Characterization of Thromboxane A2/Prostaglandin H2 Receptors

  • Perry V. Halushka
  • Dale E. Mais
  • David L. SaussyJr.
Part of the New Horizons in Therapeutics book series (NHTH)

Abstract

In 1969, Piper and Vane reported the discovery of a labile substance capable of stimulating contraction of rabbit aorta (rabbit aorta contracting substance, RCS). RCS was later demonstrated to be cyclooxygenase metabolite of arachidonic acid (Vargaftig and Dao, 1971; Vargaftig and Zirinis, 1973), with a half-life of approximately 30 s under physiological conditions (Svensson et al., 1975). Soon after the discovery of RCS, the production of a labile aggregation-stimulating substance (LASS) by platelets was reported (Willis, 1974). Like RCS, LASS was produced by the cyclooxygenase pathway of arachidonic acid metabolism; however, LASS had a longer half-life, suggesting that it was different from RCS.

Keywords

Hydrolysis Aspirin Azide Triphosphate Guanine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akbar, H., Mukhopadhyay, A., Anderson, K., Navran, S., Ramstedt, K., Miller, D., and Feller, D., 1985, Antagonism of prostaglandin-mediated responses in platelets and vascular smooth muscle by 13-azaprostanoic acid analogs, Biochem. Pharmacol. 34: 641–647.CrossRefGoogle Scholar
  2. Armstrong, R. A., Jones, R. L., and Wilson, N. H., 1983, Ligand binding to thromboxane receptors on human platelets: Correlation with biological activity, Br. J. Pharmacol. 79: 953–964.PubMedGoogle Scholar
  3. Authi, K. S., and Crawford, N., 1985, Inositol 1,4,5-triphosphate-induced release of sequestered Cat+ from highly purified human platelet intracellular membranes, Biochem. J. 230: 247–253.PubMedGoogle Scholar
  4. Authi, K., Evenden, B., and Crawford, N., 1986, Metabolic and functional consequences of introducing inositol 1,4,5-triphosphate into saponin-permeabilized human platelets, Biochem. J. 233: 709–718.Google Scholar
  5. Avdonin, P. V., Svitina-Ulitina, I. V., Leytin, V. L., and Tkachuk, V. A., 1985, Interaction of stable prostaglandin endoperoxide analogs U46619 and U44069 with human platelet membranes and coupling of receptors with high-affinity GTPase and adenylate cyclase, Thrombosis Res. 40: 101–112.CrossRefGoogle Scholar
  6. Baldassare, J. J., and Fisher, G. J., 1986, Regulation of membrane-associated and cytosolic phospholipase C activities in human platelets by guanosine triphosphate, J. Biol. Chem. 261: 11942–11944.PubMedGoogle Scholar
  7. Ball, H. A., Cook, J. A., Wise, W. C., and Halushka, P. V., 1986, Role of thromboxane, prostaglandins and leukotrienes in endotoxic and septic shock, Intensive Care Med. 12: 116–126.PubMedCrossRefGoogle Scholar
  8. Banerjee, A. K., Tuffin, D. P., and Walker, J. L., 1985, Pharmacological effects of (±)-11deoxy,16-phenoxy-prostaglandin E1 derivatives in the cardiovascular system, Br. J. Pharmacol. 84: 71–80.PubMedGoogle Scholar
  9. Best, L. C., McGuire, M. B., Martin, T. J., Preston, F. E., and Russell, R. G. G., 1979, Effects of epoxymethano analogues of prostaglandin endoperoxides on aggregation, on release of 5-hydroxytryptamine and on the metabolism of 3’,5’-cyclic AMP and cyclic GMP in human platelets, Biochim. Biophys. Acta 583: 344–351.PubMedCrossRefGoogle Scholar
  10. Bhagwat, S. S., Hamann, P. R., Still, W. C., Bunting, S., and Fitzpatrick, F. A., 1985, Synthesis and structure of the platelet aggregation factor thromboxane A2, Nature 315: 511–513.PubMedCrossRefGoogle Scholar
  11. Bundy, G., 1975, The synthesis of prostaglandin endoperoxide analogs, Tetrahedron Len. 24: 1957–1960.CrossRefGoogle Scholar
  12. Burch, R., Mais, D. E., Suassy, D. L., and Halushka, P. V., 1985a, Solubilization of a thromboxane A2/prostaglandin H2 antagonists binding site from human platelets, Proc. Natl. Acad. Sci. U.S.A. 82: 7434–7438.PubMedCrossRefGoogle Scholar
  13. Burch, R., Mais, D., Pepkowitz, S., and Halushka, P., 1985b, Hydrodynamic properties of a thromboxane A2/prostaglandin H2 antagonist binding site solubilized from human platelets, Biochem. Biophys. Res. Commun. 132: 961–968.PubMedCrossRefGoogle Scholar
  14. Burke, S. E., Lefer, A. M., Nicolaou, K. C., Smith, G. M., and Smith, J. B., 1983, Responsiveness of platelets and coronary arteries from different species to synthetic thromboxane and prostaglandin endoperoxide analogues, Br. J. Pharmacol. 78: 287–292.PubMedGoogle Scholar
  15. Carey, F., Menashi, S., and Crawford, N., 1983, Prostaglandin endoperoxides and thromboxane do not promote release of sequestered Ca++ from platelet intracellular membrane vesicles, Br. J. Pharmacol. 80: 116 P.Google Scholar
  16. Carey, F., Menashi, S., Authi, K. S., Hack, N., Lagarde, M., and Crawford, N., 1985, Platelet membranes, eicosanoid biosynthesis and putative endogenous calcium ionophores, Adv. Exp. Med. Biol. 192: 195–199.Google Scholar
  17. Connolly, T., Laving, W., and Majerus, P., 1986, Protein kinase C phosphorylates human platelet inositol triphosphate 5’-phosphomonoesterase increasing the phosphatase activity, Cell 46: 951–958.PubMedCrossRefGoogle Scholar
  18. Dorn, G., Burch, R. M., Kochel, P., Mais, D. E., and Halushka, P. V., 1987a, Alteration of platelet thromboxane A2/prostaglandin H2 receptors by supernatant of platelet homogenates, Biochem. Pharmacol. 36: 1913–1917.PubMedCrossRefGoogle Scholar
  19. Dorn, G., Sens, D., Chaikhouni, A., Mais, D., and Halushka, P., 1987b, Cultured human vascular smooth muscle cells with functional thromboxane A, receptors: Measurement of U46619 induced calcium-45 efflux, Circulation Res. 60: 952–956.PubMedGoogle Scholar
  20. Fitzgerald, D. J., Roy, L., Catella, F., and FitzGerald, G. A., 1986, Platelet activation in unstable coronary disease, N. Engl. J. Med. 315: 983–990.PubMedCrossRefGoogle Scholar
  21. FitzGerald, G. A., Pedersen, A. K., and Patrono, C., 1983, Analysis of prostacyclin and thromboxane biosynthesis in cardiovascular disease, Circulation 67: 1174–1177.PubMedCrossRefGoogle Scholar
  22. FitzGerald, G. A., Healy, C., and Daugherty, J., 1987, Thromboxane A2 biosynthesis in human disease, Fed. Proc. 46: 154–158.PubMedGoogle Scholar
  23. Fukuo, K., Morimoto, S., Koh, E., Yukawa, S., Tsuchiya, H., Imanaka, S., Yamamoto, H., Onishi, T., and Kumahara, Y., 1986, Effects of prostaglandins on the cytosolic free calcium concentration in vascular smooth muscle cells, Biochem. Biophys. Res. Commun. 136 (1): 247–252.PubMedCrossRefGoogle Scholar
  24. Gerrard, J. M., and Carroll, R. C., 1981, Stimulation of platlelet protein phosphorylation by arachidonic acid and endoperoxide analogs, Prostaglandins 22: 81–94.PubMedCrossRefGoogle Scholar
  25. Gerrard, J. M., White, J. G., and Peterson, D. A., 1978, The platelet dense tubular system: Its relationship to prostaglandin synthesis and calcium flux, Thromb. Haemost. 40: 224–231.PubMedGoogle Scholar
  26. Gorman, R. R., Wierenga, W., and Miller, O. V., 1979, Independence of the cyclic AMP-lowering activity of thromboxane A2 from the platelet release reaction, Biochim. Biophys. Acta 572: 95–104.PubMedGoogle Scholar
  27. Greenberg, S., 1981, Effect of prostacyclin and 9a, l la epoxymethanoprostaglandin H2 on calcium and magnesium fluxes and tension development in canine intralobar pulmonary arteries and veins, J. Pharmacol. Exp. Ther. 219: 326–337.PubMedGoogle Scholar
  28. Hallam, T. J., and Rink, T. J., 1985, Agonists stimulate divalent cation channels in the plasma membrane of human platelets, FEBS Lett. 186: 175–179.PubMedCrossRefGoogle Scholar
  29. Hallam, T. J., Sanchez, A., and Rink, T. J., 1984, Effects of excitatory/inhibitory eicosanoids on cytoplasmic free calcium directly measured in human platelets with the fluorescent indicator quin-2, in: Prostaglandins and Membrane Ion Transport ( P. Braquet, R. P., Garay, J. C. Frölich, and S. Nicosia, eds.) pp 157–163, Raven, New York.Google Scholar
  30. Halushka, P. V., and Lefer, A. 1987, Thromboxane A2 in health and disease, Fed. Proc. 46: 131–132.PubMedGoogle Scholar
  31. Halushka, P. V., Rogers, R. C., Loadholt, C. B., and Colwell, J. A., 1981, Increased platelet thromboxane synthesis in diabetes mellitus, J. Lab. Clin. Med. 97: 87–96.PubMedGoogle Scholar
  32. Halushka, P. V., Dollery, C. T., and MacDermot, J., 1983, Thromboxane and prostacyclin in disease: A review, Q. J. Med. 208: 461–470.Google Scholar
  33. Halushka, P. V., MacDermot, J., Knapp, D. R., Eller, T., Saussy, D. L., Jr., Mais, D. B., Blair, I. A., and Dollery, C. T., 1985, A novel approach for the study of thromboxane A2 and prostaglandin H2 receptors using an 125I-labelled ligand, Biochem. Pharmacol. 34: 1165–1170.PubMedCrossRefGoogle Scholar
  34. Halushka, P. V., Mais, D. E., Garvin, M., Kochel, P., and Sightler, H., 1986a, Structure—activity relationships for 13-azapinane-TXA2 analogs in platelets and vascular TXA2/ PGH2 receptors: Evidence for different receptors, in:6th International Conference on Prostaglandin, p. 166, Fondazione Giovanni Lorenzini.Google Scholar
  35. Halushka, P. V., Mais, D. E.. and Garvin, M., 1986b, Binding of a thromboxane A2/prostaglandin H2 receptor antagonist to guinea-pig platelets, Eur. J. Pharmacol. 131: 49–54.PubMedCrossRefGoogle Scholar
  36. Halushka, P. V., Mais, D. E., and Saussy, D. L., Jr. 1987a, Platelet and vascular smooth muscle thromboxane A2/prostaglandin H2 receptors, Fed. Proc. 46: 149–153.PubMedGoogle Scholar
  37. Halushka, P., Kochel, P., and Mais, D., 1987b, Binding of thromboxane A,/prostaglandin H2 agonists to human platelets, Br. J. Pharmacol. 91: 223–227.PubMedGoogle Scholar
  38. Hamberg, M., and Samuelsson, B., 1974, Prostaglandin endoperoxides. Novel transformations of arachidonic acid in human platelets, Proc. Natl. Acad. Sci. U.S.A. 71: 3400–3404.PubMedCrossRefGoogle Scholar
  39. Hamberg, M., Svensson, J., and Samuelsson, B., 1975, Prostaglandin endoperoxides. A new concept concerning the mode of action and release of prostaglandins, Proc. Natl. Acad. Sci. U.S.A. 71: 3824–3828.CrossRefGoogle Scholar
  40. Hamberg, M., Svensson, J., and Samuelsson, B., 1974, Thromboxanes: A new group of biologically active compounds derived from prostaglandin endoperoxides, Proc. Natl. Acad. Sci. U.S.A. 72: 2994–2998.CrossRefGoogle Scholar
