesicles induced by endogenous Cat-dependent phospholipase A2, Science 216: 305–307.PubMedCrossRefGoogle Scholar
  46. Munn, T. Z., and Mues, G. I., 1986, Human lipocortin similar to ras gene products, Nature 322: 314–315.PubMedCrossRefGoogle Scholar
  47. Notsu, Y., Namiuchi, S., Hattori, T.. Matsuda, K., and Hirata. F.. 1985. Inhibition of phospholipase by Met-Leu-Phe-Ile-Leu-Ile-Lye-Arg-Ser-Arg-His-Phe, C terminus of middle-sized tumor antigen, Arch. Biochem. Biophys 236: 195–204.Google Scholar
  48. Parente, L., and Flower, R. J., 1985, Hydrocortisone and “macrocortin” inhibit the zymosan-induced release of lyso-PAF from rat peritoneal leucocytes, Life Sci. 36: 1225–1231.PubMedCrossRefGoogle Scholar
  49. Peppin, G. J.. and Weiss, S. J., 1986, Activation of the endogenous metalloproteinase, gel-atinase, by triggered human neutrophils, Proc. Natl. Acad. Sci. U.S.A 83: 4322–4326.PubMedCrossRefGoogle Scholar
  50. Pickett, W. C., 1976, Trypsin-induced phospholipase activity in human platelets, Biochem. J 160: 405–408.PubMedGoogle Scholar
  51. Rodbell, M., 1985, Programmable messengers: A new theory of hormone action, TIBS 10: 461–464.Google Scholar
  52. Russo-Marie, F., Paing, M., and Duval, D., 1979, Involvement of glucocorticoid receptors in steroid-induced inhibition of prostaglandin secretion, J. Biol. Chem 254: 8498–8504.PubMedGoogle Scholar
  53. Slotboom, A. J., Jansen, E. H. J. M., Vlijm, H., Pattus, F., Soares de Araujo, P., and De Haas, G. H., 1978. Cat-’ binding to porcine pancreatic phospholipase A, and its function in enzyme—lipid interaction Biochemistry 17: 4593–4600.PubMedCrossRefGoogle Scholar
  54. Smith, C. D., Cox, C. C. and Snyderman, R., 1986, Receptor-coupled activation of phosphoinositide-specific phospholipase C by an N protein, Science 232: 97–100.Google Scholar
  55. Thompson, E. B., and Lippman, M. E., 1974, Progress in endocrinology and metabolism. Mechanism of action of glucocorticoids, Metabolism 32: 159–202.CrossRefGoogle Scholar
  56. Tilcock, C. P. S., Bally, M. B., Farren, S. B., and Cullis, P. R., 1982, Influence of cholesterol on the structural preferences of dioleoylphosphatidylethanolamine—dioleoylphosphatidylcholine systems: A phosphorus-31 and deuterium nuclear magnetic resonance study Biochemistry 21: 4596–4601.PubMedCrossRefGoogle Scholar
  57. Tsurufuji, S., Sugio, K., and Takemasa, T., 1979. The role of glucocorticoid receptor and gene expression in the anti-inflamatory action of dexamethasone, Nature 280: 408–410.PubMedCrossRefGoogle Scholar
  58. Van Den Bosh. H., 1980. Intracellular phospholipase A. Biochim. Biophys. Acta 604: 191–246.Google Scholar
  59. Vigo. C., 1985, Effect of C-reactive protein on platelet-activating factor-induced platelet aggregation and membrane stabilization, J. Biol. Chem 260: 3418–3422.PubMedGoogle Scholar
  60. Wallenga, R., Vanderhoek, J. Y., and Feinstein, M. B., 1980, Serine esterase inhibitors block stimulus-induced mobilization of arachidonic acid and phospholipase C activity in platelets, J. Biol. Chem 255: 6024–6027.Google Scholar
  61. Wallner, B. P., Mattaliano, R. J., Hession, C., Cate, R. L., Tizard, R., Sinclair, L. K., Foeller, C., Chow, E. P., Browning, J. L., Ramachandran, K. L., and Pepinsky, R. B., 1986, Cloning and expression of human lipocortin, a phospholipase A2 inhibitor with potential anti-inflammatory activity, Nature 320: 77–80.PubMedCrossRefGoogle Scholar
  62. Wong, P. Y.-K., and Cheung, W. Y., 1979, Calmodulin stimulates human platelet phospholipase A2, Biochem. Biophys. Res. Commun 90: 473–480.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Fusao Hirata
    • 1
  1. 1.Department of Environmental Health Sciences, School of Hygiene and Public HealthThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations