Molecular Properties of Leukocyte Receptors for Leukotrienes

  • Catherine H. Koo
  • Laurent Baud
  • Jeffrey W. Sherman
  • Jeanne P. Harvey
  • Daniel W. Goldman
  • Edward J. Goetzl
Part of the New Horizons in Therapeutics book series (NHTH)


The products of oxygenation of arachidonic acid constitute the most diverse family of inflammatory mediators, that are generated by many different pathways in almost all types of cells and are potent initiators and modulators of numerous biological functions. Distinct lipoxygenases convert arachidonic acid to an array of monohydroxy-eicosatetraenoic acids (HETEs) (see Appendix for list of abbreviations), di- and tri-HETEs, and peptide conjugates of HETEs, which participate with different functions in inflammatory and hypersensitivity reactions. The most potent of the arachidonic-acid-derived mediators of chemotaxis and other leukocyte functions is 5(S), 12(R)-dihydroxy-eicosa-6,14 cis-8,10-trans-tetraenoic acid or leukotriene B4 (LTB4), which is produced by the 5-lipoxygenase systems predominating in human polymorphonuclear (PMN) leukocytes, macrophages, and mast cells (Samuelsson, 1983). The C-6-sulfidopeptide leukotrienes, LTC4, LTD4, and LTE4, from the 5-lipoxygenase cascade of mast cells and macrophages, are potent smooth muscle contractile and vasoactive factors but affect PMN leukocytes solely by increasing adherence to endothelial cells and other surfaces in vitro and in vivo (Goetzl et al., 1983; Samuelsson, 1983; Hayaishi and Yamamoto, 1985). In contrast, the 15-lipoxygenase pathway is localized preferentially in epithelial cells of human skin, pulmonary airways, and the gastrointestinal tract (Burrall et al., 1985; Hunter et al., 1985; Krilis et al., 1986) and transforms arachidonic acid into 15-HETE and multiple isomers of 8,15-di-HETE and 14,15-di-HETE.


HL60 Cell Pertussis Toxin Bovine Aortic Endothelial Cell Human Polymorphonuclear Leukocyte Human Promyelocytic Leukemia Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baud, L., Koo, C. H., and Goetzl, E. J., 1987a, Specificity and cellular distribution of human polymorphonuclear leukocyte receptors for leukotriene C4, Immunology 62: 53–59.PubMedGoogle Scholar
  2. Baud, L., Goetzl, E. J., and Koo, C. H., 1987b, Stimulation by leukotriene D4 of increases in the cytosolic concentration of calcium in dimethylsulfoxide-differentiated HL-60 cells, J. Clin. Invest. 80: 983–991.PubMedCrossRefGoogle Scholar
  3. Baud, L., Goetzl, E. J., and Koo, C. H., 1987c, Leukotriene D4-induced increases in the cytoplasmic pH of dimethylsulfoxide-differentiated HL-60 cells, J. Cell. Physiol.Google Scholar
  4. Benjamin, C. W., Rupple, P. L., and Gorman, R. R., 1985, Appearance of specific leukotriene B4 binding sites in myeloid differentiated HL-60 cells, J. Biol. Chem. 260: 14208–14213.PubMedGoogle Scholar
  5. Brown, G. E., Fischkoff, S. A., and Ordonez, J. V., 1984, Development of membrane-potential responsiveness by myeloid leukemia cells during neutrophilic differentiation, Biochem. Biophys. Res. Commun. 123: 937–943.PubMedCrossRefGoogle Scholar
  6. Burrall, B. A., Wintroub, B. U., and Goetzl, E. J., 1985, Selective expression of 15-lipoxygenase activity by cultured human keratinocytes, Biochem. Biophys. Res. Commun. 133: 208–213.PubMedCrossRefGoogle Scholar
  7. Chau, L.-Y., Hoover, R. L., Austen, K. F., and Lewis, R. A., 1986, Subcellular distribution of leukotriene C4 binding units in cultured bovine aortic endothelial cells, J. Immunol. 137: 1985–1992.PubMedGoogle Scholar
  8. Chau, L.-Y., Sun, F. F., Spur, B., Lewis, R. A., and Austen, K. F., 1987, Photoaffinity labeling of leukotriene C4 binding sites in subcellular membranes of ileal smooth muscle, J. Immunol.Google Scholar
  9. Collins, S. J., Ruscetti, F. W., Gallagher, R. E., and Gallo, R. C., 1978, Terminal differentiation of human promyelocytic leukemia cells induced by dimethylsulfoxide and other polar compounds, Proc. Natl. Acad. Sci. U.S.A. 75: 2458–2462.PubMedCrossRefGoogle Scholar
  10. Fischkoff, S. A., Pollak, A., Gleich, G. J., Testa, J. R., Misawa, S., and Reber, T. J., 1984, Eosinophilic differentiation of the human promyelocytic cell line, HL-60, J. Exp. Med. 160: 179–196.PubMedCrossRefGoogle Scholar
  11. Fontana, J. A., Wright, D. G., Schiffman, E., Corcoran, B. A., and Deisseroth, A. B., 1980, Development of chemotactic responsiveness in myeloid precursor cells: Studies with a human leukemia cell line, Proc. Natl. Acad. Sci. U.S.A. 77: 3164–3166.CrossRefGoogle Scholar
  12. Gallagher, R., Collins, S., Trujillo, J., McCredie, K.. Ahearn, M. Tsai, S., Metzgar, R., Aulakh, G., Ting, R., Ruscetti, F., and Gallo, R., 1979, Characterization of the continuous differentiating myeloid cell line (HL-60) from a patient with acute promyelocytic leukemia, Blood 54: 713–733.PubMedGoogle Scholar
  13. Gifford, L. A., Chernov-Rogan, T., Harvey, J. P., Koo, C. H., Goldman, D. W., and Goetzl. E. J., 1987, Recognition of human polymorphonuclear leukocyte receptors for leukotriene B4 by rabbit anti-idiotypic antibodies to a mouse monoclonal anti-leukotriene B4, J. Immunol. 138: 1184–1189.PubMedGoogle Scholar
  14. Goetzl, E. J., 1980. Mediators of immediate hypersensitivity derived from arachidonic acid, N. Engl. J. Med. 303: 822–825.PubMedCrossRefGoogle Scholar
  15. Goetzl, E. J., Brindley, L. L., and Goldman, D. W.. 1983, Enhancement of human neutrophil adherence by synthetic leukotriene constituents of the slow-reacting substance of anaphylaxis, Immunology 50: 35–41.PubMedGoogle Scholar
  16. Goetzl. E. J., Wong, M. Y. S., and Matthay, M. A., 1986, Leukotrienes in human hypersensitivity and inflammatory diseases, in: Advances in Inflammation Research ( I. Otterness, A. Lewis, and R. Capetola, eds.), pp. 47–55, Raven Press, New York.Google Scholar
  17. Goldman, D. W., 1987, Activation of protein kinase C (PKC) decreases leukotriene B4 (LTB4) receptor expression on human neutrophils (N), Fed. Proc. 46: 606.Google Scholar
  18. Goldman, D. W., and Goetzl, E. J., 1982, Specific binding of leukotriene B4 to receptors on human polymorphonuclear leukocytes, J. Immunol. 129: 1600–1604.PubMedGoogle Scholar
  19. Goldman, D. W., and Goetzl, E. J., 1984, Heterogeneity of human polymorphonuclear leukocyte receptors for leukotriene B4. Identification of a subset of high affinity receptors that transduce the chemotactic response, J. Exp. Med. 159: 1027–1041.PubMedCrossRefGoogle Scholar
  20. Goldman, D. W., and Goetzl, E. J., 1985, Calcium dynamics in stimulation of human polymorphonuclear leukocytes by leukotriene B4, in: Advances in Prostaglandin, Thromboxane, and Leukotriene Research ( O. Hayaishi, and S. Yamamoto, eds.), pp. 667–669, Raven Press, New York.Google Scholar
  21. Goldman, D. W., Gifford, L. A., Young, R. N., and Goetzl, E. J., 1985a, Affinity labeling of human neutrophil (N) receptors for leukotriene B4 (LTB4), Fed. Proc. 44: 781.Google Scholar
  22. Goldman, D. W., Gifford, L. A., Olson, D. M., and Goetzl, E. J., 1985b, Transduction by leukotriene B4 receptors of increases in cytosolic calcium in human polymorphonuclear leukocytes, J. Immunol. 135: 525–530.PubMedGoogle Scholar
  23. Goldman, D. W., Chang, F.-H., Gifford, L.A., Goetzl, E. J., and Bourne, H. R., 1985c, Pertussis toxin inhibition of chemotactic factor-induced calcium mobilization and function in human polymorphonuclear leukocytes, J. Exp. Med. 162: 145–156.PubMedCrossRefGoogle Scholar
  24. Goldman, D. W., Olson, D. M., Payan, D. G., Gifford, L. A., and Goetzl, E. J., 1986, Development of receptors for leukotriene B4 on HL-60 cells induced to differentiate by 1 alpha, 25-dihydroxyvitamin D3, J. Immunol. 136: 4631–4636.PubMedGoogle Scholar
  25. Goldman, D. W., Gifford, L. A., Marotti, T., Koo, C. H., and Goetzl, E. J., 1987, Molecular and cellular properties of human polymorphonuclear leukocyte receptors for leukotriene B4, Fed. Proc. 46: 200–203.PubMedGoogle Scholar
  26. Grinstein, S., and Furuya, W., 1984, Amiloride-sensitive N+H+ exchange in human neutrophils: Mechanism of activation by chemotactic factors, Biochem. Biophys. Res. Commun. 122: 755–762.PubMedCrossRefGoogle Scholar
  27. Hayaishi, O., and Yamamoto, S. (eds.), 1985, Advances in Prostaglandin, Thromboxane, and Leukotriene Research, Raven Press, New York.Google Scholar
  28. Hunter, J. A., Finkbeiner, W. E., Nadel, J. A., Goetzl, E. J., and Holtzman, M. J., 1985, Predominant generation of 15-lipoxygenase metabolites of arachidonic acid by epithelial cells from human trachea, Proc. Natl. Acad. Sci. U.S.A. 82: 4633–4637.PubMedCrossRefGoogle Scholar
  29. Kitagawa, S., Ohta, M., Nojri, H., Kakinuma, K., Saito, M., Takaku, F., and Miura, Y., 1984, Functional maturation of membrane potential changes and superoxide-producing capacity during differentiation of human granulocytes, J. Clin. Invest. 73: 1062–1071.PubMedCrossRefGoogle Scholar
  30. Koo, C. H., Baud, L., Marotti, T., Cheung, M., Harvey, J. P., and Goetzl, E. J., 1987, Receptor-dependent regulation of human polymorphonuclear leukocyte responses to leukotrienes, in: Molecular Biology of the Arterial Wall ( G. Schettler, ed.), pp. 129–131, Springer-Verlag, New York.Google Scholar
  31. Krause, K.-H., Schlegel, W., Wellheim, C. B., Andersson, T., Waldvogel, F. A., and Lew, P. D., 1985, Chemotactic peptide activation of human neutrophils and HL-60 cells. Pertussis toxin reveals correlation between inositol triphosphate generation, calcium in transients, and cellular activation, J. Clin. Invest. 76: 1348–1354.PubMedCrossRefGoogle Scholar
  32. Kreisle, R. A., and Parker, C. W., 1983, Specific binding of leukotriene B4 to a receptor on human polymorphonuclear leukocytes, J. Exp. Med. 157: 628–641.PubMedCrossRefGoogle Scholar
  33. Krilis, S. A., Lewis, R. A., Corey, E. J., and Austen, K. F., 1983, Specific receptors for leukotriene C4 on a smooth muscle cell line, J. Clin. Invest. 72: 1516–1519.PubMedCrossRefGoogle Scholar
  34. Krilis, S. A., Macpherson, J. L., deCarle, D. J., Daggard, G. E., Talley, N. A., and Chester-man, C. N., 1986, Small bowel mucosa from celiac patients generates 15-hydroxyeicosatetraenoic acid (15-HETE) after in vitro challenge with gluten, J. Immunol. 137: 3768–3771.PubMedGoogle Scholar
  35. Kuehl, F. A., DeHaven, R. N., and Pong, S.-S., 1984, Lung tissue receptors for sulfidopeptide leukotrienes, J. Allergy Clin. Immunol. 74: 378–381.PubMedCrossRefGoogle Scholar
  36. Lee, J. Y., Chernov, T., and Goetzl, E. J., 1984, Characteristics of the epitope of leukotriene B4 recognized by a highly specific mouse monoclonal antibody, Biochem. Biophys. Res. Commun. 123: 944–950.PubMedCrossRefGoogle Scholar
