Triggering and Activation of Human Neutrophils

Two Aspects of the Response to Transmembrane Signals
  • Kathleen A. Haines
  • Joan Reibman
  • Gerald Weissmann
Part of the New Horizons in Therapeutics book series (NHTH)


The function of the neutrophil can be summed up as follows: Upon engagement of its surface receptors by immune reactants or chemoattractants, this motile postmitotic cell seeks and destroys microbes by chemotaxis and phagocytosis. After engagement of these membrane receptors by inflammatory ligands such as C5a, f-Met-Leu-Phe, or leukotriene B4, neutrophils undergo: (1) activation of phospholipases and turnover of membrane phospholipids (Walsh et al.,1981, 1984; Sherman et al.,1983; Korchak et al., 1986; Wynkoop et al.,1986), (2) alterations in ion fluxes and membrane potential (Naccache et al., 1977; Korchak et al., 1978; Horne et al., 1981; Jones et al.,1981; Whitin et al., 1980), (3) increases in cytosolic calcium (Goldstein et al., 1974; O’Flaherty et al.,1978), and (4) phosphorylation of cellular proteins (Schneider et al., 1981; Andrews and Babior, 1984; White et al., 1984). These events regulate the biological functions of aggregation, chemotaxis, degranulation, release of reactive oxygen species, and production of the lipid-derived inflammatory substances acetyl-glyceryl-ether, phosphorylcholine (platelet activating factor, Benveniste et al.,1972), leukotriene B4 (Borgeat and Samuelsson, 1979), and lipoxin A (Serhan et al. 1984).


Arachidonic Acid Human Neutrophil Phosphatidic Acid Phosphatidic Acid Cytosolic Calcium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrews, P., and Babior, B., 1984, Phosphorylation of cytosolic proteins in resting and activated human neutrophils, Blood 64: 883–890.PubMedGoogle Scholar
  2. Benveniste, J., Henson, P., and Cochrane, C., 1972, Leukocytes dependent histamine release from rabbit platelets: The role of IGE, basophils, and a platelet-activating factor, J. Exper. Med. 136: 1356.CrossRefGoogle Scholar
  3. Berridge, M., 1983, Rapid accumulation of inositol trisphosphate reveals that agonist hydrolyse polyphospho-inositides instead of phosphatidylinositol, Biochem. 212: 849–858.Google Scholar
  4. Berridge, M., and Irvine, R., 1984, Inositol trisphosphate, a novel second messenger in cellular signal transduction, Nature 312: 315.PubMedCrossRefGoogle Scholar
  5. Besterman, J., Watson, S., and Cuatrecasas, P. 1986a, Lack of association of epidermal growth factor-Insulin-and Serum-induced Mitogenesis with Stimulation of phosphoinositide degradation in BALB/c 3T3 fibroblalsts, J. Biol. Chem. 261: 723–727.PubMedGoogle Scholar
  6. Besterman, J., Duronio, V., and Cuatrecasas, P., 1986b, Rapid formation of diacylglycerol from phosphatidylcholine: A pathway for generation of a second messenger, Proc. Natl. Acad, Sci. U.S.A. 83: 6785–6789.CrossRefGoogle Scholar
  7. Bokkino, S., Blackmore, P., and Exton, J., 1985, Stimulation of 1,2-diacylglycerol accumulation in hepatocytes by vasopressin, epinephrine, and angiotensin II, J. Biol. Chem. 260: 14201–14207.Google Scholar
  8. Borgeat, P., and Samuelsson, B., 1979a, Metabolism of arachidonic acid in polymorphonuclear leukocytes. Structural analysis of novel hydroxylated compounds, J. Biol. Chem. 254: 7865–7869.PubMedGoogle Scholar
  9. Borgeat, P. and Samuelsson, B., 1979b, Transformation of arachidonic acid by rabbit polymorphonuclear leukocytes. J. Biol. Chem. 254: 2643.PubMedGoogle Scholar
  10. Borgeat, P., and Samuelsson, B., 1979c, Arachidonic acid metabolism in polymorphonuclear leukocytes: Effects of ionophore A23187, Proc. Natl. Acad. Sci. U.S.A. 76: 2148–2152.PubMedCrossRefGoogle Scholar
  11. Brock, T., Rittenhouse, S., Powers, C., Ekstein, L., Gimbrone, W., and Alexander, R., 1985, Phorbol ester and 1-oleoyl-2-acetylglycerol inhibit angiotensin activation of phospholipase C in cultured vascular smooth muscle cells, J. Biol. Chem. 260: 14158–14162.PubMedGoogle Scholar
  12. Chauhan, V., and Brockerhoff, H.. 1984, Ca (phosphatidate)2 can traverse liposomal bilayers, Life Sci. 13: 1395.CrossRefGoogle Scholar
  13. Clark, M., Shorr, R., and Bomalaski, J., 1986, Antibodies prepared to Bacillus cereus phospholipase C crossreach with a phosphatidylcholine preferring phospholipase C in mammalian cells, Biochem. Biophys. Res. Commun. 140: 114–119.CrossRefGoogle Scholar
  14. Cockcroft, S., Barrowman, M., and Gomperts, B., 1985, Breakdown and synthesis of polyphosphoinositides in fMET Leu Phe-stimulated neutrophils, FEBS Lett. 181: 259.PubMedCrossRefGoogle Scholar
  15. Cullis, P., Hope, M., de Kruiff, B., Verkley, A., and Tilcock, C., 1985, Structural properties and functional roles of phospholipids in biological membranes, in: Phospholipids and Cellular Recognition ( J. F. Kuo, ed.), pp. 1–59, CRC Press, Boca Raton, FL.Google Scholar
  16. Daniel, L., Waite, M., and Wykle, R., 1986, A novel mechanism of diglyceride formation, J. Biol. Chem. 261: 9128–9132.PubMedGoogle Scholar
  17. Eisbach, P., and Kayden, H., 1965, Chylomicron-lipid-splitting activity in homogenates of rabbit polymorphonuclear leukocytes, Am. J. Physiol. 209: 765–769.Google Scholar
  18. Ford-Hutchinson, A., Rackham, A., Zamboni, R., Rokach, J., and Roy, S., 1983, Comparative biological activities of synthetic leukotriene B4 and its w-oxidation products, Prostaglandins 25: 29–37.PubMedCrossRefGoogle Scholar
  19. Franson, R., Weiss, J., Martin. L., Spitznagel, J., and Elsbach, P., 1977, Phospholipase A activity associated with the granules of human polymorphonuclear leukocytes, Biochem. J. 167: 839–841.Google Scholar
  20. Grove, R., and Schimmel, S., 1982, Effects of 12–0 letradecanoylphorbol 13-acetate on glyc- erolipid metabolism in cultured myoblasts, Biochem. Biophys. Acta 711: 272–280.Google Scholar
  21. Goldstein, I., Horn, J., Kaplan, H. and Weissmann, G., 1974, Calcium-induced lysozyme secretion from human polymorphonuclear leukocytes. Biochem. Biophys. Res. Comm. 60: 807–812.PubMedCrossRefGoogle Scholar
  22. Hamberg, M., Svensson, J., and Samuelsson, B., 1974, Prostaglandin endoperoxides. A new concept concerning the mode of action and release of prostaglandins, Proc. Natl. Acad. Sci. U.S.A. 79: 3711.Google Scholar
  23. Hammarstrom, S., 1983, Leukotrienes, Ann. Rev. Biochem. 52: 355–377.PubMedCrossRefGoogle Scholar
  24. Horne, W., Norman, N., Schwartz, D., and Simons, E. 1981. Changes in cytoplasmic pH and membrane potential in thrombin-stimulated human platelets. Eur. J. Biochem. 120: 295–302.PubMedCrossRefGoogle Scholar