  41. Hirsch, P. D., Hillis, L. D., Campbell, W. B., Firth, B. G., and Willerson, J. T., 1981, Release of prostaglandins and thromboxane into the coronary circulation in patients with ischemic heart disease, N. Engl. J. Med. 304: 685–691.CrossRefGoogle Scholar
  42. Houslay, M., Bojanic, D., and Wilson, A., 1986, Platelet activating factor and U44069 stimulate a GTPase activity in human platelets which is distinct from the guanine nucleotide regulatory proteins, NS and N;, Biochem. J. 234: 737–740.PubMedGoogle Scholar
  43. Hung, S. C., Ghali, N. I., Venton, D. L., and LeBreton, G. C., 1983, Specific binding of the thromboxane A2 antagonist 13-azaprostanoic acid to human platelet membranes, Biochim. Biophys. Acta 728: 171–178.PubMedCrossRefGoogle Scholar
  44. Kattelman, E., Venton, D., and LeBreton, G., 1986, Characterization of U46619 binding in unactivated, intact human platelets and determination of binding site affinities of four TXA2/PGH2 receptor antagonists (13-APA, BM 13.177, ONO 3708 and SQ 29,548), Thromb. Res. 41: 471–481.PubMedCrossRefGoogle Scholar
  45. Kawahara, Y., Yamanishi, J., Furuta, Y., Kaibuchi, K., Takai, Y., and Fukuzaki, H., 1983, Elevation of cytoplasmic free calcium concentration by stable thromboxane A2 analogue in human platelets, Biochem. Biophys. Res. Commun. 117: 663–669.PubMedCrossRefGoogle Scholar
  46. Kelley, V. E., Sneve, S., and Musinski, S., 1986, Increased renal thromboxane production in murine lupus nephritis, J. Clin. Invest. 77: 252–259.PubMedCrossRefGoogle Scholar
  47. Lawson, J. A., Patrono, C., Ciabattoni, G., and FitzGerald, G. A., 1986, Long-lived enzymatic metabolites of thromboxane B2 in the human circulation, Anal. Biochem. 15: 198–205.CrossRefGoogle Scholar
  48. LeBreton, G. C., Venton, D. L., Enke, S. E., and Halushka, P. V., 1979, 13-Azaprostanoic acid: A specific antagonist of the human blood platelets thromboxane endoperoxide receptor, Proc. Natl. Acad. Sci. U.S.A. 76: 4097–4101.Google Scholar
  49. Lefer, A. M., 1984, Role of eicosanoids in circulatory shock, Prostaglandins and Other Eicosanoids in the Cardiovascular System (K. Schrör, ed.), Proceedings of the 2nd International Symposium pp. 149–159, Karger, Basel.Google Scholar
  50. Liel, N., Mais, D. E., and Halushka, P. V., 1986, Binding of a thromboxane A2/prostaglandin H2 agonist [3H]U46619 to washed human platelets, Prostaglandins 33: 789–797.CrossRefGoogle Scholar
  51. Litosch, I., and Fain, J., 1986, Regulation of phosphoinositide breakdown by guanine nucleotides, Life Sci. 39: 187–194.PubMedCrossRefGoogle Scholar
  52. Loutzenhiser, R., and van Breemen, C., 1981, Mechanism of activation of isolated rabbit aorta by PGH2 analogue U-44069, Am. J. Physiol. 241: C243–C249.PubMedGoogle Scholar
  53. Mais, D., Knapp, D., Ballard, K., Hamanaka, N., and Halushka, P., 1984, Synthesis of thromboxane receptor antagonists with the potential to radiolabel with l25í, Tetrahedron Lett. 25: 4207–4210.CrossRefGoogle Scholar
  54. Mais, D., Saussy, D., Chaikhouni, A., Kochel, P., Hamanaka, N., and Halushka, P., 1985a, Pharmacologic characterization of human and canine thromboxane A2/prostaglandin H2 receptors in platelets and blood vessels: Evidence for different receptors, J. Pharmacol. Exp. Ther. 233: 424–428.Google Scholar
  55. Mais, D., Dunlap, C., Hamanaka, N., and Halushka, P., 1985b, Further studies on the effects of epimers of thromboxane A2 antagonists on platelets and veins, Eur. J., Pharmacol 111: 125–128.PubMedCrossRefGoogle Scholar