  37. Lew, P. D., Dayer, J.-M., Wollheim, C. B., and Pozzan, T, 1984, Effect of leukotriene B4, prostaglandin E2 and arachidonic acid on cytosolic-free calcium in human neutrophils, FEBS Lett. 166: 41–18.CrossRefGoogle Scholar
  38. McCarthy, D. M., SanMiguel, J. F., Freake, H. C., Green, P. M., Zola, H., Catovsky, D., and Goldman, J. M., 1983, 1,25-dihydroxyvitamin D3 inhibits proliferation of human promelocytic leukemia (HL60) cells and induces monocyte—macrophage differentiation in HL60 and normal human bone marrow cells, Leukemia Res. 7: 51–55.Google Scholar
  39. Molski, T. F. P., Naccache, P. H., Volpi, M., Wolpert, L. M., and Sha’afi, R. T., 1980, Specific modulation of the intracellular pH of rabbit neutrophils by chemotactic factors, Biochem. Biophys. Res. Commun. 94: 508–514.PubMedCrossRefGoogle Scholar
  40. Mong, S., Wu, Hu.-L., Hogaboom, G. K., Clark, M. A., and Crooke, S. T., 1984, Characterization of the leukotriene D4 receptor in guinea-pig lung, Eur. J. Pharmacol. 102: 1–11.PubMedCrossRefGoogle Scholar
  41. Naccache, P. H., Molski, T. F. P., Spinelli, B., Borgeat, P., and Abboud, C. N., 1984, Development of calcium and secretory responses in the human promyelocytic leukemia cell line HL60, J. Cell. Physiol. 119: 241–246.PubMedCrossRefGoogle Scholar
  42. Niedel, J., Kahane, I., Lachman, L., and Cuatrecasas, P., 1980, A subpopulation of cultured human promyelocytic leukemia cells (HL-60) displays the formyl peptide chemotactic receptor, Proc. Natl. Acad. Sci. U.S.A. 77: 1000–1004.PubMedCrossRefGoogle Scholar
  43. Opmeer, F. A., and Hoogsteden, H. C., 1984, Characterization of specific receptors for leukotriene D4 on human alveolar macrophages, Prostaglandins 28: 183–194.PubMedCrossRefGoogle Scholar
  44. Palmblad, J., Gyllenhammer, H., Lindgren, J. A., and Malmsten, C. L., 1984, Effects of leukotrienes and f-Met-Leu-Phe on oxidative metabolism of neutrophils and eosinophils, J. Immunol. 132: 3041–3045.PubMedGoogle Scholar
  45. Rovera, G., Santoli, D., and Damsky, C., 1979, Human promyelocytic leukemia cells in culture differentiate into macrophage-like cells when treated with a phorbol diester, Proc. Natl. Acad. Sci. U.S.A. 76: 2779–2783.PubMedCrossRefGoogle Scholar
  46. Samuelsson, B., 1983, Leukotrienes: Mediators of immediate hypersensitivity reactions and inflammation, Science 220: 568–575.PubMedCrossRefGoogle Scholar
  47. Sarau, H. M., Foley, J. J., Mong, S., and Crooke, S. T., 1987, Identification of [3H1LTD4 receptors and associated intracellular calcium mobilization in U937 cells, Fed. Proc. 46: 1313A.Google Scholar
  48. Sherman, J. W., Goetzl, E. J., and Koo, C. H., 1987, Guanine nucleotide modulation of human neutrophil plasma membrane receptors for leukotriene B4, Clin. Res. 35: 618A.Google Scholar
  49. Talbot, S. F., Atkins, P. C., Goetzl, E. J., and Zweiman, B., 1985, Accumulation of leuko- triene C4 and histamine in human allergic skin reactions, J. Clin. Invest. 76: 650–656.PubMedCrossRefGoogle Scholar
  50. Valone, F., Shalit, M., Atkins, P., Goetzl, E., and Zweiman, B., 1987, Platelet activating factor release in allergic skin sites in humans, J. Allergy Clin. Immunol. 79: 248.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Catherine H. Koo
    • 1
  • Laurent Baud
    • 1
  • Jeffrey W. Sherman
    • 1
  • Jeanne P. Harvey
    • 1
  • Daniel W. Goldman
    • 1
  • Edward J. Goetzl
    • 1
  1. 1.Howard Hughes Medical Institute and Departments of Medicine and Microbiology—ImmunologyUniversity of California Medical CenterSan FranciscoUSA

Personalised recommendations