  25. Irvine, R., and Moor, R., 1986, Micro-injection of inositol 1,3,4,5-tetrakisphosphate activate sea urchin eggs by a mechanism dependent on external CA2+, Biochem. J. 240: 917.Google Scholar
  26. Jones, G., VanDyke, K., and Castranova, V., 1981, Transmembrane potential changes associated with superoxide release from human granulocytes. J. Cell. Physiol. 106: 75–83.PubMedCrossRefGoogle Scholar
  27. Korchak, H., and Weissman, G., 1978, Changes in membrane potential of human granulocytes antecede the metabolism responses to surface stimulation. Proc. Nat. Acad. Sco. U.S.A. 75: 3813–3822.CrossRefGoogle Scholar
  28. Korchak, H., Rutherford, L., and Weissman, G., 1984a, Stimulus response coupling in the human neutrophil: I. Kinetic analysis of changes in calcium permeabiliity, J. Biol. Chem. 159: 4070–4075.Google Scholar
  29. Korchak, H., Vienne, K., Rutherford, L., Wilkenfeld, C., Finkelstein, M., and Weissman, G., 1984b, Stimulus response coupling in the human neutrophil: II. Temporal analysis of change in cytosolic calcium and calcium efflux, J. Biol. Chem. 259: 4076–4082.PubMedGoogle Scholar
  30. Korchak, H., Vosshall, L., Reibman, J., Rich, A., and Haines, K., 1986, Superoxide anion generation in LTB4 activated neutrophils: Inadequacy of cytosolic calcium and diacyl glyceros as signals, J. Cell. Biol. 103: 504a.Google Scholar
  31. Lands, W., 1960, Metabolism of glycerolipids II. The enzymatic acylation of lysolecithin, J. Biol. Chem. 235: 2233–2237.PubMedGoogle Scholar
  32. Labarca, R., Jamowsky, A., Patel, J., and Paul, S. M., 1984, Phorbol esters inhibit agonistinduced [3H] inositol-l-phosphate accumulation in rat hippocampal slices, Biochem. Biophys. Res. Commun. 123: 703–709.CrossRefGoogle Scholar
  33. Lindgren, J., Hansson, G., Claesson, H., and Samuelsson, B., 1982, Formation of novel biologically active leukotrienes by X-oxidtion in human leukocyte preparation, in: Leukotrienes and Other Lipoxygenase Products ( B. Samuelsson and R. Paoletti, eds.), pp. 5360, Raven Press, New York.Google Scholar
  34. Marcus, A., Broekman, M., Safier, L., Ullman, H., Islam, N., Serhan, C., Rutherford, L., Korchak, H., and Weissman, G., 1982, Formation of leukotrienes and other hydroxy acids during platelet-neutrophil interactions in vitro, Biochem. Biophys. Res. Commun. 109: 130–137.CrossRefGoogle Scholar
  35. Michell, R., 1975, Inositol phospholipids and cell surface receptor function, Biochem. Biophys. Acta 415: 81.Google Scholar
  36. Michell, R., 1986, A seocnd messenger function for inositol tetrakisphosphate, Nature 324: 613.PubMedCrossRefGoogle Scholar
  37. Moolenar, W., Kruijer, W., Tilly, B., Verlaan, I., Bierman, A. J., and de Laat, S., 1986, Growth factor-like action of phosphatidic acid, Nature 323: 171.CrossRefGoogle Scholar
  38. Naccache, P., Showell, Becker, E., and Sha’afi, R., 1977, Changes in ionic movements across rabbit polymorphonuclear leukycyte membranes during lysosomal enzyme release. Possible ionic basis for lysosomal enzyme release. J. Cell Biol. 75: 635–649.Google Scholar
  39. Nayer, R., Mayer, L., Hope, M., and Cullis, P., 1984, Phosphatidic acid as a calcium ionophore in large unilamellar vesicle systems, Biochem. Biophys. Acta 777: 343.CrossRefGoogle Scholar
  40. O’Flaherty, J., Showell, H., Becker, E. and Ward, P., 1978, Substances which activate neutrophils. Mechanism of action. Am. J. Pathol. 92: 155–166.PubMedGoogle Scholar
  41. Okajima, F., Katada T., and Ui, M., 1985, Coupling of the guanine nucleotide regulatory protein to chemotactic peptide receptors in neutrophil membranes and its uncoupling by islet-activating protein, pertussis toxin, J. Biol. Chem. 260: 6761–6768.PubMedGoogle Scholar
  42. Pawlowski, N., Kaplan, G., Hamill, A., Cohn, Z., and Scott, W., 1983, Arachidonic acid metabolism by human monocytes. Studies with platelet-depleted cultures, J. Exp. Med. 158: 393–412.PubMedCrossRefGoogle Scholar
  43. Perez, H., Weksler, B., and Goldstein, I., 1979, A new mechanism for the generation of biologically active products from arachidonic acid, Clin. Res. 17: 464A.Google Scholar
  44. Philipson, K., and Nashimoto, A., 1984, Interaction of charged amphiphiles with Na+-Ca2+ exchange in cardiac sarcolemmal vesicles, J. Biol. Chem. 259: 16PubMedGoogle Scholar
  45. Powell, W., 1982, Rapid extraction of arachidonic acid metabolities from biological samples using octadecylsilyl silica, Methods Enzymol. 86: 467–477.PubMedCrossRefGoogle Scholar
  46. Putney, J., Weiss, S., van de Walle, C., and Haddas, R., 1980, Is phosphatidic acid a calcium ionophore under neurohumoral control?, Nature 284: 345.Google Scholar
  47. Radmark, O., Lundberg, U., Jubiz, W., Malmsten, C., and Samuelsson, B., 1982, New group of leukotrienes formed by initial oxygenation at C-15, in: Leukotrienes and Other Lipoxygenase Products ( B. Samuelsson and R. Paoletti, eds.), Vol. 11, pp. 61–70, Raven Press, New York.Google Scholar
  48. Rouzer, C., and Samuelsson, B., 1985, On the nature of the 5-lipoxygenase reaction in human leukocytes: Enzyme purification and requirement for multiple stimulatory factors, Proc. Natl. Acad. Sci. U.S.A. 82: 6040–6044.PubMedCrossRefGoogle Scholar
  49. Rouzer, C., Matsumoto, T., and Samuelsson, B., 1986, On the nature of the 5-lipoxygenase reaction in human leukocytes: Enzyme purification and requirement for mulitple stimulatory factors, Proc. Natl. Acad. Sci. U.S.A. 83: 857–861.PubMedCrossRefGoogle Scholar
  50. Salmon, D., and Honeyman, T., 1980, Proposed mechanism of cholinergic action in smooth muscle, Nature 284: 344PubMedCrossRefGoogle Scholar
  51. Samuelsson, B., 1983, Leukotrienes: Mediators of immediate hypersensitivity reactions and inflammation, Science 220: 568–575.PubMedCrossRefGoogle Scholar
  52. Schneider, C., Zanetti, M., and Romeo, D., 1981, Surface-reactive stimuli selectively increase protein phosphorylation in human neutrophils, FEBS Lett. 127: 4–8.PubMedCrossRefGoogle Scholar
  53. Serhan, C., Anderson, P., Goodman, E., Dunham, P., and Weissmann, G., 1981, Phosphatidate and oxidized fatty acids are calcium ionophores: Studies employing arsenazo III in liposomes, J. Biol. Chem. 257: 4746.Google Scholar
  54. Serhan, C., Broekman, M., Korchak, H., Smolen, J., Marcus, A., and Weissman, G., 1983, Changes in phosphatidylinositol and phosphatidic acid in stimulated human neutrophils: Relationship to calcium mobilization, aggregation, and superoxide radical generation. Biochem. Biophys. Acta 762: 420–428.PubMedCrossRefGoogle Scholar
  55. Serhan, C., Fridovich, J., Goetzl, E., Dunham, P., and Weissman, G., 1982, Leukotriene B4 and phosphatidic acid are calcium ionophores: Studies employing arsenazo III in liposomes, J. Biol. Chem. 257: 4726.Google Scholar
  56. Serhan, C., Hamberg, M., and Samuelsson, B., 1984, Lipoxins: Novel series by biologically active compounds formed from arachidonic acid in human leukocytes, Proc. Natl. Acad. Sco. U.S.A. 81: 5335–5339.CrossRefGoogle Scholar
  57. Smaal, E., Mandersloot, J., de Kruiff, B., and de Gier, J., 1985, Essential Adaptation for the calcium influx assay into liposomes with entrapped arsenazo III for studies on the possible calcium translocating properties of acidic phospholipide, Biochim. Biophys. Acta 816: 418.Google Scholar
  58. Smith, C., Lane. B., Kusaka, I., Verghese, M., and Snyderman. R., 1985, Chemoattractant receptor induced hydrolysis of phosphatidylinositol 4, 5-bisphosphate in human polymorphonuclear leukocyte membranes. Requirement for a guanine nucleotide regulatory protein, J. Biol. Chem. 260: 5875–5878.Google Scholar
  59. Spat, A., Bradford, W., McKinney, J., Rubin, R., and Putney, J., 1986, A saturable receptor for P-inositol-1,4,5-trisphosphate in hepatocytes and neutrophils, Nature 319: 514.PubMedCrossRefGoogle Scholar
  60. Takai, Y., Kishimoto, A., Kikkawa, U., Mori, T., and Nishizuka, Y., 1980, Activation of a calcium and phospholipid-dependent protein kinase by diacylglycerol, its possible relation to phosphatidylinositol turnover, J. Biol. Chem. 244: 2273–2276.Google Scholar
  61. Victor, M., Weiss, J., Klempner, M. and Eisbach, P., 1981, Phospholipase A2 activity in the plasma membrane of human polymorphonuclear leukocytes, FEBS Leu. 136: 298–300.CrossRefGoogle Scholar
  62. Walsh, C., Waite, M., Thomas, M., and DeChatelet, L., 1981, Release and metabolism of arachidonic acid in human neutrophils, J. Biol. Chem. 256: 7228–7234.PubMedGoogle Scholar
  63. Walsh, C., DeChatelet, L., Chilton, F., Wynkle, R., and Waite, M., 1983, Mechanism of arachidonic release in human polymorphonuclear leukocytes, Biochim. Biophys. Acta 750: 32–40.Google Scholar
  64. White, J., Huang, C., Hill, J., Naccache, P., Becker, E., and Sha’afi, R., 1984, The effect of 4a-phorbol 12,13-didecanoate on protein phosphorylation and lysosoman enzyme release in rabbit neutrophils, J. Biol. Chem. 259: 8605–88610.PubMedGoogle Scholar
  65. Whitin, J., Chapman, C., Simons, E., Chovaniec, M., and Cohen, H., 1980, Correlation between membrane potential changes and superoxide production in human granulocytes stimulated by phorbol myristate acetate. Evidence for defective activation in chronic granulomatous disease, J. Biol. Chem. 255: 1874–1878.PubMedGoogle Scholar
  66. Wynkoop, E., Broekman, M., Korchak, H., Marcus, A., and Weissmann, G., 1986, Phospholipid metabolism in f-Met-Leu-Phe activated human neutrophils degranulation is not required for release of arachidonic acid: Studies with neutrophils and neutrophil-derived cytoplasts, Biochem. J. 236: 829–837.Google Scholar
  67. Yuli, I., and Oplatka, A., 1987, Cytosolic acidification as an early transductory signal of human neutrophil chemotaxis, Science 235: 340.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Kathleen A. Haines
    • 1
  • Joan Reibman
    • 2
  • Gerald Weissmann
    • 2
  1. 1.Department of PediatricsNew York University Medical CenterNew YorkUSA
  2. 2.Department of MedicineNew York University Medical CenterNew YorkUSA

Personalised recommendations