  56. Mais, D. E., Burch, R. M., Saussy, D. L., Jr., Kochel, P. J., and Halushka, P. V., 1985c, Binding of a thromboxane A2/prostaglandin H2 receptor antagonist to washed human platelets, J. Pharmacol. Exp. Ther. 235: 729–734.PubMedGoogle Scholar
  57. Mais, D. E., Kochel, P. J., Saussy, D. L., Jr., and Halushka, P. V., 1985d, Binding of an 125I-labelled thromboxane A,/prostaglandin H, receptor antagonist to washed canine platelets, Mol. Pharmacol. 28: 163–169.PubMedGoogle Scholar
  58. McNamara, D. B., Roulet, M. J., Gruetter, C. A., Hymen, A. L.. and Kadowitz, P. J., 1980, Correlation of prostaglandin-induced mitochondrial calcium release with contraction in bovine intrapulmonary vein, Prostaglandins 20: 311–320.PubMedCrossRefGoogle Scholar
  59. Miller, O. V., and Gorman. R. R., 1976, Modulation of platelet cyclic nucleotide content by PGEI and the prostaglandin endoperoxide PGG,, J. Cyclic Nucleotide Protein Phosphor. Res. 2: 79–87.Google Scholar
  60. Miller, O. V.. Johnson. R. A., and Gorman, R. R.. 1977, Inhibition of PGE1-stimulated cAMP accumulation in human platelets by thromboxane A,, Prostaglandins 13: 599–609.PubMedCrossRefGoogle Scholar
  61. Narumiya, S., Okuma, M., and Ushikubi, F., 1986, Binding of a radioiodinated 13-azapinane thromboxane antagonist to platelets: Correlation with antiaggregatory activity in different species, Br. J. Pharmacol. 88: 323–331.PubMedGoogle Scholar
  62. Needleman, P. M., Minkes, M., and Raz, A., 1976a, Thromboxanes: Selective biosynthesis and distinct biological properties, Science 193: 163–165.PubMedCrossRefGoogle Scholar
  63. Needleman, P., Moncada, S., Bunting, S., Vane, J., Hamberg, M., and Samuelsson, B., 1976b, Identification of an enzyme in platelet microsomes which generates thromboxane A, from prostaglandin endoperoxides. Nature 261: 558–560.PubMedCrossRefGoogle Scholar
  64. Ogletree, M. L.. 1987, Overview of physiological and pathophysiological effects of thromboxane A,, Fed. Proc. 46: 133–138.PubMedGoogle Scholar
  65. Ogletree, M., Allen. G. O’Keefe, E., Liv, K., and Hedberg, A., 1986, Activities of various prostanoids at thromboxane receptors revealed by selective receptor antagonists: Studies in human platelets and several rat and guinea-pig smooth muscles, in: 6th International Conference on Prostaglandins. p. 350, Fondazione Giovanni Lorenzini, Florence, Italy.Google Scholar
  66. Patrono, C., Ciabattoni, G., Remuzzi, G., Gotti, E., Bombardieri, S., Di Munno, O., Tartarelli, G., Cinotti, G. A., Simonetti, B. M., and Pierucci, A., 1985, Functional significance of renal prostacyclin and thromboxane A2 production in patients with systemic lupus erythematosus, J. Clin. Invest. 76: 1011–1018.PubMedCrossRefGoogle Scholar
  67. Piper, P. J., and Vane, J. R., 1969, Release of additional factors in anaphylaxis and its antagonism by anti-inflammatory drugs, Nature 223: 29–35.PubMedCrossRefGoogle Scholar
  68. Pollock, W. K., Armstrong, R. A., Brydon, L. J., Jones, J. L., and Maclntyre, D. E., 1984, Thromboxane induced phosphatidate formation in human platelets, Biochem. J. 219: 833–842.PubMedGoogle Scholar
  69. Rink, T. J., and Hallam, J. T., 1984, What turns platelets on, Trends Biochem. Sci. Pers. Ed. 9: 215–219.CrossRefGoogle Scholar
  70. Rittenhouse, S. E., 1984, Activaiton of human platelet phospholipase C by ionophore A23187 is totally dependent upon cyclo-oxygenase products and ADP, Biochem. J. 222: 103–110.PubMedGoogle Scholar
  71. Rybicki, J. P., and LeBreton, G. C., 1983, Prostaglandin H2 directly lowers human platelet cAMP levels, Thromb. Res. 30: 407–414.PubMedCrossRefGoogle Scholar
  72. Rybicki, J. P., Venton, D. L., and LeBreton, G. C., 1983, The thromboxane antagonist, 13azaprostanoic acid, inhibits arachidonic acid-induced Cat+ release from isolated platelet membrane vesicles, Biochim. Biophys. Acta 751: 66–73.PubMedGoogle Scholar
  73. Saussy, D. L., Jr., Mais, D. E., Burch, R. M., and Halushka, P. V., 1985, Identification of a putative TXA2/PGH2 receptor in human platelet membranes, J. Biol. Chem. 261: 3025–3029.Google Scholar
  74. Saussy, D. L., Jr., Mais, D. E., Baron, D. A., Pepkowitz, S. H., and Halushka, P. V., 1987, Subcellular localization of a thromboxane A2/prostaglandin PGH2 receptor antagonist binding site in human platelets Biochem. Pharmacol. (in press).Google Scholar
  75. Seiss, W., Siegel, F. L., and Lapetina, E. G., 1983, Arachidonic acid stimulates the formation of 1,2-diacylglycerol and phosphatidic acid in human platelets, J. Biol. Chem. 253: 11236–11242.Google Scholar
  76. Somlyo, A., Bond, M., Somlyo, A., and Scarpa, A., 1985, Inositol trisphosphate-induced calcium release and contraction in vascular smooth muscle, Proc. Natl. Acad. Sci. U.S.A. 82: 5231–5235.PubMedCrossRefGoogle Scholar
  77. Svensson, J., Hamberg, M., and Samuelsson, B., 1975, Prostaglandin endoperoxides IX. Characterization of rabbit aorta contracting substance (RCS) from guinea-pig lung and human platelets, Acta Physiol. Scand. 94: 222–228.PubMedCrossRefGoogle Scholar
  78. Ulrich, V., and Graf, H., 1984, Prostacyclin and thromboxane synthase as P-450 enzymes, Trends Pharmacol. Sci. 5: 352–355.CrossRefGoogle Scholar
  79. Vargafatig, B., and Dao, N., 1971, Release of vasoactive substances from guinea-pig lungs by slow-reacting substance C and arachidonic acid. It’s blocked by nonsteroid anti-inflammatory agents, Pharmacology 6: 99–108.CrossRefGoogle Scholar
  80. Vargafatig, B., and Zirinis, P., 1973, Platelet aggregation induced by arachidonic acid is accompanied by release of potential inflammatory mediators distinct from PGE2 and PGF2,, Nature New Biol. 244: 114–116.Google Scholar
  81. Watson, S. P., and Lapetina, E. G., 1985, 1,2-Diacylglycerol and phorbol ester inhibit agonist-induced formation of inositol phosphates in human platelets: Possible implication for negative feedback reguatlion of inositol phospholipid hydrolysis, Proc. Natl. Acad. Sci. U.S.A. 82: 2623–2626.Google Scholar
  82. Willis, A. L., Vane, J. M., Kuhn, D. C., Scott, C. G., and Petrin, M., 1974, An endoperoxide aggregatory (LASS) formed in platelets in response to thrombotic stimuli-purification, identification and unique biological significance, Prostaglandins 8: 455–507.Google Scholar
  83. Winocour, P. D., Halushka, P. V., and Colwell, J. A., 1985, Platelet involvement in diabetes mellitus, in The Platelets: Physiology and Pharmacology ( G. L., Longenecker, ed.), pp. 341–366, Academic Press, Orlando, FL.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Perry V. Halushka
    • 1
  • Dale E. Mais
    • 2
  • David L. SaussyJr.
    • 2
  1. 1.Departments of Cell and Molecular Pharmacology and Experimental Therapeutics and MedicineMedical University of South CarolinaCharlestonUSA
  2. 2.Department of Cell and Molecular Pharmacology and Experimental TherapeuticsMedical University of South CarolinaCharlestonUSA

Personalised recommendations